1
|
Peng D, Wang N, Zang Y, Liu Z, Liu Z, Geng J, Cong B, Sun H, Wu R. Concurrent genotyping of mitochondrial DNA and nuclear DNA in rootless hair shafts and blood samples for enhanced analysis. Forensic Sci Int Genet 2025; 75:103176. [PMID: 39566343 DOI: 10.1016/j.fsigen.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Hair is an important type of biological evidence at crime scenes. However, the highly degraded nature of DNA fragments in hair shafts poses challenges for the detection of nuclear DNA (nuDNA) through capillary electrophoresis-based short tandem repeat (STR) genotyping. In this study, an all-in-one multiplex system named MGIEasy Signature Identification Library Prep Kit (MGI Tech, China) was employed to the simultaneous genotyping of both mitochondrial DNA (mtDNA) and nuDNA in hair shafts. This system is based on massively parallel sequencing (MPS) technology and encompasses Amelogenin, STRs, single nucleotide polymorphisms (SNPs) and mtDNA hypervariable regions (HVRs) in a single reaction. A total of 370 hair shafts, together with 180 blood samples as the references, were examined. The mtDNA analysis of 110 unrelated blood samples unveiled a total of 150 homoplasmic variants and 105 distinct haplotypes, revealing population polymorphisms in the Guangdong Han Chinese. The study also delved into the detection of mtDNA heteroplasmy, revealing 8.18 % and 16.36 % of individuals with point heteroplasmies (PHPs) in blood and hair shaft samples, respectively. Additionally, hair shafts with DNA extracted using the Investigator method yielded higher average depth of coverage (DoC), lower drop-out rate for SNP genotyping, higher nuDNA genotyped rates and success rates, than those using the MinElute method. In the longitudinal research, a gradual decrease in the total DoC of mtDNA fragments was observed along the length of the hair shaft, from the proximal root to the distal end. In contrast, the DoC of nuDNA exhibited a relatively stable pattern along the length of the hair shafts. The study contributes valuable insights into the simultaneous detection of nuDNA and mtDNA in hair shafts, emphasizing the need for optimized DNA extraction and detection methods for these highly degraded samples.
Collapse
Affiliation(s)
- Dan Peng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China; Criminal Investigation Bureau, Chengdu Public Security Bureau, Chengdu 610000, China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Zang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhentang Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Feng Y, Chen L, Wang X, Zhang H, Wang Q, Liu Y, Jin X, Yang M, Huang J, Ren Z. Analysis of maternal genetic structure of mitochondrial DNA control region from Tai-Kadai-speaking Buyei population in southwestern China. BMC Genomics 2024; 25:50. [PMID: 38212691 PMCID: PMC10782584 DOI: 10.1186/s12864-023-09941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Even though the Buyei are a recognised ethnic group in southwestern China, there hasn't been much work done on forensic population genetics, notably using mitochondrial DNA. The sequences and haplogroups of mitochondrial DNA control regions of the Buyei peoples were studied to provide support for the establishment of a reference database for forensic DNA analysis in East Asia. METHODS AND RESULTS The mitochondrial DNA control region sequences of 200 Buyei individuals in Guizhou were investigated. The haplotype frequencies and haplogroup distribution of the Buyei nationality in Guizhou were calculated. At the same time, the paired Fst values of the study population and other populations around the world were computed, to explore their genetic polymorphism and population relationship. A total of 179 haplotypes were detected in the Buyei population, with frequencies of 0.005-0.015. All haplotypes were assigned to 89 different haplogroups. The haplotype diversity and random matching probability were 0.999283 and 0.0063, respectively. The paired Fst genetic distances and correlation p-values among the 54 populations revealed that the Guizhou Buyei was most closely related to the Henan Han and the Guizhou Miao, and closer to the Hazara population in Pakistan and the Chiang Mai population. CONCLUSIONS The study of mitochondrial DNA based on the maternal genetic structure of the Buyei nationality in Guizhou will benefit the establishment of an East Asian forensic DNA reference database and provide a reference for anthropological research in the future.
Collapse
Grants
- KY No. [2021]065 Guizhou Province Education Department, Characteristic Region Project, Qian Education
- [2020] 4Y057 Guizhou Scientific Support Project, Qian Science Support
- No. 82160324 National Natural Science Foundation of China
- No. 82160324 National Natural Science Foundation of China
- [2020]6012 Guizhou "Hundred" High-level Innovative Talent Project, Qian Science Platform Talents
- KF202009 Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Open Project
- NO. [2016] 1345 Guizhou Engineering Technology Research Center Project, Qian High-Tech of Development and Reform Commission, NO. [2016] 1345
- [2020] 1Y353 Guizhou Science Project, Qian Science Foundation
- [2018] 5779-X Guizhou Scientific Cultivation Project, Qian Science Platform Talent
Collapse
Affiliation(s)
- Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Li Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoxue Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
3
|
Ren Z, Feng Y, Zhang H, Wang Q, Yang M, Liu Y, Le C, Wang J, Huang J. Genetic analysis of the mitochondrial DNA control region in Tai-Kadai-speaking Dong population in southwest China. Ann Hum Biol 2022; 49:354-360. [PMID: 36190920 DOI: 10.1080/03014460.2022.2131334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Dong people in Southwest China are officially recognised as an ethnic group, but there has been a lack of population genetic research on this group, especially based on mitochondrial DNA data. AIM To study the sequences and haplogroups of the mitochondrial DNA control region in a typical Dong population, and to provide help for the construction of a forensic mitochondrial DNA analysis reference database in East Asia. SUBJECTS AND METHODS The sequences of the mitochondrial DNA control region were analysed in 200 individuals of Dong in Guizhou. The haplotype frequencies, haplogroup distribution and paired Fst values of Guizhou Dong and 51 other populations in the world were calculated and explained to explore the genetic polymorphism and population relationships. RESULTS A total of 180 haplotypes were detected, with frequencies of 0.005-0.02. All haplotypes were assigned to 97 different haplogroups. The haplotype diversity and random matching probability were 0.998643 and 0.00635, respectively. The paired Fst values and correlation p values of 52 populations showed that the Guizhou Dong had the closest genetic relationship with the Henan Han and the Guizhou Miao in China, and were closest to the Punjab population in Pakistan and the Kashmiri population when compared with the world populations. CONCLUSIONS Our study was based on the matrilineal genetic structure of Guizhou Dong to study mitochondrial DNA, which was helpful to promote the establishment of the forensic DNA reference database in East Asia and provide reference for anthropological research.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| |
Collapse
|
4
|
Xiong J, Du P, Chen G, Tao Y, Zhou B, Yang Y, Wang H, Yu Y, Chang X, Allen E, Sun C, Zhou J, Zou Y, Xu Y, Meng H, Tan J, Li H, Wen S. Sex-Biased Population Admixture Mediated Subsistence Strategy Transition of Heishuiguo People in Han Dynasty Hexi Corridor. Front Genet 2022; 13:827277. [PMID: 35356424 PMCID: PMC8960071 DOI: 10.3389/fgene.2022.827277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 01/12/2023] Open
Abstract
The Hexi Corridor was an important arena for culture exchange and human migration between ancient China and Central and Western Asia. During the Han Dynasty (202 BCE–220 CE), subsistence strategy along the corridor shifted from pastoralism to a mixed pastoralist-agriculturalist economy. Yet the drivers of this transition remain poorly understood. In this study, we analyze the Y-chromosome and mtDNA of 31 Han Dynasty individuals from the Heishuiguo site, located in the center of the Hexi Corridor. A high-resolution analysis of 485 Y-SNPs and mitogenomes was performed, with the Heishuiguo population classified into Early Han and Late Han groups. It is revealed that (1) when dissecting genetic lineages, the Yellow River Basin origin haplogroups (i.e., Oα-M117, Oβ-F46, Oγ-IMS-JST002611, and O2-P164+, M134-) reached relatively high frequencies for the paternal gene pools, while haplogroups of north East Asian origin (e.g., D4 and D5) dominated on the maternal side; (2) in interpopulation comparison using PCA and Fst heatmap, the Heishuiguo population shifted from Southern-Northern Han cline to Northern-Northwestern Han/Hui cline with time, indicating genetic admixture between Yellow River immigrants and natives. By comparison, in maternal mtDNA views, the Heishuiguo population was closely clustered with certain Mongolic-speaking and Northwestern Han populations and exhibited genetic continuity through the Han Dynasty, which suggests that Heishuiguo females originated from local or neighboring regions. Therefore, a sex-biased admixture pattern is observed in the Heishuiguo population. Additionally, genetic contour maps also reveal the same male-dominated migration from the East to Hexi Corridor during the Han Dynasty. This is also consistent with historical records, especially excavated bamboo slips. Combining historical records, archeological findings, stable isotope analysis, and paleoenvironmental studies, our uniparental genetic investigation on the Heishuiguo population reveals how male-dominated migration accompanied with lifestyle adjustments brought by these eastern groups may be the main factor affecting the subsistence strategy transition along the Han Dynasty Hexi Corridor.
Collapse
Affiliation(s)
- Jianxue Xiong
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Guoke Chen
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou, China
| | - Yichen Tao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Boyan Zhou
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY, United States
| | - Yishi Yang
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou, China
| | - Hui Wang
- Institute of Archaeological Science, Fudan University, Shanghai, China
- Center for the Belt and Road Archaeology and Ancient Civilizations (BRAAC), Fudan University, Shanghai, China
| | - Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Chang Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Juanjuan Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yetao Zou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
- Center for the Belt and Road Archaeology and Ancient Civilizations (BRAAC), Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| |
Collapse
|
5
|
Gubina MA, Babenko VN, Batsevich VA, Leibova NA, Zabiyako AP. Polymorphism of Mitochondrial DNA and Six Nuclear Genes in the Amur Evenk Population. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Feng Y, Zhang H, Wang Q, Yang M, Liu Y, Wang Jie, Huang J, Ren Z. The mitochondrial DNA control region sequences from the Chinese Sui population of southwestern China. Ann Hum Biol 2021; 48:635-640. [PMID: 34663140 DOI: 10.1080/03014460.2021.1994649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Sui people are officially recognised people living in southwest China, but there has been a lack of genetic research, especially based on mitochondrial DNA data. AIM To study the sequences and haplogroups of the mitochondrial DNA control region in a typical Sui population, with the aim of helping to promote the establishment of a forensic DNA analysis reference database in East Asia. SUBJECTS AND METHODS We analysed 201 Sui individuals and observed the sequences of the mitochondrial DNA control region. We calculated and explained the haplotype frequencies, haplogroup distribution and pairwise Fst values between the Sui and 47 other populations in the world, in order to explore genetic polymorphisms and population relationships. RESULTS 161 haplotypes were found in the Sui population, with frequencies of 0.0049-0.0199. All samples were assigned to 80 different haplogroups. The haplotype diversity and random matching probability were 0.999938 and 0.024729, respectively. The pairwise Fst values and correlation p-values of 48 populations showed that the Sui population was most closely related to the Miao population in Guizhou and the Han population in Henan, and closer to the Punjab population and Pukhtunkhwa population in Pakistan, and was significantly different from the other 43 groups. Compared with the other 43 groups, it is relatively isolated. CONCLUSION Our results show that the study of mitochondrial DNA based on the analysis of matrilineal genetic structure of the Sui population can help to promote the establishment of a forensic DNA reference database in East Asia and provide reference for future anthropological research.
Collapse
Affiliation(s)
- Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wang Jie
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
7
|
Yue WQ, Sun ML, Han F, Li JJ, Rigzin T, Dhondup T, Liu HB, Li DY, Li X, Xu YM, Li XN. Investigation of control region sequences of mtDNA in Naqu Tibetan population from Northwestern China. Ann Hum Biol 2021; 48:70-77. [PMID: 33461338 DOI: 10.1080/03014460.2021.1877351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The sequence polymorphisms of mitochondrial DNA (mtDNA) are valuable in forensic medicine and anthropological genetics. AIM We analysed the sequences of the mtDNA control region in 207 unrelated Tibetan individuals from the Naqu region, Tibet Autonomous Region in the People's Republic of China, and investigated the population structure of the region by population comparison with other groups. SUBJECTS AND METHODS Genomic DNA was extracted and hypervariable regions (HVS-I and HVS-II) were amplified and sequenced. Subsequently, sequences were aligned and compared with the revised Cambridge sequence. Moreover, population comparison was performed between the Naqu Tibetan group and the other groups. CONCLUSION Our study provided available data for exploring the mtDNA haplotype of the Tibetan population in the Naqu region, and population comparisons found that the Naqu Tibetan population has its own unique structure.
Collapse
Affiliation(s)
- Wen-Qing Yue
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Mao-Ling Sun
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Feng Han
- Medical Department, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Jiu-Jun Li
- Department of Pediatrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Tsewang Rigzin
- Department of Internal Medicine, Naqu People's Hospital in Tibet, Naqu, China
| | - Tashi Dhondup
- Department of Pediatrics, Shengjing Hospital affiliated to China Medical University, Shenyang, China.,Saijo Township Health Center, Naqu, China
| | - Hai-Bo Liu
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Dong-Yue Li
- School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Xuan Li
- School of Innovation, China Medical University, Shenyang, China
| | - Yan-Ming Xu
- School of Innovation, China Medical University, Shenyang, China
| | - Xiao-Na Li
- School of Fundamental Sciences, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Li X, Ji D, Marley JL, Zou W, Deng X, Cao Y, Zhang Z, Liu Y, Wei Z, Zhou P, Cao Y. Association between mitochondrial DNA D-loop region polymorphisms and endometriosis in a Chinese population. J Assist Reprod Genet 2020; 37:2171-2179. [PMID: 32535813 PMCID: PMC7492337 DOI: 10.1007/s10815-020-01853-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE To investigate the correlation between endometriosis and mitochondrial DNA (mtDNA) D-loop single nucleotide polymorphisms (SNPs) and haplotype, as well as the predictive power of certain SNPs in reproductive outcomes in a Chinese Han population. METHODS A case-control study was conducted in which 125 endometriosis patients and 124 controls were recruited from an academic fertility center. The entire 1124-bp D-loop region of mtDNA of whole blood samples from all subjects was amplified, sequenced, and compared with the revised Cambridge Reference Sequence (rCRS) to identify SNPs and haplotypes. The association between D-loop SNPs and embryo quality and clinical outcome following in vitro fertilization (IVF) was also assessed. RESULTS A total of 321 polymorphisms were identified by sequencing, allowing comparison of the D-loop between endometriosis patients and controls. The frequency of the AC523-524 del, T16172C, and C16290T variants were significantly higher, while the frequency of polymorphisms T195C, 573XCins, 16036Gins, 16049Gins, T16140C, A16183C, T16189C, and 16193Cins were lower, in the endometriosis group compared with the control group (p < 0.05). Within the endometriosis group, the high-quality blastocyst rate in the 16,290T subgroup was significantly lower than that in the 16290C subgroup (p < 0.05). In the control group, 16519C carriers showed a lower rate of high-quality blastocyst development compared with 16519T (p < 0.05). In endometriosis patients clinical pregnancy rate was significantly lower in the 150T subgroup compared with the 150C subgroup (p < 0.05). DISCUSSION Data confirms a correlation between D-loop polymorphisms and endometriosis. The polymorphisms AC523-524 del, T16172C, and C16290T are associated with increased risk of endometriosis, while T195C, 573XCins, 16036Gins, 16049Gins, T16140C, A16183C, T16189C, and 16193Cins are associated with decreased risk of endometriosis. In addition, C16290T and T16519C can be associated with poor quality blastocyst development in population with and without endometriosis, respectively and C150T can be a predictor of poor IVF outcome.
Collapse
Affiliation(s)
- Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81Meishan Road, Hefei, 230032, Anhui, China.
| | - Jordan Lee Marley
- Biosciences Institute, Newcastle University, 10 Victoria street, Newcastle upon Tyne, Tyne and Wear, NE4 7JU, UK
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaohong Deng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yu Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
9
|
Le C, Ren Z, Zhang H, Wang Q, Yang M, Liu Y, Huang J, Wang J. The mitochondrial DNA control region sequences from the Chinese Miao population of southeastern China. Ann Hum Biol 2019; 46:606-609. [PMID: 31775532 DOI: 10.1080/03014460.2019.1694701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Miao people are an officially recognised ethnic group living in southwest China, but have seldom been studied genetically, especially with respect to mtDNA data.Aim: To investigate the sequences and haplogroups of the mtDNA control region in a typical Miao population, with the aim of providing a good start for the expansion of the East Asian mtDNA reference database for forensic DNA analysis.Subjects and methods: We analysed 203 Miao individuals, looking at mtDNA control region sequences. We calculated and illustrated the haplotype frequencies, haplogroup distribution and pairwise Fst values between the Miao and six other worldwide populations to explore genetic polymorphisms and population relationships.Results: We observed 121 haplotypes with corresponding frequencies ranging from 0.0049 to 0.0690 in the Miao population. All the samples were assigned to 71 different haplogroups. The haplotype diversity and the random match probability were estimated to be 0.9844 and 0.0204, respectively. The pairwise Fst values and associated p values among seven populations suggest that the Miao population has significant differences to the other six populations, and is relatively isolated compared with them.Conclusions: Our results suggest that frequency estimates for mtDNA haplotypes in Miao ethnic groups should be determined independently rather than being pooled with other populations.
Collapse
Affiliation(s)
- Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, PR China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, PR China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, PR China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, PR China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, PR China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, PR China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, PR China
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
10
|
Wei YY, Ren ZP, Jin XY, Cui W, Chen C, Guo YX, Meng HT, Zhu BF. Haplogroup Structure and Genetic Variation Analyses of 60 Mitochondrial DNA Markers in Southern Shaanxi Han Population. Biochem Genet 2019; 58:279-293. [PMID: 31696339 DOI: 10.1007/s10528-019-09942-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA (mtDNA) has been widely employed as one tool for the studies of human migration and phylogenetic evolution owing to the characteristics of its lack of recombination and matrilineal inheritance. In this study, we analyze genetic distributions of 60 mtDNA markers in 126 unrelated individuals of Southern Shaanxi Han population and classify their haplogroups. Genetic distribution comparisons between Southern Shaanxi Han and other populations from different continents are conducted based on the same mtDNA markers. The majority of 60 mtDNA markers are polymorphic in Southern Shaanxi Han population. The most common haplogroups observed in Southern Shaanxi Han population are B5, followed by D5, A, D4e, and N9a1'3. Obtained matching probability for these 60 mtDNA markers indicates that the panel could be used as a valuable tool in forensic caseworks. Results of genetic distances (Fst) and multidimensional scaling analysis show that Southern Shaanxi Han population has relatively close genetic relationships with other Han populations in different regions. In conclusion, the panel comprising 60 mtDNA markers could be utilized for forensic applications in Southern Shaanxi Han population.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhan-Ping Ren
- Department of Cranio-Maxillofacial Trauma Plastic Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xiao-Ye Jin
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei Cui
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chong Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yu-Xin Guo
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hao-Tian Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Bo-Feng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. .,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. .,Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Sangthong P, Thongngam P, Leewattanapasuk W, Bhoopat T. Nucleotide sequence analysis of mitochondrial DNA hypervariable region II and inter HVR in Thais. AUST J FORENSIC SCI 2019. [DOI: 10.1080/00450618.2019.1682666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Padchanee Sangthong
- Division of Forensic Science, The Graduate School, Chiang Mai University, Chiang Mai, Thailand
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Punlop Thongngam
- Division of Forensic Science, The Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Worraanong Leewattanapasuk
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Tanin Bhoopat
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Yao L, Xu Z, Wan L. Whole Mitochondrial DNA Sequencing Analysis in 47 Han Populations in Southwest China. Med Sci Monit 2019; 25:6482-6490. [PMID: 31464266 PMCID: PMC6733151 DOI: 10.12659/msm.916275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) sequencing has been used in many areas, including forensic genetics. Due to the rapid development of sequencing technology, whole mtDNA sequencing is now possible and may be used in epidemiological and forensic studies. This study aimed to use whole mtDNA sequencing to investigate 47 Chongqing Han populations in southwest China and the diversity in the mtGenome reference data. Material/Methods The mtDNA of 47 Chongqing Han populations was generated using the Ion Torrent Personal Genome Machine (PGM) system. The extent of the effects of the mtDNA on the subpopulations was investigated and compared with six other populations from published studies. Pairwise fixation index (FST), a measure of population differentiation due to genetic structure, were calculated. Analysis of molecular variance (AMOVA) was performed, and 1257 hypervariable region data sets were added to the principal component analysis (PCA). Results The whole mtDNA sequencing data of 47 southwest Chinese Han populations were successfully recovered. Expanding the sequencing rage increased the discrimination power of mtDNA from three-times to 25-times based on different populations. The subpopulation effects showed 20 times the differences in match probability when compared with south China regions. Conclusions Whole mtDNA sequencing distinguished between individuals from 47 Chongqing Han populations in southwest China and has potential applications that include high-quality forensic identification.
Collapse
Affiliation(s)
- Lan Yao
- College of Basic Medicine, Chongqing Medical University, Chongqing, China (mainland)
| | - Zhen Xu
- Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, China (mainland)
| | - Lihua Wan
- College of Basic Medicine, Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
13
|
Adachi N, Kakuda T, Takahashi R, Kanzawa-Kiriyama H, Shinoda KI. Ethnic derivation of the Ainu inferred from ancient mitochondrial DNA data. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:139-148. [PMID: 29023628 PMCID: PMC5765509 DOI: 10.1002/ajpa.23338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/06/2023]
Abstract
Objectives The Ainu, the indigenous people living on the northernmost island of Japan, Hokkaido, have long been a focus of anthropological interest because of their cultural, linguistic, and physical identity. A major problem with genetic studies on the Ainu is that the previously published data stemmed almost exclusively from only 51 modern‐day individuals living in Biratori Town, central Hokkaido. To clarify the actual genetic characteristics of the Ainu, individuals who are less influenced by mainland Japanese, who started large‐scale immigration into Hokkaido about 150 years ago, should be examined. Moreover, the samples should be collected from all over Hokkaido. Materials and methods Mitochondrial DNA haplogroups of 94 Ainu individuals from the Edo era were successfully determined by analyzing haplogroup‐defining polymorphisms in the hypervariable and coding regions. Thereafter, their frequencies were compared to those of other populations. Results Our findings indicate that the Ainu still retain the matrilineage of the Hokkaido Jomon people. However, the Siberian influence on this population is far greater than previously recognized. Moreover, the influence of mainland Japanese is evident, especially in the southwestern part of Hokkaido that is adjacent to Honshu, the main island of Japan. Discussion Our results suggest that the Ainu were formed from the Hokkaido Jomon people, but subsequently underwent considerable admixture with adjacent populations. The present study strongly recommends revision of the widely accepted dual‐structure model for the population history of the Japanese, in which the Ainu are assumed to be the direct descendants of the Jomon people.
Collapse
Affiliation(s)
- Noboru Adachi
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Tsuneo Kakuda
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryohei Takahashi
- Department of Legal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hideaki Kanzawa-Kiriyama
- Department of Anthropology, National Museum of Nature and Science, Tokyo Tsukuba, Ibaraki 305-0005, Japan
| | - Ken-Ichi Shinoda
- Department of Anthropology, National Museum of Nature and Science, Tokyo Tsukuba, Ibaraki 305-0005, Japan
| |
Collapse
|
14
|
Xu FL, Yao J, Ding M, Shi ZS, Wu X, Zhang JJ, Wang BJ. Characterization of mitochondrial DNA polymorphisms in the Han population in Liaoning Province, Northeast China. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:250-255. [PMID: 28093929 DOI: 10.1080/24701394.2016.1275597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study characterized the genetic variations of mitochondrial DNA (mtDNA) to elucidate the maternal genetic structure of Liaoning Han Chinese. A total of 317 blood samples of unrelated individuals were collected for analysis in Liaoning Province. The mtDNA samples were analyzed using two distinct methods: sequencing of the hypervariable sequences I and II (HVSI and HVSII), and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the coding region. The results indicated a high gene diversity value (0.9997 ± 0.0003), a high polymorphism information content (0.99668) and a random match probability (0.00332). These samples were classified into 305 haplotypes, with 9 shared haplotypes. The most common haplogroup was D4 (12.93%). The principal component analysis map, the phylogenetic tree map, and the genetic distance matrix all indicated that the genetic distance of the Liaoning Han population from the Tibetan group was distant, whereas that from the Miao group was relatively close.
Collapse
Affiliation(s)
- Feng-Ling Xu
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Jun Yao
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Mei Ding
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Zhang-Sen Shi
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Xue Wu
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Jing-Jing Zhang
- a School of Forensic Medicine , China Medical University , Shenyang , China
| | - Bao-Jie Wang
- a School of Forensic Medicine , China Medical University , Shenyang , China
| |
Collapse
|