1
|
Xia M, Varmazyad M, Pla-Palacín I, Gavlock DC, DeBiasio R, LaRocca G, Reese C, Florentino RM, Faccioli LAP, Brown JA, Vernetti LA, Schurdak M, Stern AM, Gough A, Behari J, Soto-Gutierrez A, Taylor DL, Miedel MT. Comparison of wild-type and high-risk PNPLA3 variants in a human biomimetic liver microphysiology system for metabolic dysfunction-associated steatotic liver disease precision therapy. Front Cell Dev Biol 2024; 12:1423936. [PMID: 39324073 PMCID: PMC11422722 DOI: 10.3389/fcell.2024.1423936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a worldwide health epidemic with a global occurrence of approximately 30%. The pathogenesis of MASLD is a complex, multisystem disorder driven by multiple factors, including genetics, lifestyle, and the environment. Patient heterogeneity presents challenges in developing MASLD therapeutics, creating patient cohorts for clinical trials, and optimizing therapeutic strategies for specific patient cohorts. Implementing pre-clinical experimental models for drug development creates a significant challenge as simple in vitro systems and animal models do not fully recapitulate critical steps in the pathogenesis and the complexity of MASLD progression. To address this, we implemented a precision medicine strategy that couples the use of our liver acinus microphysiology system (LAMPS) constructed with patient-derived primary cells. We investigated the MASLD-associated genetic variant patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 (I148M variant) in primary hepatocytes as it is associated with MASLD progression. We constructed the LAMPS with genotyped wild-type and variant PNPLA3 hepatocytes, together with key non-parenchymal cells, and quantified the reproducibility of the model. We altered media components to mimic blood chemistries, including insulin, glucose, free fatty acids, and immune-activating molecules to reflect normal fasting (NF), early metabolic syndrome (EMS), and late metabolic syndrome (LMS) conditions. Finally, we investigated the response to treatment with resmetirom, an approved drug for metabolic syndrome-associated steatohepatitis (MASH), the progressive form of MASLD. This study, using primary cells, serves as a benchmark for studies using "patient biomimetic twins" constructed with patient induced pluripotent stem cell (iPSC)-derived liver cells using a panel of reproducible metrics. We observed increased steatosis, immune activation, stellate cell activation, and secretion of pro-fibrotic markers in the PNPLA3 GG variant compared to the wild-type CC LAMPS, consistent with the clinical characterization of this variant. We also observed greater resmetirom efficacy in the PNPLA3 wild-type CC LAMPS compared to the GG variant in multiple MASLD metrics, including steatosis, stellate cell activation, and the secretion of pro-fibrotic markers. In conclusion, our study demonstrates the capability of the LAMPS platform for the development of MASLD precision therapeutics, enrichment of patient cohorts for clinical trials, and optimization of therapeutic strategies for patient subgroups with different clinical traits and disease stages.
Collapse
Affiliation(s)
- Mengying Xia
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mahboubeh Varmazyad
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Iris Pla-Palacín
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dillon C. Gavlock
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard DeBiasio
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gregory LaRocca
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Celeste Reese
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rodrigo M. Florentino
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lanuza A. P. Faccioli
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacquelyn A. Brown
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lawrence A. Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew M. Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jaideep Behari
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alejandro Soto-Gutierrez
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - D. Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Becker L, Holtmann D. Anti-inflammatory effects of α-humulene on the release of pro-inflammatory cytokines in lipopolysaccharide-induced THP-1 cells. Cell Biochem Biophys 2024; 82:839-847. [PMID: 38388989 PMCID: PMC11344727 DOI: 10.1007/s12013-024-01235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
While acute inflammation is an essential physical response to harmful external influences, the transition to chronic inflammation is problematic and associated with the development and worsening of many deadly diseases. Until now, established pharmaceutical agents have had many side effects when used for long periods. In this study, a possible anti-inflammatory effect of the sesquiterpene α-humulene on lipopolysaccharide (LPS) induction was tested. Herein, human THP-1-derived macrophages were used and their pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) cytokine release was measured by means of enzyme-linked immunosorbent assay. A dose-dependent effect of α-humulene on IL-6 release was observed at 0.5 and 100 µM α-humulene, with a maximum IL-6 inhibition of 60% compared to the LPS reference value after the addition of 100 µM α-humulene. TNF-α as well as IL-1β cytokine concentrations were not reduced by the addition of 0.5 and 100 µM α-humulene. This study suggests that α-humulene has potential as a promising natural alternative to established pharmaceuticals for the treatment of elevated IL-6 levels and chronic inflammation in humans.
Collapse
Affiliation(s)
- Lucas Becker
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Dirk Holtmann
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany.
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
3
|
Canup B, Rogers P, Paredes A, Manheng W, Lyn-Cook B, Fahmi T. Investigation of sex-based differences in the immunotoxicity of silver nanoparticles. Nanotoxicology 2024; 18:134-159. [PMID: 38444264 DOI: 10.1080/17435390.2024.2323070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
The growing application of silver nanoparticles (AgNPs) in consumer, healthcare, and industrial products has raised concern over potential health implications due to increasing exposure. The evaluation of the immune response to nanomaterials is one of the key criteria to assess their biocompatibility. There are well-recognized sex-based differences in innate and adaptive immune responses. However, there is limited information available using human models. The aim was to investigate the potential sex-based differences in immune functions after exposure to AgNPs using human peripheral blood mononuclear cells (PBMCs) and plasma from healthy donors. These functions include inflammasome activation, cytokine expression, leukocyte proliferation, chemotaxis, plasma coagulation, and complement activation. AgNPs were characterized by dynamic light scattering and transmission electron microscopy. Inflammasome activation by AgNPs was measured after 6- and 24-hours incubations. AgNPs-induced inflammasome activation was significantly higher in the females, especially for the 6-hour exposure. No sex-based differences were observed for Ag ions controls. Younger donors exhibited significantly more inflammasome activation than older donors after 24-hours exposure. IL-10 was significantly suppressed in males and females after exposure. AgNPs suppressed leukocyte proliferation similarly in males and females. No chemoattractant effects, no alterations in plasma coagulation, or activation of the complement were observed after AgNPs exposure. In conclusion, the results highlight that there are distinct sex-based differences in inflammasome activation after exposure to AgNPs in human PBMCs. The results highlight the importance of considering sex-based differences in inflammasome activation induced by exposure to AgNPs in any future biocompatibility assessment for products containing AgNPs.
Collapse
Affiliation(s)
- Brandon Canup
- Division of Biochemical Toxicology, Office of Research, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Paul Rogers
- Division of Bioinformatics and Biostatistics, Office of Research, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Angel Paredes
- Nanotechnology Core Facility, Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Wimolnut Manheng
- Division of Hematology Oncology Toxicology, Office of Oncologic Diseases, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, Office of Research, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Tariq Fahmi
- Division of Biochemical Toxicology, Office of Research, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
4
|
Verga JBM, Graminha MAS, Jacobs-Lorena M, Cha SJ. Peptide selection via phage display to inhibit Leishmania-macrophage interactions. Front Microbiol 2024; 15:1362252. [PMID: 38476939 PMCID: PMC10927855 DOI: 10.3389/fmicb.2024.1362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Leishmaniasis comprises a complex group of diseases caused by protozoan parasites from the Leishmania genus, presenting a significant threat to human health. Infection starts by the release into the skin of metacyclic promastigote (MP) form of the parasite by an infected sand fly. Soon after their release, the MPs enter a phagocytic host cell. This study focuses on finding peptides that can inhibit MP-phagocytic host cell interaction. Methods We used a phage display library to screen for peptides that bind to the surface of L. amazonensis (causative agent for cutaneous leishmaniasis) and L. infantum (causative agent for cutaneous and visceral leishmaniasis) MPs. Candidate peptide binding to the MP surface and inhibition of parasite-host cell interaction were tested in vitro. Peptide Inhibition of visceral leishmaniasis development was assessed in BALB/c mice. Results The selected L. amazonensis binding peptide (La1) and the L. infantum binding peptide (Li1) inhibited 44% of parasite internalization into THP-1 macrophage-like cells in vitro. While inhibition of internalization by La1 was specific to L. amazonensis, Li1 was effective in inhibiting internalization of both parasite species. Importantly, Li1 inhibited L. infantum spleen and liver infection of BALB/c mice by 84%. Conclusion We identified one peptide that specifically inhibits L. amazonensis MP infection of host cells and another that inhibits both, L. amazonensis and L. infantum, MP infection. Our findings suggest a promising path for the development of new treatments and prevention of leishmaniasis.
Collapse
Affiliation(s)
| | - Márcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcelo Jacobs-Lorena
- Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, Macon, GA, United States
| |
Collapse
|
5
|
Jang Y, Park TS, Park BC, Lee YM, Heo TH, Jun HS. Aberrant glucose metabolism underlies impaired macrophage differentiation in glycogen storage disease type Ib. FASEB J 2023; 37:e23216. [PMID: 37779422 DOI: 10.1096/fj.202300592rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Glycogen storage disease type Ib (GSD-Ib) is an autosomal recessive disorder caused by a deficiency in the glucose-6-phosphate (G6P) transporter (G6PT) that is responsible for transporting G6P into the endoplasmic reticulum. GSD-Ib is characterized by disturbances in glucose homeostasis, neutropenia, and neutrophil dysfunction. Although some studies have explored neutrophils abnormalities in GSD-Ib, investigations regarding monocytes/macrophages remain limited so far. In this study, we examined the impact of G6PT deficiency on monocyte-to-macrophage differentiation using bone marrow-derived monocytes from G6pt-/- mice as well as G6PT-deficient human THP-1 monocytes. Our findings revealed that G6PT-deficient monocytes exhibited immature differentiation into macrophages. Notably, the impaired differentiation observed in G6PT-deficient monocytes seemed to be associated with abnormal glucose metabolism, characterized by enhanced glucose consumption through glycolysis, even under quiescent conditions with oxidative phosphorylation. Furthermore, we observed a reduced secretion of inflammatory cytokines in G6PT-deficient THP-1 monocytes during the inflammatory response, despite their elevated glucose consumption. In conclusion, this study sheds light on the significance of G6PT in monocyte-to-macrophage differentiation and underscores its importance in maintaining glucose homeostasis and supporting immune response in GSD-Ib. These findings may contribute to a better understanding of the pathogenesis of GSD-Ib and potentially pave the way for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yuyeon Jang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
6
|
Paul MB, Schlief M, Daher H, Braeuning A, Sieg H, Böhmert L. A human Caco-2-based co-culture model of the inflamed intestinal mucosa for particle toxicity studies. IN VITRO MODELS 2023; 2:43-64. [PMID: 39872873 PMCID: PMC11756451 DOI: 10.1007/s44164-023-00047-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 01/30/2025]
Abstract
The intestinal barrier is a complex interface of the human body, possessing the largest contact surface to nutrients and antigens and containing a major part of the immune system. It has to deal with continuous exposure to a broad mixture of essential, harmful, or useless substances and particles. In the context of plastic pollution and the ubiquitous occurrence of micro- and nanoplastics, oral exposure to such particles is of particular interest. Standard intestinal in vitro models, however, are unable to mimic the role of the immune system in the particle-exposed intestine. To allow for a closer look on the effect of particles on the intestinal immune system, we here developed a co-culture model to enable investigation of the epithelial brush border monolayer in a healthy and inflamed state. The model is based on well-established Caco-2 intestinal epithelial cells cultured in a Transwell™ system. Intraepithelial immune cells were mimicked by THP-1-derived M0-macrophages and MUTZ-3-derived dendritic cells. To fulfill the requirements needed for the investigation of particles, the co-culture system was developed without an additional matrix layer. Cell-cell contacts were established between interstitial and immune cells, and the Caco-2 standard cell culture medium was used, which is well-characterized for its role in defining the identity of particle dispersions. The model was characterized using confocal microscopy, membrane integrity measurements, and cytokine release assays from inflamed and healthy cells. Finally, the new co-culture model was used for investigation on polylactic acid, melamine formaldehyde resin, and polymethylmethacrylate plastic micro- and nanoparticles. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00047-y.
Collapse
Affiliation(s)
- Maxi B. Paul
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Marén Schlief
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Hannes Daher
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
7
|
Lacticaseibacillus casei Strain Shirota Modulates Macrophage-Intestinal Epithelial Cell Co-Culture Barrier Integrity, Bacterial Sensing and Inflammatory Cytokines. Microorganisms 2022; 10:microorganisms10102087. [PMID: 36296363 PMCID: PMC9607601 DOI: 10.3390/microorganisms10102087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Probiotic bacteria modulate macrophage immune inflammatory responses, with functional cytokine responses determined by macrophage subset polarisation, stimulation and probiotic strain. Mucosal macrophages exhibit subset functional heterogeneity but are organised in a 3-dimensional tissue, over-laid by barrier epithelial cells. This study aimed to investigate the effects of the probiotic Lacticaseibacillus casei strain Shirota (LcS) on macrophage-epithelial cell cytokine responses, pattern recognition receptor (PRR) expression and LPS responses and the impacts on barrier integrity. THP-1-derived M1 and M2 subset macrophages were co-cultured in a transwell system with differentiated Caco-2 epithelial cells in the presence or absence of enteropathogenic LPS. Both Caco-2 cells in monoculture and macrophage co-culture were assayed for cytokines, PRR expression and barrier integrity (TEER and ZO-1) by RT-PCR, ELISA, IHC and electrical resistance. Caco-2 monocultures expressed distinct cytokine profiles (IL-6, IL-8, TNFα, endogenous IL-10), PRRs and barrier integrity, determined by inflammatory context (TNFα or IL-1β). In co-culture, LcS rescued ZO-1 and TEER in M2/Caco-2, but not M1/Caco-2. LcS suppressed TLR2, TLR4, MD2 expression in both co-cultures and differentially regulated NOD2, TLR9, Tollip and cytokine secretion. In conclusion, LcS selectively modulates epithelial barrier integrity, pathogen sensing and inflammatory cytokine profile; determined by macrophage subset and activation status.
Collapse
|
8
|
Chlamydia pneumoniae Interferes with Macrophage Differentiation and Cell Cycle Regulation to Promote Its Replication. Cell Microbiol 2022. [DOI: 10.1155/2022/9854449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlamydia pneumoniae is a ubiquitous intracellular bacterium which infects humans via the respiratory route. The tendency of C. pneumoniae to persist in monocytes and macrophages is well known, but the underlying host-chlamydial interactions remain elusive. In this work, we have described changes in macrophage intracellular signaling pathways induced by C. pneumoniae infection. Label-free quantitative proteome analysis and pathway analysis tools were used to identify changes in human THP-1-derived macrophages upon C. pneumoniae CV6 infection. At 48-h postinfection, pathways associated to nuclear factor κB (NF-κB) regulation were stressed, while negative regulation on cell cycle control was prominent at both 48 h and 72 h. Upregulation of S100A8 and S100A9 calcium binding proteins, osteopontin, and purine nucleoside hydrolase, laccase domain containing protein 1 (LACC1) underlined the proinflammatory consequences of the infection, while elevated NF-κB2 levels in infected macrophages indicates interaction with the noncanonical NF-κB pathway. Infection-induced alteration of cell cycle control was obvious by the downregulation of mini chromosome maintenance (MCM) proteins MCM2-7, and the significance of host cell cycle regulation for C. pneumoniae replication was demonstrated by the ability of a cyclin-dependent kinase (CDK) 4/6 inhibitor Palbociclib to promote C. pneumoniae replication and infectious progeny production. The infection was found to suppress retinoblastoma expression in the macrophages in both protein and mRNA levels, and this change was reverted by treatment with a histone deacetylase inhibitor. The epigenetic suppression of retinoblastoma, along with upregulation of S100A8 and S100A9, indicate host cell changes associated with myeloid-derived suppressor cell (MDSC) phenotype.
Collapse
|
9
|
Lomovskaya YV, Kobyakova MI, Senotov AS, Lomovsky AI, Minaychev VV, Fadeeva IS, Shtatnova DY, Krasnov KS, Zvyagina AI, Akatov VS, Fadeev RS. Macrophage-like THP-1 Cells Derived from High-Density Cell Culture Are Resistant to TRAIL-Induced Cell Death via Down-Regulation of Death-Receptors DR4 and DR5. Biomolecules 2022; 12:150. [PMID: 35204655 PMCID: PMC8961584 DOI: 10.3390/biom12020150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a highly selective and promising anticancer agent due to its specific apoptosis-inducing effect on tumor cells, rather than most normal cells. TRAIL is currently under investigation for use in the treatment of leukemia. However, the resistance of leukemic cells to TRAIL-induced apoptosis may limit its efficacy. The mechanisms of leukemic cell resistance to antitumor immunity remains a topical issue. In this work, we have found an increase in the resistance to TRAIL-induced cell death in human leukemia THP-1 cells, which was caused by differentiation into a macrophage-like phenotype in high-density culture in vitro. Stressful conditions, manifested by the inhibition of cell growth and the activation of cell death in high-density culture of THP-1 cells, induced the appearance of cells adhered to culture dishes. The THP-1ad cell line was derived by selection of these adhered cells. The genetic study, using STR and aCGH assays, has shown that THP-1ad cells were derived from THP-1 cells due to mutagenesis. The THP-1ad cells possessed high proliferative potential and a macrophage-like immunophenotype. The adhesion of THP-1ad cells to the extracellular matrix was mediated by αVβ5 integrin. The cytokine production, as well as the rise of intracellular ROS and NO activities by LPS in THP-1ad cell culture, were characteristic of macrophage-like cells. The THP-1ad cells were found to appear to increase in resistance to TRAIL-induced cell death in comparison with THP-1 cells. The mechanism of the increase in TRAIL-resistance can be related to a decrease in the expression of death receptors DR4 and DR5 on the THP-1ad cells. Thus, the macrophage-like phenotype formation with the maintenance of a high proliferative potential of leukemic cells, caused by stress conditions in high-density cell cultures in vitro, can induce an increase in resistance to TRAIL-induced cell death due to the loss of DR4 and DR5 receptors. The possible realization of these events in vivo may be the reason for tumor progression.
Collapse
Affiliation(s)
- Yana Vladimirovna Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Margarita Igorevna Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Anatoly Sergeevich Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Alexey Igorevich Lomovsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Vladislav Valentinovich Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Irina Sergeevna Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Daria Yuryevna Shtatnova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Russia
| | - Kirill Sergeevich Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Russia
| | - Alena Igorevna Zvyagina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Vladimir Semenovich Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Roman Sergeevich Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| |
Collapse
|
10
|
Calcium Dobesilate Modulates PKCδ-NADPH Oxidase- MAPK-NF-κB Signaling Pathway to Reduce CD14, TLR4, and MMP9 Expression during Monocyte-to-Macrophage Differentiation: Potential Therapeutic Implications for Atherosclerosis. Antioxidants (Basel) 2021; 10:antiox10111798. [PMID: 34829669 PMCID: PMC8615002 DOI: 10.3390/antiox10111798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Monocyte-to-macrophage differentiation results in the secretion of various inflammatory mediators and oxidative stress molecules necessary for atherosclerosis pathogenesis. Consequently, this differentiation represents a potential clinical target in atherosclerosis. Calcium dobesilate (CaD), an established vasoactive and angioprotective drug in experimental models of diabetic microvascular complications reduces oxidative stress and inhibits inflammation via diverse molecular targets; however, its effect on monocytes/macrophages is poorly understood. In this study, we investigated the anti-inflammatory mechanism of CaD during phorbol 12-myristate 13-acetate (PMA)-induced monocyte-to-macrophage differentiation in in vitro models of sepsis (LPS) and hyperglycemia, using THP-1 monocytic cell line. CaD significantly suppressed CD14, TLR4, and MMP9 expression and activity, lowering pro-inflammatory mediators, such as IL1β, TNFα, and MCP-1. The effects of CaD translated through to studies on primary human macrophages. CaD inhibited reactive oxygen species (ROS) generation, PKCδ, MAPK (ERK1/2 and p38) phosphorylation, NOX2/p47phox expression, and membrane translocation. We used hydrogen peroxide (H2O2) to mimic oxidative stress, demonstrating that CaD suppressed PKCδ activation via its ROS-scavenging properties. Taken together, we demonstrate for the first time that CaD suppresses CD14, TLR4, MMP9, and signature pro-inflammatory cytokines, in human macrophages, via the downregulation of PKCδ/NADPH oxidase/ROS/MAPK/NF-κB-dependent signaling pathways. Our data present novel mechanisms of how CaD alleviates metabolic and infectious inflammation.
Collapse
|
11
|
Bhattacharya A, Ghosh P, Singh A, Ghosh A, Bhowmick A, Sinha DK, Ghosh A, Sen P. Delineating the complex mechanistic interplay between NF-κβ driven mTOR depedent autophagy and monocyte to macrophage differentiation: A functional perspective. Cell Signal 2021; 88:110150. [PMID: 34547324 DOI: 10.1016/j.cellsig.2021.110150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022]
Abstract
Autophagy is an extremely essential cellular process aimed to clear redundant and damaged materials, namely organelles, protein aggregates, invading pathogens, etc. through the formation of autophagosomes which are ultimately targeted to lysosomal degradation. In this study, we demonstrated that mTOR dependent classical autophagy is ubiquitously triggered in differentiating monocytes. Moreover, autophagy plays a decisive role in sustaining the process of monocyte to macrophage differentiation. We have delved deeper into understanding the underlying mechanistic complexities that trigger autophagy during differentiation. Intrigued by the significant difference between the protein profiles of monocytes and macrophages, we investigated to learn that autophagy directs monocyte differentiation via protein degradation. Further, we delineated the complex cross-talk between autophagy and cell-cycle arrest in differentiating monocytes. This study also inspects the contribution of adhesion on various steps of autophagy and its ultimate impact on monocyte differentiation. Our study reveals new mechanistic insights into the process of autophagy associated with monocyte differentiation and would undoubtedly help to understand the intricacies of the process better for the effective design of therapeutics as autophagy and autophagy-related processes have enormous importance in human patho-physiology.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Purnam Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arghya Bhowmick
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Deepak Kumar Sinha
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
12
|
Zhou J, Que Y, Pan L, Li X, Zhu C, Jin L, Li S. Supervillin Contributes to LPS-induced Inflammatory Response in THP-1 Cell-derived Macrophages. Inflammation 2021; 45:356-371. [PMID: 34480249 DOI: 10.1007/s10753-021-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Supervillin (SVIL) is an actin-binding and membrane-associated protein, which belongs to villin/gelsolin family. It has been reported that SVIL was involved in the regulation of macrophages' movement and lipopolysaccharide (LPS) increased the SVIL mRNA expression in neutrophils, but the underlying mechanisms remain unknown. This work investigated the underlying molecular mechanisms of LPS regulating SVIL expression in macrophages and hence the possible role of SVIL in LPS-induced inflammation. We found that in THP-1-derived macrophages, LPS obviously increased SVIL mRNA and protein expression. Inhibition of TLR4 by Resatorvid (Res) remarkably reversed the LPS-induced SVIL expression. Additionally, inhibition of ERK1/2 signaling pathway (by U0126 or GDC-0994) and NF-κB (by BAY) significantly reduced the LPS-induced SVIL expression. Interestingly, down-regulation of SVIL by SVIL-specific shRNAs significantly attenuated the expression of IL-6, IL-1β & TNF-α induced by LPS at both mRNA and protein levels. Furthermore, we also observed that SVIL knockdown decreased the proportion of cells in G2/M phase and increased the proportion of cells in S & G0-1 phase of THP-1 derived macrophages, but did not influence the cell viability. Taken together, we demonstrated that LPS induced the expression of SVIL via activating TLR4/NF-κB and ERK1/2 MAPK pathways, and SVIL participated in the inflammatory response of LPS-induced IL-6, IL-1β and TNF-α upregulation in macrophages.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China.
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China.
| |
Collapse
|
13
|
Cheng Y, Si Y, Wang L, Ding M, Yu S, Lu L, Guo Y, Zong M, Fan L. The regulation of macrophage polarization by hypoxia-PADI4 coordination in Rheumatoid arthritis. Int Immunopharmacol 2021; 99:107988. [PMID: 34333356 DOI: 10.1016/j.intimp.2021.107988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypoxia, a common feature of rheumatoid arthritis (RA), induces the over-expression of peptidyl arginine deiminase 4 (PADI4) in fibroblast-like synoviocytes (FLSs) and macrophages. However, the roles of PADI4 and its inducer hypoxia in the regulation of macrophage polarization remain unclear. This study aimed to investigate the role of hypoxia-PADI4 for macrophage polarization in RA patients. METHODS Synovial tissue (ST) and synovial fluid (SF) were collected from 3 OA patients and 6 RA patients. The distribution of M1 and M2 in ST and cytokines in SF were examined by immunohistochemical analysis and Bio-Plex immunoassays. THP-1 macrophages and BMDM polarization were determined under normoxic (21% oxygen) or hypoxic (3% oxygen) conditions. The effects of PADI4 on macrophages were determined by transfection of adenovirus vector-coated PADI4 (AdPADI4) and the use of PADI4 inhibitor. Finally, the roles of PADI4 in joint synovial lesions on macrophage polarization were investigated in collagen-induced arthritis (CIA) rats. RESULTS We found increased macrophage polarization of M1 and M2 in the RA ST, compared with OA ST. The ratio of M1/M2 for RA and OA was 1.633 ± 0.1443 and 2.544 ± 0.4429, respectively. The concentration of M1- and M2-type cytokines was higher in RA than that in OA patients. Hypoxia contributed to the increase of the gene and protein expression of M1 and M2 markers. M1- but not M2-type gene expression showed a positive relationship with PADI4 expressionwhile the level of expression of M2-type genes showed no significant difference. The degree of joint swelling and destruction was effectively alleviated, and the number of macrophages especially M1 decreased in CIA rats after down-regulating PADI4 expression. CONCLUSION Hypoxia is responsible for the co-polarization of M1 and M2. Hypoxia-associated PADI4 is responsible for M1 macrophage activation, implying that the inflammatory environment can be eased by decreasing PADI4 expression and improving the hypoxic environment.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Yuying Si
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Lan Wang
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Menglei Ding
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Shanshan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Liu Lu
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Yide Guo
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China.
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, 150 Ji Mo Road, Shanghai 200120, People's Republic of China.
| |
Collapse
|
14
|
Singh A, Sen P. Lipid droplet: A functionally active organelle in monocyte to macrophage differentiation and its inflammatory properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158981. [PMID: 34119681 DOI: 10.1016/j.bbalip.2021.158981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) perform several important functions like inflammatory responses, membrane trafficking, acts as secondary messengers, etc. rather than simply working as an energy reservoir. LDs have been implicated as a controlling factor in the progression of atherosclerosis followed by foam cell formation that derives from macrophages during the differentiation process. However, the role of LDs in monocyte differentiation or its further immunological function is still an area that mandates in-depth investigation. We report that LD dynamics is important for differentiation of monocytes and is absolutely required for sustained and prolonged functional activity of differentiated macrophages. In THP-1 cell line model system, we elucidated that increase in total LD content in monocyte by external lipid supplements, can induce monocyte differentiation independent of classical stimuli, PMA. Differential expression of PLIN2 and ATGL during the event, together with abrogation of de novo lipogenesis further confirmed the fact. Besides, an increase in LD content by free fatty acid supplement was able to exert a synergistic effect with PMA on differentiation and phagocytic activity compared to when they are used alone. Additionally, we have shown Rab5a to play a vital role in LDs biosynthesis/maturation in monocytes and thereby directly affecting differentiation of monocytes into macrophages via AKT pathway. Thus our study reveals the multi-faceted function of LDs during the process of monocyte to macrophage differentiation and thereby helping to maintain the functional activity.
Collapse
Affiliation(s)
- Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
15
|
Gažová I, Lefevre L, Bush SJ, Rojo R, Hume DA, Lengeling A, Summers KM. CRISPR-Cas9 Editing of Human Histone Deubiquitinase Gene USP16 in Human Monocytic Leukemia Cell Line THP-1. Front Cell Dev Biol 2021; 9:679544. [PMID: 34136489 PMCID: PMC8203323 DOI: 10.3389/fcell.2021.679544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
USP16 is a histone deubiquitinase which facilitates G2/M transition during the cell cycle, regulates DNA damage repair and contributes to inducible gene expression. We mutated the USP16 gene in a high differentiation clone of the acute monocytic leukemia cell line THP-1 using the CRISPR-Cas9 system and generated four homozygous knockout clones. All were able to proliferate and to differentiate in response to phorbol ester (PMA) treatment. One line was highly proliferative prior to PMA treatment and shut down proliferation upon differentiation, like wild type. Three clones showed sustained expression of the progenitor cell marker MYB, indicating that differentiation had not completely blocked proliferation in these clones. Network analysis of transcriptomic differences among wild type, heterozygotes and homozygotes showed clusters of genes that were up- or down-regulated after differentiation in all cell lines. Prior to PMA treatment, the homozygous clones had lower levels than wild type of genes relating to metabolism and mitochondria, including SRPRB, encoding an interaction partner of USP16. There was also apparent loss of interferon signaling. In contrast, a number of genes were up-regulated in the homozygous cells compared to wild type at baseline, including other deubiquitinases (USP12, BAP1, and MYSM1). However, three homozygotes failed to fully induce USP3 during differentiation. Other network clusters showed effects prior to or after differentiation in the homozygous clones. Thus the removal of USP16 affected the transcriptome of the cells, although all these lines were able to survive, which suggests that the functions attributed to USP16 may be redundant. Our analysis indicates that the leukemic line can adapt to the extreme selection pressure applied by the loss of USP16, and the harsh conditions of the gene editing and selection protocol, through different compensatory pathways. Similar selection pressures occur during the evolution of a cancer in vivo, and our results can be seen as a case study in leukemic cell adaptation. USP16 has been considered a target for cancer chemotherapy, but our results suggest that treatment would select for escape mutants that are resistant to USP16 inhibitors.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Rocio Rojo
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Kim M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
16
|
Odoardi N, Kourko O, Petes C, Basta S, Gee K. TLR7 Ligation Inhibits TLR8 Responsiveness in IL-27-Primed Human THP-1 Monocytes and Macrophages. J Innate Immun 2021; 13:345-358. [PMID: 34058746 DOI: 10.1159/000515738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Regulation of proinflammatory cytokine expression is critical in the face of single-stranded RNA (ssRNA) virus infections. Many viruses, including coronavirus and influenza virus, wreak havoc on the control of cytokine expression, leading to the formation of detrimental cytokine storms. Understanding the regulation and interplay between inflammatory cytokines is critical to the identification of targets involved in controlling the induction of cytokine expression. In this study, we focused on how the antiviral cytokine interleukin-27 (IL-27) regulates signal transduction downstream of Toll-like receptor 7 (TLR7) and TLR8 ligation, which recognize endosomal single-stranded RNA. Given that IL-27 alters bacterial-sensing TLR expression on myeloid cells and can inhibit replication of single-stranded RNA viruses, we investigated whether IL-27 affects expression and function of TLR7 and TLR8. Analysis of IL-27-treated THP-1 monocytic cells and THP-1-derived macrophages revealed changes in mRNA and protein expression of TLR7 and TLR8. Although treatment with IL-27 enhanced TLR7 expression, only TLR8-mediated cytokine secretion was amplified. Furthermore, we demonstrated that imiquimod, a TLR7 agonist, inhibited cytokine and chemokine production induced by a TLR8 agonist, TL8-506. Delineating the immunomodulatory role of IL-27 on TLR7 and TLR8 responses provides insight into how myeloid cell TLR-mediated responses are regulated during virus infection.
Collapse
Affiliation(s)
- Natalya Odoardi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Carlene Petes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
17
|
Goliwas KF, Ashraf HM, Wood AM, Wang Y, Hough KP, Bodduluri S, Athar M, Berry JL, Ponnazhagan S, Thannickal VJ, Deshane JS. Extracellular Vesicle Mediated Tumor-Stromal Crosstalk Within an Engineered Lung Cancer Model. Front Oncol 2021; 11:654922. [PMID: 33968758 PMCID: PMC8103208 DOI: 10.3389/fonc.2021.654922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Tumor-stromal interactions within the tumor microenvironment (TME) influence lung cancer progression and response to therapeutic interventions, yet traditional in vitro studies fail to replicate the complexity of these interactions. Herein, we developed three-dimensional (3D) lung tumor models that mimic the human TME and demonstrate tumor-stromal crosstalk mediated by extracellular vesicles (EVs). EVs released by tumor cells, independent of p53 status, and fibroblasts within the TME mediate immunomodulatory effects; specifically, monocyte/macrophage polarization to a tumor-promoting M2 phenotype within this 3D-TME. Additionally, immune checkpoint inhibition in a 3D model that included T cells showed an inhibition of tumor growth and reduced hypoxia within the TME. Thus, perfused 3D tumor models incorporating diverse cell types provide novel insights into EV-mediated tumor-immune interactions and immune-modulation for existing and emerging cancer therapies.
Collapse
Affiliation(s)
- Kayla F Goliwas
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hannah M Ashraf
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anthony M Wood
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sandeep Bodduluri
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Selvarangan Ponnazhagan
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Tóth E, Erdődi F, Kiss A. Myosin Phosphatase Is Implicated in the Control of THP-1 Monocyte to Macrophage Differentiation. Int J Mol Sci 2021; 22:ijms22052516. [PMID: 33802280 PMCID: PMC7959147 DOI: 10.3390/ijms22052516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/22/2023] Open
Abstract
Monocyte to macrophage differentiation is characterized by the activation of various signal transduction pathways, which may be modulated by protein phosphorylation; however, the impact of protein kinases and phosphatases is not well understood yet. It has been demonstrated that actomyosin rearrangement during macrophage differentiation is dependent on Rho-associated protein kinase (ROCK). Myosin phosphatase (MP) target subunit-1 (MYPT1) is one of the major cellular substrates of ROCK, and MP is often a counter enzyme of ROCK; therefore, MP may also control macrophage differentiation. Changes in MP activity and the effects of MP activation were studied on PMA or l,25(OH)2D3-induced differentiation of monocytic THP-1 cells. During macrophage differentiation, phosphorylation of MYPT1 at Thr696 and Thr853 increased significantly, resulting in inhibition of MP. The ROCK inhibitor H1152 and the MP activator epigallocatechin-3-gallate (EGCG) attenuated MYPT1 phosphorylation and concomitantly decreased the extent of phosphorylation of 20 kDa myosin light chain. H1152 and EGCG pretreatment also suppressed the expression of CD11b and weakened the PMA-induced adherence of the cells. Our results indicate that MP activation/inhibition contributes to the efficacy of monocyte to macrophage differentiation, and this enzyme may be a target for pharmacological interventions in the control of disease states that are affected by excessive macrophage differentiation.
Collapse
Affiliation(s)
- Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- MTA-DE Cell Biology and Signalling Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- MTA-DE Cell Biology and Signalling Research Group, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (F.E.); (A.K.); Tel.: +36-52-421345 (F.E. & A.K.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Correspondence: (F.E.); (A.K.); Tel.: +36-52-421345 (F.E. & A.K.)
| |
Collapse
|
19
|
Gažová I, Lefevre L, Bush SJ, Clohisey S, Arner E, de Hoon M, Severin J, van Duin L, Andersson R, Lengeling A, Hume DA, Summers KM. The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Front Cell Dev Biol 2020; 8:498. [PMID: 32719792 PMCID: PMC7347797 DOI: 10.3389/fcell.2020.00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Lucas van Duin
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Kim M Summers
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Bhattacharya A, Ghosh P, Prasad R, Ghosh A, Das K, Roy A, Mallik S, Sinha DK, Sen P. MAP Kinase driven actomyosin rearrangement is a crucial regulator of monocyte to macrophage differentiation. Cell Signal 2020; 73:109691. [PMID: 32531262 DOI: 10.1016/j.cellsig.2020.109691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
Rearrangement of actin cytoskeleton correlates significantly with the immune responses as the perturbation of cytoskeletal dynamics leads to many immune deficiencies. Mechanistic insights into this correlation remain unknown. Cellular spreading, the most characteristic phenotype associated with monocyte to macrophage differentiation, led us to investigate the contribution of actomyosin dynamics in monocyte differentiation. Our observation revealed that actomyosin reorganization intrinsically governs the process of monocyte to macrophage differentiation. Further, we established that the MAPK-driven signaling pathways regulate the cellular actomyosin dynamics that direct monocyte to macrophage differentiation. We also identified P42/44 Mitogen-Activated Protein Kinase (P42/44 MAPK), P38 Mitogen-Activated Protein Kinase (P38 MAPK), MAP Kinase Activated Protein Kinase 2 (MK-2), Heat Shock Protein 27 (Hsp-27), Lim Kinase (Lim K), non-muscle cofilin (n-cofilin), Myosin Light Chain Kinase (MLCK) and Myosin Light Chain (MLC) as critical components of the signaling network. Moreover, we have shown the involvement of the same signaling cascade in 3D gel-like microenvironment induced spontaneous monocyte to macrophage differentiation and in human blood-derived PBMC differentiation. Our study reveals new mechanistic insights into the process of monocyte to macrophage differentiation.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Purnam Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Ramesh Prasad
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arnab Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kaushik Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Roy
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Suman Mallik
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Deepak Kumar Sinha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prosenjit Sen
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
21
|
Gao Y, Cui X, Wang M, Zhang Y, He Y, Li L, Li H, Zhang X, Cheng M. Oscillatory shear stress induces the transition of EPCs into mesenchymal cells through ROS/PKCζ/p53 pathway. Life Sci 2020; 253:117728. [PMID: 32353430 DOI: 10.1016/j.lfs.2020.117728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
Abstract
AIMS Studies indicate that the pattern of shear stress determines the direction of endothelial progenitor cells (EPCs) differentiation. However, the mechanism remains largely unknown. Herein, we try to identify the role of oscillatory shear stress (OSS) in the transdifferentiation of EPCs into mesenchymal cells and the mechanism involved. MATERIALS AND METHODS OSS was applied to EPCs using the flow chamber system in vitro. Matrigel, Boyden chamber, and healing assay were used to observe the changes in EPCs function. Further, 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and/or western blot were performed to detect the expression of reactive oxygen species (ROS), p53 and PKCζ in EPCs. EPCs transduced with Lentivirus carrying Tp53 were implanted into the arterial vessel in the balloon injured rat model, and neointimal thickening was verified by HE staining. KEY FINDINGS OSS enhanced the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) on EPCs. In the meantime, OSS time-dependently decreased p53 expression in EPCs, which was partially abolished by treatment with ROS scavenger N-acetylcysteine (NAC) or protein kinase C zeta (PKCζ) inhibitor Go6983. Moreover, the p53 agonist tenovin-1 attenuated the changes of OSS-mediated the mesenchymal cell markers and EPCs function. Besides, we also found that transplanting EPCs transfected with LV-Tp53 significantly inhibited neointimal thickening and promoted reendothelialization in vivo. SIGNIFICANCE This study demonstrates OSS-induced EPC transdifferentiation into mesenchymal cells and ROS/PKCζ/p53 pathway play an essential role in it. It may serve as a promising therapeutic target for cardiovascular disease in the future.
Collapse
Affiliation(s)
- Yu Gao
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Xiaodong Cui
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Meiyue Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yaowen Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yanting He
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Lanlan Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Hong Li
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Xiaoyun Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Min Cheng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
22
|
Bekeschus S, Ressel V, Freund E, Gelbrich N, Mustea A, B. Stope M. Gas Plasma-Treated Prostate Cancer Cells Augment Myeloid Cell Activity and Cytotoxicity. Antioxidants (Basel) 2020; 9:E323. [PMID: 32316245 PMCID: PMC7222373 DOI: 10.3390/antiox9040323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent improvements in cancer treatment, with many of them being related to foster antitumor immunity, tumor-related deaths continue to be high. Novel avenues are needed to complement existing therapeutic strategies in oncology. Medical gas plasma technology recently gained attention due to its antitumor activity. Gas plasmas act via the local deposition of a plethora of reactive oxygen species (ROS) that promote the oxidative cancer cell death. The immunological consequences of plasma-mediated tumor cell death are only poorly understood, however. To this end, we exposed two prostate cancer cell lines (LNCaP, PC3) to gas plasma in vitro, and investigated the immunomodulatory effects of the supernatants in as well as of direct co-culturing with two human myeloid cell lines (THP-1, HL-60). After identifying the cytotoxic action of the kINPen plasma jet, the supernatants of plasma-treated prostate cancer cells modulated myeloid cell-related mitochondrial ROS production and their metabolic activity, proliferation, surface marker expression, and cytokine release. Direct co-culture amplified differentiation-like surface marker expression in myeloid cells and promoted their antitumor-toxicity in the gas plasma over the untreated control conditions. The results suggest that gas plasma-derived ROS not only promote prostate cancer cell death but also augment myeloid cell activity and cytotoxicity.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (V.R.); (E.F.)
| | - Verena Ressel
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (V.R.); (E.F.)
- Department of Urology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (V.R.); (E.F.)
- Department of General, Visceral and Thoracic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nadine Gelbrich
- Department of Urology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (A.M.); (M.B.S.)
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (A.M.); (M.B.S.)
| |
Collapse
|
23
|
Barnett KR, Decato BE, Scott TJ, Hansen TJ, Chen B, Attalla J, Smith AD, Hodges E. ATAC-Me Captures Prolonged DNA Methylation of Dynamic Chromatin Accessibility Loci during Cell Fate Transitions. Mol Cell 2020; 77:1350-1364.e6. [PMID: 31999955 DOI: 10.1016/j.molcel.2020.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/08/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
DNA methylation of enhancers is dynamic, cell-type specific, and vital for cell fate progression. However, current models inadequately define its role within the hierarchy of gene regulation. Analysis of independent datasets shows an unanticipated overlap between DNA methylation and chromatin accessibility at enhancers of steady-state stem cells, suggesting that these two opposing features might exist concurrently. To define their temporal relationship, we developed ATAC-Me, which probes accessibility and methylation from single DNA library preparations. We identified waves of accessibility occurring rapidly across thousands of myeloid enhancers in a monocyte-to-macrophage cell fate model. Prolonged methylation states were observed at a majority of these sites, while transcription of nearby genes tracked closely with accessibility. ATAC-Me uncovers a significant disconnect between chromatin accessibility, DNA methylation status, and gene activity. This unexpected observation highlights the value of ATAC-Me in constructing precise molecular timelines for understanding the role of DNA methylation in gene regulation.
Collapse
Affiliation(s)
- Kelly R Barnett
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Benjamin E Decato
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Timothy J Scott
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bob Chen
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew D Smith
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Sadofsky LR, Hayman YA, Vance J, Cervantes JL, Fraser SD, Wilkinson HN, Williamson JD, Hart SP, Morice AH. Characterisation of a New Human Alveolar Macrophage-Like Cell Line (Daisy). Lung 2019; 197:687-698. [PMID: 31732808 PMCID: PMC6861369 DOI: 10.1007/s00408-019-00288-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Purpose There is currently no true macrophage cell line and in vitro experiments requiring these cells currently require mitogenic stimulation of a macrophage precursor cell line (THP-1) or ex vivo maturation of circulating primary monocytes. In this study, we characterise a human macrophage cell line, derived from THP-1 cells, and compare its phenotype to the THP-1 cells. Methods THP-1 cells with and without mitogenic stimulation were compared to the newly derived macrophage-like cell line (Daisy) using microscopy, flow cytometry, phagocytosis assays, antigen binding assays and gene microarrays. Results We show that the cell line grows predominantly in an adherent monolayer. A panel of antibodies were chosen to investigate the cell surface phenotype of these cells using flow cytometry. Daisy cells expressed more CD11c, CD80, CD163, CD169 and CD206, but less CD14 and CD11b compared with mitogen-stimulated THP-1 cells. Unlike stimulated THP-1 cells which were barely able to bind immune complexes, Daisy cells showed large amounts of immune complex binding. Finally, although not statistically significant, the phagocytic ability of Daisy cells was greater than mitogen-stimulated THP-1 cells, suggesting that the cell line is more similar to mature macrophages. Conclusions The observed phenotype suggests that Daisy cells are a good model of human macrophages with a phenotype similar to human alveolar macrophages.
Collapse
Affiliation(s)
- Laura R Sadofsky
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK.
| | - Yvette A Hayman
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - Jesse Vance
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jorge L Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Simon D Fraser
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - James D Williamson
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - Simon P Hart
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - Alyn H Morice
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| |
Collapse
|
25
|
Xiao L, Gu C, Xiang Y. Orthogonal Activation of RNA‐Cleaving DNAzymes in Live Cells by Reactive Oxygen Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lu Xiao
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| | - Chunmei Gu
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| | - Yu Xiang
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| |
Collapse
|
26
|
Xiao L, Gu C, Xiang Y. Orthogonal Activation of RNA-Cleaving DNAzymes in Live Cells by Reactive Oxygen Species. Angew Chem Int Ed Engl 2019; 58:14167-14172. [PMID: 31314942 DOI: 10.1002/anie.201908105] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 02/05/2023]
Abstract
RNA-cleaving DNAzymes are useful tools for intracellular metal-ion sensing and gene regulation. Incorporating stimuli-responsive modifications into these DNAzymes enables their activities to be spatiotemporally and chemically controlled for more precise applications. Despite the successful development of many caged DNAzymes for light-induced activation, DNAzymes that can be intracellularly activated by chemical inputs of biological importance, such as reactive oxygen species (ROS), are still scarce. ROS like hydrogen peroxide (H2 O2 ) and hypochlorite (HClO) are critical mediators of oxidative stress-related cell signaling and dysregulation including activation of immune system as well as progression of diseases and aging. Herein, we report ROS-activable DNAzymes by introducing phenylboronate and phosphorothioate modifications to the Zn2+ -dependent 8-17 DNAzyme. These ROS-activable DNAzymes were orthogonally activated by H2 O2 and HClO inside live human and mouse cells.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Chunmei Gu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain 2019; 160:2798-2810. [DOI: 10.1097/j.pain.0000000000001669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Synthesis and photocytotoxic activity of [1,2,3]triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines. Eur J Med Chem 2018; 162:176-193. [PMID: 30445266 DOI: 10.1016/j.ejmech.2018.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
[1,2,3]Triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines were synthesized with the aim to investigate their photocytotoxic activity. Upon irradiation, oxazolo-naphtapyridines induced light-dependent cell death at nanomolar/low micromolar concentrations (EC50 0.01-6.59 μM). The most photocytotoxic derivative showed very high selectivity and photocytotoxicity indexes (SI = 72-86, PTI>5000), along with a triplet excited state with exceptionally long lifetime (18.0 μs) and high molar absorptivity (29781 ± 180 M-1cm-1 at λmax 315 nm). The light-induced production of ROS promptly induced an unquenchable apoptotic process selectively in tumor cells, with mitochondrial and lysosomal involvement. Altogether, these results demonstrate that the most active compound acts as a promising singlet oxygen sensitizer for biological applications.
Collapse
|
29
|
Plasma Treatment of Ovarian Cancer Cells Mitigates Their Immuno-Modulatory Products Active on THP-1 Monocytes. PLASMA 2018. [DOI: 10.3390/plasma1010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancers modulate their microenvironment to favor their growth. In particular, monocytes and macrophages are targeted by immuno-modulatory molecules installed by adjacent tumor cells such as ovarian carcinomas. Cold physical plasma has recently gained attention as innovative tumor therapy. We confirmed this for the OVCAR-3 and SKOV-3 ovarian cancer cell lines in a caspase 3/7 independent and dependent manner, respectively. To elaborate whether plasma exposure interferes with their immunomodulatory properties, supernatants of control and plasma-treated tumor cells were added to human THP-1 monocyte cultures. In the latter, modest effects on intracellular oxidation or short-term metabolic activity were observed. By contrast, supernatants of plasma-treated cancer cells abrogated significant changes in morphological and phenotypic features of THP-1 cells compared to those cultured with supernatants of non-treated tumor cell counterparts. This included cell motility and morphology, and modulated expression patterns of nine cell surface markers known to be involved in monocyte activation. This was particularly pronounced in SKOV-3 cells. Further analysis of tumor cell supernatants indicated roles of small particles and interleukin 8 and 18, with MCP1 presumably driving activation in monocytes. Altogether, our results suggest plasma treatment to alleviate immunomodulatory secretory products of ovarian cancer cells is important for driving a distinct myeloid cell phenotype.
Collapse
|
30
|
3D micro-environment regulates NF-κβ dependent adhesion to induce monocyte differentiation. Cell Death Dis 2018; 9:914. [PMID: 30206232 PMCID: PMC6133927 DOI: 10.1038/s41419-018-0993-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Differentiation of monocytes entails their relocation from blood to the tissue, hence accompanied by an altered physicochemical micro-environment. While the mechanism by which the biochemical make-up of the micro-environment induces differentiation is known, the fluid-like to gel-like transition in the physical micro-environment is not well understood. Monocytes maintain non-adherent state to prevent differentiation. We establish that irrespective of the chemical makeup, a 3D gel-like micro-environment induces a positive-feedback loop of adhesion-MAPK-NF-κβ activation to facilitate differentiation. In 2D fluid-like micro-environment, adhesion alone is capable of inducing differentiation via the same positive-feedback signaling. Chemical inducer treatment in fluid-like micro-environment, increases the propensity of monocyte adhesion via a brief pulse of p-MAPK. The adhesion subsequently elicit differentiation, establishing that adhesion is both necessary and sufficient to induce differentiation in 2D/3D micro-environment. MAPK, and NF-κβ being key molecules of multiple signaling pathways, we hypothesize that biochemically inert 3D gel-like micro-environment would also influence other cellular functions.
Collapse
|
31
|
Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Med Hypotheses 2018; 116:61-73. [DOI: 10.1016/j.mehy.2018.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/27/2017] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
|
32
|
Audureau É, Simon-Deckers A, Franco-Montoya ML, Annangi B, Kermanizadeh A, Boczkowski J, Lanone S. Substantial modification of the gene expression profile following exposure of macrophages to welding-related nanoparticles. Sci Rep 2018; 8:8554. [PMID: 29867105 PMCID: PMC5986907 DOI: 10.1038/s41598-018-26988-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/21/2018] [Indexed: 11/09/2022] Open
Abstract
Anthropic nanoparticles (NP) are increasingly produced and emitted, with accompanying concerns for human health. Currently there is no global understanding as to the exact mechanistics of NP toxicity, as the traditional nanotoxicological approaches only provide a restricted overview. To address this issue, we performed an in-depth transcriptomic analysis of human macrophages exposed to a panel of welding-related metal oxide NP that we previously identified in welders lungs (Fe2O3, Fe3O4, MnFe2O4 and CrOOH NP). Utilizing the specified analysis criteria (|fold change| ≥1.5, p ≤ 0.001), a total of 2164 genes were identified to be differentially expressed after THP-1 macrophage exposure to the different NP. Performing Gene Ontology enrichment analysis, for cellular content, biological processes and Swiss-Prot/Protein Information Resource keywords the data show for the first time a profound modification of gene differential expression in response to the different NP, among which MnFe2O4 NP were the most potent to induce THP-1 macrophage activation. The transcriptomic analysis utilized in the study, provides novel insights into mechanisms that could contribute to NP-induced adverse effects and support the need for widened approaches to supplement existing knowledge of the processes underlying NP toxicity which would have not been possible using traditional nanotoxicological studies.
Collapse
Affiliation(s)
- Étienne Audureau
- Université Paris Est-Créteil, DHU A-TVB, IRMB- EA 7376 CEpiA (Clinical Epidemiology And Ageing Unit), Créteil, F-94010, France.,AP-HP, Hôpital Henri-Mondor, Service de Santé Publique, Créteil, F-94010, France
| | | | | | | | - Ali Kermanizadeh
- INSERM, U955, Equipe 4, Créteil, F-94000, France.,University of Copenhagen, Department of Public Health, Copenhagen, Denmark
| | - Jorge Boczkowski
- INSERM, U955, Equipe 4, Créteil, F-94000, France.,Université Paris Est-Créteil, Faculté de Médecine, Créteil, F-94000, France.,DHU A-TVB, Service d'explorations fonctionnelles respiratoires, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, F-94000, France
| | - Sophie Lanone
- INSERM, U955, Equipe 4, Créteil, F-94000, France. .,Université Paris Est-Créteil, Faculté de Médecine, Créteil, F-94000, France.
| |
Collapse
|
33
|
Geddes VEV, de Oliveira AS, Tanuri A, Arruda E, Ribeiro-Alves M, Aguiar RS. MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection. PLoS Negl Trop Dis 2018; 12:e0006508. [PMID: 29813068 PMCID: PMC5993330 DOI: 10.1371/journal.pntd.0006508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 06/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands of people and is widespread throughout Central and South American countries. Although isolated in 1950’s, still there is scarce information regarding the virus biology and its prevalence is likely underestimated. In order to identify and elucidate interactions with host cells factors and increase the understanding about the Oropouche Virus biology, we performed microRNA (miRNA) and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally and play key roles in several steps of viral infections. The large scale RT-qPCR based screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further validation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of virus infection (6 hours post-infection). Using bioinformatics and pathway enrichment analysis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expression analysis of RNA from 95 selected targets revealed genes involved in innate immunity modulation, viral release and neurological disorder outcomes. Further analysis revealed the gene of decapping protein 2 (DCP2), a previous known restriction factor for bunyaviruses transcription, as a miR-217 candidate target that is progressively down-regulated during Oropouche infection. Our analysis also showed that activators genes involved in innate immune response through IFN-β pathway, as STING (Stimulator of Interferon Genes) and TRAF3 (TNF-Receptor Associated Factor 3), were down-regulated as the infection progress. Inhibition of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3 fold) and virus titer (3 fold). Finally, we showed that virus escape IFN-β mediated immune response increasing the levels of cellular miR-576-3p resulting in a decreasing of its partners STING and TRAF3. We concluded stating that the present study, the first for a Peribunyaviridae member, gives insights in its prospective pathways that could help to understand virus biology, interactions with host cells and pathogenesis, suggesting that the virus escapes the antiviral cellular pathways increasing the expression of cognates miRNAs. Oropouche Virus causes typical arboviral febrile illness and is widely distributed in tropical region of Americas, mainly Amazon region, associated with cases of encephalitis. 500,000 people are estimated to be infected with Oropouche worldwide and some states in Brazil detected higher number of cases among other arboviruses such as Dengue and Chikungunya. As much as climate change, human migration and vector and host availability might increase the risk of virus transmission. Despite its estimated high prevalence in Central and South America populations, the literature concerning the main aspects of viral biology remain scarce and began to be investigated only in the last two decades. Nonetheless, little is known about virus-host cell interactions and pathogenesis. Virus infection regulates cellular pathways either promoting its replication or escaping from immune response through microRNAs. Knowing which microRNAs and target genes are modulated in infection could give us new insights to understand multiple aspects of infection. Here, we depicted candidate miRNAs, genes and pathways affected by Oropouche Virus infection in hepatocyte cells. We hope this work serve as guideline for prospective studies in order to assess the complexity regarding the orthobunyaviruses infections.
Collapse
Affiliation(s)
- Victor Emmanuel Viana Geddes
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anibal Silva de Oliveira
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eurico Arruda
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Santana Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
34
|
Lam CF, Yeung HT, Lam YM, Ng RK. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leuk Res 2018; 68:112-119. [PMID: 29609096 DOI: 10.1016/j.leukres.2018.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b+ mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation.
Collapse
Affiliation(s)
- Chung Fan Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hoi Ting Yeung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuk Man Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ray Kit Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
35
|
Abedian Z, Fattahi S, Pourbagher R, Edrisi S, Mostafazadeh A. Sustained small and intermediate size proteins expression in phorbol 12-myristate 13-acetate/ionomycine prolonged stimulated human fibroblasts. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
36
|
Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Alternatively activated macrophages derived from THP-1 cells promote the fibrogenic activities of human dermal fibroblasts. Wound Repair Regen 2017; 25:377-388. [PMID: 28370945 DOI: 10.1111/wrr.12532] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 02/05/2023]
Abstract
Macrophages play a key role in the wound healing process and can be divided into classically activated macrophages (M1) and alternatively activated macrophages (M2). Fibroblasts maintain the physical integrity of connective tissue, participate in wound closure as well as produce and remodel extracellular matrix. Macrophages have a close relationship with fibroblasts by increasing the production of matrix metalloproteinase-1 (MMP-1) for faster wound closure and remodeling and myofibroblast differentiation from fibroblasts. In this study, resting state (M0), M1 and M2 macrophages differentiated from the human monocytic THP-1 cell line were used to co-culture with human dermal fibroblasts (HDF) for 48, 96 and 144 hours to investigate the effect of macrophages subsets on the fibrogenic activity of fibroblasts. The differentiation and polarization from THP-1 cells to M0, M1 and M2 macrophages were characterized by flow cytometry and cell cycle analysis. Cell sorting was performed to purify M0 and M2 macrophages. Cell proliferation, collagen synthesis, myofibroblast formation, gene expression of anti-fibrotic and pro-fibrotic factors, MMP-1 activity, and cytokine concentration were investigated. Results showed differentiation of M0 and polarization of M1 and M2 macrophages. M2 macrophages promoted the fibrogenic activities of co-cultured HDF by facilitating cell proliferation, increasing the collagen content, alpha-smooth muscle actin expressed cells, expression of the pro-fibrotic genes and concentration of M2 macrophage related factors, as well as decreasing the expression of the anti-fibrotic genes and MMP-1 activity. These findings reinforce the pro-fibrotic role of M2 macrophages, suggesting therapeutic strategies in fibrotic diseases should target M2 macrophages in the future.
Collapse
Affiliation(s)
- Zhensen Zhu
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
- Department of Burn and Reconstructive Surgery, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Zengshuan Ma
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Takashi Iwashina
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
| | - Edward E Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Canada
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| |
Collapse
|
37
|
Mytych J, Romerowicz-Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro 2017; 42:1-9. [PMID: 28341289 DOI: 10.1016/j.tiv.2017.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/23/2017] [Accepted: 03/20/2017] [Indexed: 01/14/2023]
Abstract
Monocytes act as a first line of defence against invading pathogens and their dysfunctions seem to be a key factor in many immune disorders. However, the data on mechanisms underlying these dysfunctions remain elusive. In this study, we evaluated the effects of long-term (168h) lipopolysaccharide exposure on monocytes at low density cultures (1×105cells/ml). Treatment with low dose LPS (≤5μg/ml) resulted in oxidative stress induction followed by p21 pathway activation, permanent cell cycle arrest and SASP development. Furthermore, high dose LPS (≥10μg/ml) induced cell death involving mitochondrial pathways, death receptors as well as p21-dependent DNA damage response activation mediated by ROS generation and TNF-α release. Additionally, exposure to high dose of LPS resulted in THP-1 monocytes differentiation to macrophages. In conclusion, long-term culture with LPS exerts in low density monocytes cytostatic/cytotoxic effects in a dose-dependent manner by inducing senescence associated with chronic inflammation at low doses and initiation of cell death at higher doses. These findings shed new light on understanding of monocytes dysfunction, an issue relevant to chronic inflammation and many immune disorders.
Collapse
Affiliation(s)
- Jennifer Mytych
- Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland.
| | - Maria Romerowicz-Misielak
- Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | - Marek Koziorowski
- Institute of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| |
Collapse
|
38
|
Spanò V, Giallombardo D, Cilibrasi V, Parrino B, Carbone A, Montalbano A, Frasson I, Salvador A, Richter SN, Doria F, Freccero M, Cascioferro S, Diana P, Cirrincione G, Barraja P. Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines with potent photo-antiproliferative activity. Eur J Med Chem 2017; 128:300-318. [PMID: 28213283 DOI: 10.1016/j.ejmech.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines were synthesized as a new class of tricyclic system in which the pyridine ring is annelated to a cycloheptapyrrole scaffold, with the aim of obtaining new photosensitizing agents with improved antiproliferative activity and lower undesired toxic effects. A versatile synthetic pathway was approached, which allowed the isolation of derivatives of the title ring system with a good substitution pattern on the pyrrole moiety. Photobiological studies revealed that the majority of the new compounds showed a potent cytotoxic effect upon photoactivation with light of the proper wavelength, especially when decorated with a 2-ethoxycabonyl group and a N-benzyl substituted moiety, with EC50 values reaching the submicromolar level. The mechanism of action was evaluated.
Collapse
Affiliation(s)
- Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniele Giallombardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vincenzo Cilibrasi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Ilaria Frasson
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Alessia Salvador
- Dipartimento di Scienze Farmeceutiche, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sara N Richter
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Filippo Doria
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
39
|
A Novel Rhamnose-Rich Hetero-exopolysaccharide Isolated from Lactobacillus paracasei DG Activates THP-1 Human Monocytic Cells. Appl Environ Microbiol 2017; 83:AEM.02702-16. [PMID: 27913418 DOI: 10.1128/aem.02702-16] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/06/2016] [Indexed: 12/23/2022] Open
Abstract
Lactobacillus paracasei DG is a bacterial strain with recognized probiotic properties and is used in commercial probiotic products. However, the mechanisms underlying its probiotic properties are mainly unknown. In this study, we tested the hypothesis that the ability of strain DG to interact with the host is at least partly associated with its ability to synthesize a surface-associated exopolysaccharide (EPS). Comparative genomics revealed the presence of putative EPS gene clusters in the DG genome; accordingly, EPS was isolated from the surface of the bacterium. A sample of the pure EPS from strain DG (DG-EPS), upon nuclear magnetic resonance (NMR) and chemical analyses, was shown to be a novel branched hetero-EPS with a repeat unit composed of l-rhamnose, d-galactose, and N-acetyl-d-galactosamine in a ratio of 4:1:1. Subsequently, we demonstrated that DG-EPS displays immunostimulating properties by enhancing the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and particularly that of the chemokines IL-8 and CCL20, in the human monocytic cell line THP-1. In contrast, the expression of the cyclooxygenase enzyme COX-2 was not affected. In conclusion, DG-EPS is a bacterial macromolecule with the ability to boost the immune system either as a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall. This study provides additional information about the mechanisms supporting the cross talk between L. paracasei DG and the host. IMPORTANCE The consumption of food products and supplements called probiotics (i.e., containing live microbial cells) to potentially prevent or treat specific diseases is constantly gaining popularity. The lack of knowledge on the precise mechanisms supporting their potential health-promoting properties, however, greatly limits a more appropriate use of each single probiotic strain. In this context, we studied a well-known probiotic, Lactobacillus paracasei DG, in order to identify the constitutive molecules that can explain the documented health-promoting properties of this bacterium. We found a novel polysaccharide molecule, named DG-EPS, that is secreted by and covers the bacterium. We demonstrated that this molecule, which has a chemical structure never identified before, has immunostimulatory properties and therefore may contribute to the ability of the probiotic L. paracasei DG to interact with the immune system.
Collapse
|
40
|
Cha SJ, Kim MS, Pandey A, Jacobs-Lorena M. Identification of GAPDH on the surface of Plasmodium sporozoites as a new candidate for targeting malaria liver invasion. J Exp Med 2016; 213:2099-112. [PMID: 27551151 PMCID: PMC5030802 DOI: 10.1084/jem.20160059] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/19/2016] [Indexed: 11/15/2022] Open
Abstract
Cha et al. show that Plasmodium GAPDH on the sporozoite surface acts as a ligand for binding Kupffer cell CD68, an interaction that is critical for parasite liver invasion. Thus, Plasmodium GAPDH is a candidate antigen for a prehepatic malaria vaccine. Malaria transmission begins when an infected mosquito delivers Plasmodium sporozoites into the skin. The sporozoite subsequently enters the circulation and infects the liver by preferentially traversing Kupffer cells, a macrophage-like component of the liver sinusoidal lining. By screening a phage display library, we previously identified a peptide designated P39 that binds to CD68 on the surface of Kupffer cells and blocks sporozoite traversal. In this study, we show that the P39 peptide is a structural mimic of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) on the sporozoite surface and that GAPDH directly interacts with CD68 on the Kupffer cell surface. Importantly, an anti-P39 antibody significantly inhibits sporozoite liver invasion without cross-reacting with mammalian GAPDH. Therefore, Plasmodium-specific GAPDH epitopes may provide novel antigens for the development of a prehepatic vaccine.
Collapse
Affiliation(s)
- Sung-Jae Cha
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
41
|
Spanò V, Frasson I, Giallombardo D, Doria F, Parrino B, Carbone A, Montalbano A, Nadai M, Diana P, Cirrincione G, Freccero M, Richter SN, Barraja P. Synthesis and antiproliferative mechanism of action of pyrrolo[3',2':6,7] cyclohepta[1,2-d]pyrimidin-2-amines as singlet oxygen photosensitizers. Eur J Med Chem 2016; 123:447-461. [PMID: 27490024 DOI: 10.1016/j.ejmech.2016.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
A new series of pyrrolo[3',2':6,7]cyclohepta[1,2-d]pyrimidin-2-amines, was conveniently prepared using a versatile and high yielding multistep sequence. A good number of derivatives was obtained and the cellular photocytotoxicity was evaluated in vitro against three different human tumor cell lines with EC50 (0.08-4.96 μM) values reaching the nanomolar level. Selected compounds were investigated by laser flash photolysis. The most photocytotoxic derivative, exhibiting a fairly long-lived triplet state (τ ∼ 7 μs) and absorbance in the UV-Vis, was tested in the photo-oxidations of 9,10-anthracenedipropionic acid (ADPA) by singlet oxygen. The photosentizing properties are responsible for the compounds' ability to photoinduce massive cell death with involvement of mitochondria.
Collapse
Affiliation(s)
- Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Ilaria Frasson
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Daniele Giallombardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Filippo Doria
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Matteo Nadai
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
42
|
The anti-atherogenic effects of eicosapentaenoic and docosahexaenoic acid are dependent on the stage of THP-1 macrophage differentiation. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Zeng C, Wang W, Yu X, Yang L, Chen S, Li Y. Pathways related to PMA-differentiated THP1 human monocytic leukemia cells revealed by RNA-Seq. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1282-7. [PMID: 26582014 DOI: 10.1007/s11427-015-4967-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 10/22/2022]
Abstract
Previous analyses have reported that the human monocytic cell line THP1 can be differentiated into cells with macrophage-like characteristics by phorbol 12-myristate 13-acetate (PMA). However, little is known about the mechanism responsible for regulating this differentiation process. Here, we performed high-throughput RNA-Seq analysis to investigate the genes differently expressed in THP1 cells treated with and without PMA and examined those that may be responsible for the PMA-induced differentiation of monocytes into macrophages. We found 3,000 genes to be differentially expressed after PMA treatment. Gene ontology analysis revealed that genes related to cellular processes and regulation of biological processes were significantly enriched. KEGG analysis also demonstrated that the differentially expressed genes (DEGs) were significantly enriched in the PI3K/AKT signaling pathway and phagosome pathway. Importantly, we reveal an important role of the PI3K/AKT pathway in PMA-induced THP1 cell differentiation. The identified DEGs and pathways may facilitate further study of the detailed molecular mechanisms of THP1 differentiation. Thus, our results provide numerous potential therapeutic targets for modulation of the differentiation of this disease.
Collapse
Affiliation(s)
- ChengWu Zeng
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - WenTao Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - XiBao Yu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - LiJian Yang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - ShaoHua Chen
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China
| | - YangQiu Li
- First Affiliated Hospital, Jinan University, Guangzhou, 510632, China. .,Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
44
|
In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation. PLoS One 2015; 10:e0140602. [PMID: 26474393 PMCID: PMC4608598 DOI: 10.1371/journal.pone.0140602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023] Open
Abstract
A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds.
Collapse
|
45
|
Huang SL, Chen PY, Wu MJ, Tai MH, Ho CT, Yen JH. Curcuminoids Modulate the PKCδ/NADPH Oxidase/Reactive Oxygen Species Signaling Pathway and Suppress Matrix Invasion during Monocyte-Macrophage Differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8838-8848. [PMID: 26414495 DOI: 10.1021/acs.jafc.5b04083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Monocyte recruitment and invasion play critical roles in the initiation and progression of atherosclerosis. The reduction in monocyte adhesion and infiltration is thought to exert antiatherosclerotic effects. Curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are the major active components of curcuminoids and exhibit several biological activities, including anti-inflammatory, anticarcinogenic, and hypocholesterolemic activities. The aim of this study was to investigate the antiatherogenic effects and mechanisms of curcuminoids during monocyte to macrophage differentiation. The results showed that curcumin, DMC, and BDMC (20 μM) suppressed matrix invasion from 100.0 ± 5.0% to 24.8 ± 1.4%, 26.6 ± 2.9%, and 33.7 ± 1.7%, respectively, during PMA-induced THP-1 differentiation. We found that curcuminoids significantly reduced PMA-induced CD11b and MMP-9 expression by THP-1 cells. Production of reactive oxygen species (ROS) induced by PMA (126.7 ± 2.1%) was markedly attenuated by curcumin, DMC, and BDMC to 99.5 ± 7.8%, 87.8 ± 8.2%, and 89.8 ± 7.6%, respectively, resulting in the down-regulation of CD11b and MMP-9 expression. We demonstrated that curcuminoids inhibited NADPH oxidase through the down-regulation of NOX2 expression and the reduction of p47phox membrane translocation. Moreover, we found involvement of PKCδ in the PMA-induced NOX2, CD11b, and MMP-9 mRNA expression. Curcumin, DMC, and BDMC decreased the active form of PKCδ protein stimulated by PMA in THP-1 cells. Overall, our results reveal that curcuminoids suppress matrix invasion through the inhibition of the PKCδ/NADPH oxidase/ROS signaling pathway during monocyte-macrophage differentiation.
Collapse
Affiliation(s)
| | - Pei-Yi Chen
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital , Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science , Tainan 717, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University , 65 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| | | |
Collapse
|
46
|
The Anti-Inflammatory Effect of Prunus yedoensis Bark Extract on Adipose Tissue in Diet-Induced Obese Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:937904. [PMID: 26413130 PMCID: PMC4568034 DOI: 10.1155/2015/937904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/12/2015] [Accepted: 07/26/2015] [Indexed: 11/23/2022]
Abstract
Chronic, low-grade inflammatory responses occur in obese adipose tissue and play a crucial role in the development of insulin resistance. Macrophages exposed to high glucose upregulate the expression of SRA, a macrophage-specific scavenger receptor. The present study investigated whether Prunus yedoensis (PY) bark extract affects the inflammatory response and scavenger receptor gene expression observed in a diet-induced obesity model in vivo. Oral administration of PY extract significantly reduced fasting blood glucose levels without a change in body weight in mice fed a high fat diet for 17 weeks. PY extract significantly suppressed expression of inflammatory and macrophage genes such as tumor necrosis factor-α, interleukin-6, and F4/80 in epididymal adipose tissue. Among scavenger receptor genes, SRA expression was significantly reduced. The inhibitory responses of PY extract and its fractions were determined through evaluation of scavenger receptor expression in THP-1 cells. PY extract and its ethyl acetate fraction decreased the levels of SRA mRNA and phospho-ERK1/2 during monocyte differentiation. Our data indicate that the anti-inflammatory effects of PY extract and its downregulation of SRA seem to account for its hypoglycemic effects.
Collapse
|
47
|
Cha SJ, Park K, Srinivasan P, Schindler CW, van Rooijen N, Stins M, Jacobs-Lorena M. CD68 acts as a major gateway for malaria sporozoite liver infection. ACTA ACUST UNITED AC 2015. [PMID: 26216124 PMCID: PMC4548058 DOI: 10.1084/jem.20110575] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cha et al. use a phage display library screen to identify a peptide, P39, that binds to CD68 on the surface of Kupffer cells to inhibit malaria sporozoite cell entry. Thus, P39 may represent a therapeutic strategy for malaria by limiting hepatic infection. After being delivered by the bite from an infected mosquito, Plasmodium sporozoites enter the blood circulation and infect the liver. Previous evidence suggests that Kupffer cells, a macrophage-like component of the liver blood vessel lining, are traversed by sporozoites to initiate liver invasion. However, the molecular determinants of sporozoite–Kupffer cell interactions are unknown. Understanding the molecular basis for this specific recognition may lead to novel therapeutic strategies to control malaria. Using a phage display library screen, we identified a peptide, P39, that strongly binds to the Kupffer cell surface and, importantly, inhibits sporozoite Kupffer cell entry. Furthermore, we determined that P39 binds to CD68, a putative receptor for sporozoite invasion of Kupffer cells that acts as a gateway for malaria infection of the liver.
Collapse
Affiliation(s)
- Sung-Jae Cha
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Kiwon Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Prakash Srinivasan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Christian W Schindler
- Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032 Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032
| | - Nico van Rooijen
- Department of Molecular Cell Biology and Immunology, VUmc, 1081 BT Amsterdam, Netherlands
| | - Monique Stins
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Marcelo Jacobs-Lorena
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
48
|
Hu S, Li J, Xu F, Mei S, Le Duff Y, Yin L, Pang X, Cen S, Jin Q, Liang C, Guo F. SAMHD1 Inhibits LINE-1 Retrotransposition by Promoting Stress Granule Formation. PLoS Genet 2015; 11:e1005367. [PMID: 26134849 PMCID: PMC4489885 DOI: 10.1371/journal.pgen.1005367] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 06/17/2015] [Indexed: 01/17/2023] Open
Abstract
The SAM domain and HD domain containing protein 1 (SAMHD1) inhibits retroviruses, DNA viruses and long interspersed element 1 (LINE-1). Given that in dividing cells, SAMHD1 loses its antiviral function yet still potently restricts LINE-1, we propose that, instead of blocking viral DNA synthesis by virtue of its dNTP triphosphohydrolase activity, SAMHD1 may exploit a different mechanism to control LINE-1. Here, we report a new activity of SAMHD1 in promoting cellular stress granule assembly, which correlates with increased phosphorylation of eIF2α and diminished eIF4A/eIF4G interaction. This function of SAMHD1 enhances sequestration of LINE-1 RNP in stress granules and consequent blockade to LINE-1 retrotransposition. In support of this new mechanism of action, depletion of stress granule marker proteins G3BP1 or TIA1 abrogates stress granule formation and overcomes SAMHD1 inhibition of LINE-1. Together, these data reveal a new mechanism for SAMHD1 to control LINE-1 by activating cellular stress granule pathway.
Collapse
Affiliation(s)
- Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jian Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Fengwen Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Mei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yann Le Duff
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Lijuan Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiaojing Pang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Fei Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
49
|
Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages. Eur J Nutr 2015; 55:171-82. [DOI: 10.1007/s00394-015-0835-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
|
50
|
Kouno T, de Hoon M, Mar JC, Tomaru Y, Kawano M, Carninci P, Suzuki H, Hayashizaki Y, Shin JW. Temporal dynamics and transcriptional control using single-cell gene expression analysis. Genome Biol 2014; 14:R118. [PMID: 24156252 PMCID: PMC4015031 DOI: 10.1186/gb-2013-14-10-r118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/24/2013] [Indexed: 01/30/2023] Open
Abstract
Background Changes in environmental conditions lead to expression variation that manifest at the level of gene regulatory networks. Despite a strong understanding of the role noise plays in synthetic biological systems, it remains unclear how propagation of expression heterogeneity in an endogenous regulatory network is distributed and utilized by cells transitioning through a key developmental event. Results Here we investigate the temporal dynamics of a single-cell transcriptional network of 45 transcription factors in THP-1 human myeloid monocytic leukemia cells undergoing differentiation to macrophages. We systematically measure temporal regulation of expression and variation by profiling 120 single cells at eight distinct time points, and infer highly controlled regulatory modules through which signaling operates with stochastic effects. This reveals dynamic and specific rewiring as a cellular strategy for differentiation. The integration of both positive and negative co-expression networks further identifies the proto-oncogene MYB as a network hinge to modulate both the pro- and anti-differentiation pathways. Conclusions Compared to averaged cell populations, temporal single-cell expression profiling provides a much more powerful technique to probe for mechanistic insights underlying cellular differentiation. We believe that our approach will form the basis of novel strategies to study the regulation of transcription at a single-cell level.
Collapse
|