1
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Epimedium Polysaccharide Ameliorates Benzene-Induced Aplastic Anemia in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5637507. [PMID: 32256652 PMCID: PMC7106868 DOI: 10.1155/2020/5637507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/11/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Benzene (BZ) is an important occupational and environmental pollutant. Exposure to BZ may cause aplastic anemia which is characterized as bone marrow hematopoietic failure. In order to reduce the harmful effects of this pollutant, it is necessary to identify additional preventative measures. In this study, we investigated the protective effects of epimedium polysaccharide (EPS), a natural compound with antioxidant and immune-enhancing potency, on aplastic anemia induced by benzene exposure in mice. Male CD-1 mice were randomly divided into five groups including control, BZ (880 mg/kg), LE (EPS low-dose, 20 mg/kg + BZ), ME (EPS middle-dose, 100 mg/kg + BZ), and HE (EPS high-dose, 200 mg/kg + BZ) groups. Animals were exposed to BZ by subcutaneous injection in the presence or absence of EPS via oral administration. All mice were treated 3 times a week for 8 consecutive weeks to develop a mouse model of benzene-induced aplastic anemia (BIAA). Results showed that BZ induced a significant decrease in both white and red blood cells, platelet counts, and hemoglobin level compared with that in the control group (p < 0.01). Treatment of EPS led to a protective effect against these changes particularly in the highest-dose group (HE, p < 0.01). EPS also recovered the decreased number of nucleated cells in peripheral blood cell smears and femur biopsies by BZ exposure. The increased level of reactive oxygen species (ROS) in bone marrow mononuclear cells (BMMNCs) in mice from the BZ group was significantly lower (p < 0.01) in the mice from the highest concentration of EPS (HE) group when compared with that from the control group. In addition, BZ exposure led to a significant increase in the apoptosis rate in BMMNCs which was prevented by EPS in a dose-dependent manner (p < 0.01). The antiapoptosis effect of EPS was through reversing apoptotic proteins such as BAX, Caspase-9 and Caspase-3, and Bcl-2. Finally, EPS treatment partially restored the levels of T cells and the different subtypes except CD80+ and CD86+ compared with the BZ group (HE, p < 0.05). These results suggest that EPS has protective effects against BIAA via antioxidative stress, immune modulation, and antiapoptosis mechanisms.
Collapse
|
3
|
Schoettler ML, Nathan DG. The Pathophysiology of Acquired Aplastic Anemia: Current Concepts Revisited. Hematol Oncol Clin North Am 2018; 32:581-594. [PMID: 30047412 PMCID: PMC6538304 DOI: 10.1016/j.hoc.2018.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Idiopathic acquired aplastic anemia is a rare, life-threatening bone marrow failure syndrome characterized by cytopenias and hypocellular bone marrow. The pathophysiology is unknown; the most favored model is of a dysregulated immune system leading to autoreactive T-cell destruction of hematopoietic stem and progenitor cells in a genetically susceptible host. The authors review the literature and propose that the major driver of acquired aplastic anemia is a combination of hematopoietic stem and progenitor cells intrinsic defects and an inappropriately activated immune response in the setting of a viral infection. Alterations in bone marrow microenvironment may also contribute to the disease process.
Collapse
Affiliation(s)
- Michelle L Schoettler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215-5450, USA; Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - David G Nathan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215-5450, USA; Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Melguizo-Sanchis D, Xu Y, Taheem D, Yu M, Tilgner K, Barta T, Gassner K, Anyfantis G, Wan T, Elango R, Alharthi S, El-Harouni AA, Przyborski S, Adam S, Saretzki G, Samarasinghe S, Armstrong L, Lako M. iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell Death Dis 2018; 9:128. [PMID: 29374141 PMCID: PMC5833558 DOI: 10.1038/s41419-017-0141-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/22/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
Abstract
Aplastic Anemia (AA) is a bone marrow failure (BMF) disorder, resulting in bone marrow hypocellularity and peripheral pancytopenia. Severe aplastic anemia (SAA) is a subset of AA defined by a more severe phenotype. Although the immunological nature of SAA pathogenesis is widely accepted, there is an increasing recognition of the role of dysfunctional hematopoietic stem cells in the disease phenotype. While pediatric SAA can be attributable to genetic causes, evidence is evolving on previously unrecognized genetic etiologies in a proportion of adults with SAA. Thus, there is an urgent need to better understand the pathophysiology of SAA, which will help to inform the course of disease progression and treatment options. We have derived induced pluripotent stem cell (iPSC) from three unaffected controls and three SAA patients and have shown that this in vitro model mimics two key features of the disease: (1) the failure to maintain telomere length during the reprogramming process and hematopoietic differentiation resulting in SAA-iPSC and iPSC-derived-hematopoietic progenitors with shorter telomeres than controls; (2) the impaired ability of SAA-iPSC-derived hematopoietic progenitors to give rise to erythroid and myeloid cells. While apoptosis and DNA damage response to replicative stress is similar between the control and SAA-iPSC-derived-hematopoietic progenitors, the latter show impaired proliferation which was not restored by eltrombopag, a drug which has been shown to restore hematopoiesis in SAA patients. Together, our data highlight the utility of patient specific iPSC in providing a disease model for SAA and predicting patient responses to various treatment modalities.
Collapse
Affiliation(s)
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Dheraj Taheem
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | | | - Tomas Barta
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Katja Gassner
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - George Anyfantis
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Tengfei Wan
- The Ageing Biology Centre. Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Ramu Elango
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Alharthi
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf A El-Harouni
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Soheir Adam
- Hematology Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine, Duke University Medical Center, Durham, USA
| | - Gabriele Saretzki
- The Ageing Biology Centre. Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Sujith Samarasinghe
- Department of Hematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK.
| |
Collapse
|
5
|
Boddu PC, Kadia TM. Updates on the pathophysiology and treatment of aplastic anemia: a comprehensive review. Expert Rev Hematol 2017; 10:433-448. [DOI: 10.1080/17474086.2017.1313700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Tapan Mahendra Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Qi W, Fu R, Wang H, Liu C, Ren Y, Shao Y, Shao Z. Comparative proteomic analysis of CD34(+) cells in bone marrow between severe aplastic anemia and normal control. Cell Immunol 2016; 304-305:9-15. [PMID: 27086042 DOI: 10.1016/j.cellimm.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/14/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
Abstract
Severe aplastic anemia (SAA) is an autoimmune disease with destruction of hematopoietic cells by activated T lymphocytes. However, the precise mechanism of cytotoxicity T cells recognizing and attacking CD34(+) cells remains unclear. Here, we investigated the proteome of CD34(+) cells in SAA patients to further explore the pathogenesis of SAA. CD34(+) cells from 29 SAA patients and 20 health controls were isolated by magnetic activated cell sorting. The protein of CD34(+) cells were examined by iTRAQ labeling combination of multidimensional liquid chromatography and tandem mass spectrometry. A total of 156 differential expression proteins in CD34(+) cells were identified. Compared with health controls, 53 proteins were up-regulated and 103 proteins were down-regulated in SAA patients. Specifically, abnormal expression of proteasome subunits, histone variants, dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit (DAD1) and ATPase inhibitor, mitochondrial isoform 1 precursor(IF1) may relate to the hyperfunction of immune responses and excessive apoptosis of SAA CD34(+) cells.
Collapse
Affiliation(s)
- Weiwei Qi
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Huaquan Wang
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Chunyan Liu
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Yue Ren
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Yuanyuan Shao
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Zonghong Shao
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China.
| |
Collapse
|
7
|
Zayed RA, Abdel-Hamid SM, El-Lithy H. The association of cytokine genes polymorphisms and susceptibility to aplastic anemia in Egyptian patients. Hematology 2016; 21:106-112. [PMID: 26214243 DOI: 10.1179/1607845415y.0000000038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Aplastic anemia (AA) remains a rare disease, with very interesting pathophysiology that is being investigated for years now. The present study aimed to determine the association between cytokine gene polymorphisms (TGF-β1 -509 C/T, TNF-α -308 G/A, IFN-γ +874 A/T) and susceptibility to AA in Egyptian patients. METHODS The study included 80 participants subjected to determination of gene polymorphisms on genomic DNA using polymerase chain reaction-restriction fragment length polymorphism assay. RESULTS It was found that IFN-γ +874 A/T gene polymorphism is associated with three-fold increased risk of development of AA (odds ratio (OR) 3.116, P = 0.019), while TNF-α -308 G/A gene polymorphism is associated with decreased risk (OR 0.318, P = 0.026). TGF-β1 -509 C/T gene polymorphism showed comparable risk between patients and controls (P = 0.263). CONCLUSION IFN-γ +874 A/T gene polymorphism is associated with the etiology of AA in Egyptian patients.
Collapse
Affiliation(s)
- Rania A Zayed
- a Clinical and Chemical Pathology Department, Kasralainy Faculty of Medicine , Cairo University , Egypt
| | - Samah M Abdel-Hamid
- a Clinical and Chemical Pathology Department, Kasralainy Faculty of Medicine , Cairo University , Egypt
| | - Hend El-Lithy
- b Internal Medicine Department, Kasralainy Faculty of Medicine , Cairo University , Egypt
| |
Collapse
|
8
|
Zeng Y, Katsanis E. The complex pathophysiology of acquired aplastic anaemia. Clin Exp Immunol 2015; 180:361-70. [PMID: 25683099 DOI: 10.1111/cei.12605] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8(+) cytotoxic T cells, CD4(+) T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure.
Collapse
Affiliation(s)
- Y Zeng
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, AZ, USA
| | - E Katsanis
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation. Blood 2014; 124:176-83. [PMID: 24859365 DOI: 10.1182/blood-2014-03-559641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Secretion of ligands of the tumor necrosis factor (TNF) superfamily is a conserved response of parenchymal tissues to injury and inflammation that commonly perpetuates elimination of dysfunctional cellular components by apoptosis. The same signals of tissue injury that induce apoptosis in somatic cells activate stem cells and initiate the process of tissue regeneration as a coupling mechanism of injury and recovery. Hematopoietic stem and progenitor cells upregulate the TNF family receptors under stress conditions and are transduced with trophic signals. The progeny gradually acquires sensitivity to receptor-mediated apoptosis along the differentiation process, which becomes the major mechanism of negative regulation of mature proliferating hematopoietic lineages and immune homeostasis. Receptor/ligand interactions of the TNF family are physiological mechanisms transducing the need for repair, which may be harnessed in pathological conditions and transplantation. Because these interactions are physiological mechanisms of injury, neutralization of these pathways has to be carefully considered in disorders that do not involve intrinsic aberrations of excessive susceptibility to apoptosis.
Collapse
|
10
|
Searles S, Gauss K, Wilkison M, Hoyt TR, Dobrinen E, Meissner N. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:3884-95. [PMID: 23975863 DOI: 10.4049/jimmunol.1301344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.
Collapse
Affiliation(s)
- Steve Searles
- Department of Pathology, University of California School of Medicine, La Jolla, CA 92093
| | | | | | | | | | | |
Collapse
|
11
|
Wilkison M, Gauss K, Ran Y, Searles S, Taylor D, Meissner N. Type 1 interferons suppress accelerated osteoclastogenesis and prevent loss of bone mass during systemic inflammatory responses to Pneumocystis lung infection. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:151-62. [PMID: 22626807 DOI: 10.1016/j.ajpath.2012.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022]
Abstract
HIV infection causes loss of CD4(+) T cells and type 1 interferon (IFN)-producing and IFN-responsive dendritic cells, resulting in immunodeficiencies and susceptibility to opportunistic infections, such as Pneumocystis. Osteoporosis and bone marrow failure are additional unexplained complications in HIV-positive patients and patients with AIDS, respectively. We recently demonstrated that mice that lack lymphocytes and IFN a/b receptor (IFrag(-/-)) develop bone marrow failure after Pneumocystis lung infection, whereas lymphocyte-deficient, IFN α/β receptor-competent mice (RAG(-/-)) had normal hematopoiesis. Interestingly, infected IFrag(-/-) mice also exhibited bone fragility, suggesting loss of bone mass. We quantified bone changes and evaluated the potential connection between progressing bone fragility and bone marrow failure after Pneumocystis lung infection in IFrag(-/-) mice. We found that Pneumocystis infection accelerated osteoclastogenesis as bone marrow failure progressed. This finding was consistent with induction of osteoclastogenic factors, including receptor-activated nuclear factor-κB ligand and the proapoptotic factor tumor necrosis factor-related apoptosis-inducing ligand, in conjunction with their shared decoy receptor osteoprotegerin, in the bone marrow of infected IFrag(-/-) mice. Deregulation of this axis has also been observed in HIV-positive individuals. Biphosphonate treatment of IFrag(-/-) mice prevented bone loss and protected loss of hematopoietic precursor cells that maintained activity in vitro but did not prevent loss of mature neutrophils. Together, these data show that bone loss and bone marrow failure are partially linked, which suggests that the deregulation of the receptor-activated nuclear factor-κB ligand/osteoprotegerin/tumor necrosis factor-related apoptosis-inducing ligand axis may connect the two phenotypes in our model.
Collapse
Affiliation(s)
- Michelle Wilkison
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT, USA
| | | | | | | | | | | |
Collapse
|
12
|
Fischer U, Ruckert C, Hubner B, Eckermann O, Binder V, Bakchoul T, Schuster FR, Merk S, Klein HU, Führer M, Dugas M, Borkhardt A. CD34+ gene expression profiling of individual children with very severe aplastic anemia indicates a pathogenic role of integrin receptors and the proapoptotic death ligand TRAIL. Haematologica 2012; 97:1304-11. [PMID: 22315490 DOI: 10.3324/haematol.2011.056705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED BACKGROUND Very severe aplastic anemia is characterized by a hypoplastic bone marrow due to destruction of CD34(+) stem cells by autoreactive T cells. Investigation of the pathomechanism by patient-specific gene expression analysis of the attacked stem cells has previously been impractical because of the scarcity of these cells at diagnosis. DESIGN AND METHODS Employing unbiased RNA amplification, patient-specific gene expression profiling was carried out for CD34(+) cells from patients newly diagnosed with very severe aplastic anemia (n=13), refractory anemia (n=8) and healthy controls (n=10). These data were compared to profiles of myelodysplastic disease (n=55), including refractory anemia (n=18). To identify possible targets of autoimmune attack, presence of autoreactive antibodies was tested in pre-therapeutic sera of patients with very severe aplastic anemia (n=19). RESULTS CD34(+) gene expression profiling distinguished between healthy controls, children with aplastic or refractory anemia and clonal disease. Interferon stimulated genes such as the apoptosis inducing death ligand TRAIL were strongly up-regulated in CD34(+) cells of patients with aplastic anemia, in particular in patients responding to immunosuppressive treatment. In contrast, mRNA expression of integrin GPVI and the integrin complexes GPIa/IIa, GPIIb/IIIa, GPIB/GPIX/GPV was significantly down-regulated and corresponding antibodies were detected in 7 of 11 profiled patients and in 11 of 19 aplastic anemia patients. CONCLUSIONS As a potential diagnostic tool, patient-specific gene expression profiling of CD34(+) stem cells made it possible to make the difficult differential diagnosis of most patients with aplastic and refractory anemia. Profiling indicated a prognostic correlation of TRAIL expression and patient benefit from immunosuppressive therapy. Downregulation of integrin expression and concurrent presence of autoreactive anti-integrin-antibodies suggested a previously unrecognized pathological role of integrins in aplastic anemia.
Collapse
Affiliation(s)
- Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mizrahi K, Stein J, Pearl-Yafe M, Kaplan O, Yaniv I, Askenasy N. Regulatory functions of TRAIL in hematopoietic progenitors: human umbilical cord blood and murine bone marrow transplantation. Leukemia 2010; 24:1325-34. [PMID: 20485377 DOI: 10.1038/leu.2010.97] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway has selective toxicity to malignant cells. The TRAIL receptors DR4 and DR5 are expressed at low levels in human umbilical cord blood cells (3-15%) and are upregulated by incubation with the cognate ligand, triggering apoptosis in 70-80% of receptor-positive cells (P<0.001). Apoptosis is not induced in hematopoietic progenitors, as determined from sustained severe combined immunodeficiency reconstituting potential and clonogenic activity. Furthermore, elimination of dead cells after incubation with TRAIL for 72 h results in a threefold enrichment in myeloid progenitors. Exposure to TRAIL in semisolid cultures showed synergistic activity of DR4 and granulocyte/macrophage colony-stimulating factor in recruiting lineage-negative (lin(-)) and CD34(+) progenitors and in promoting the formation of large colonies. In murine bone marrow, approximately 30% of lin(-) cells express TRAIL-R2 (the only murine receptor), and the receptor is upregulated after transplantation in cycling and differentiating donor cells that home to the host marrow. However, this receptor is almost ubiquitously expressed in the most primitive (lin(-)SCA-1(+)c-kit(+)) progenitors, and stimulates the clonogenic activity of lin(-) cells (P<0.001), suggesting a tropic function after transplantation. It is concluded that TRAIL does not trigger apoptosis in hematopoietic progenitors, and upregulation of its cognate receptors under stress conditions mediates tropic signaling that supports recovery from hypoplasia.
Collapse
Affiliation(s)
- K Mizrahi
- Center for Stem Cell Research, Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Li JP, Zheng CL, Han ZC. Abnormal immunity and stem/progenitor cells in acquired aplastic anemia. Crit Rev Oncol Hematol 2009; 75:79-93. [PMID: 20045349 DOI: 10.1016/j.critrevonc.2009.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/28/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022] Open
Abstract
Acquired aplastic anemia (AA) is considered as an immune-mediated bone marrow failure syndrome, characterized by hypoplasia and pancytopenia with fatty bone marrow. Abnormal immunity is the major factor mediating the pathogenesis of acquired AA. Activated DCs might promote the polarization to Th1 cells, and activate CD8(+) T cells. A variety of immune molecules including IFN-gamma, TNF-alpha, MIP-1alpha and IL-2, 8, 12, 15, 17, 23, produced by them and stromal cells, compose a cytokine network to destruct stem/progenitor cells as well as hematopoietic stem/progenitor cells, mesenchymal stem cells (MSCs) and angioblasts/endothelial progenitor cells. Inversely, deficient MSCs, CD4(+)CD25(+) T cells, NK cells, NKT cells and early hematopoietic growth factors diminish the capacity of immune regulation and the support of hematopoiesis. As a result, stem/progenitor cells are significantly impaired to be disabled cells with markedly deficient proliferation, differentiation, induced apoptosis and dysfunctional response to growth factor stimuli, together with rare normal ones. Although some patients can be ameliorated by stem-cell transplantation or immunosuppressive therapy, more effective and convenient therapies such as patient-specific pluripotent iPS cells based on definite pathogenesis are expected.
Collapse
Affiliation(s)
- Jian Ping Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | | | | |
Collapse
|
15
|
Abstract
The members of the tumour necrosis factor (TNF) superfamily of cytokines play important roles in the regulation of various immune-cell functions. Likewise, induction of cell death by apoptosis is indispensable for the normal functioning of the immune system. There are two major pathways of apoptosis induction. The intrinsic, or mitochondrial, pathway is regulated by the activation and interaction of members of the Bcl-2 family. The extrinsic, or death receptor, pathway is triggered by certain TNF family members when they engage their respective cognate receptors on the surface of the target cell. Hence, cell-to-cell-mediated death signals are induced by activation of these death receptor-ligand systems. Besides TNF itself and the CD95 (Fas/APO-1) ligand (FasL/Apo1L), the TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) belongs to the subfamily of ligands that is responsible for extrinsic induction of cell death. Depending on their status of stimulation, TRAIL can be expressed by various cells of the immune system, amongst them natural killer (NK) cells, T cells, natural killer T cells (NKT cells), dendritic cells and macrophages. TRAIL has been implicated in immunosuppressive, immunoregulatory and immune-effector functions. With respect to pathological challenges, TRAIL and its receptors have been shown to play important roles in the immune response to viral infections and in immune surveillance of tumours and metastases. In this review we summarize the current knowledge on the role of TRAIL and its receptors in the immune system and, based on this, we discuss future directions of research into the diverse functions of this fascinating receptor-ligand system.
Collapse
|
16
|
Omokaro SO, Desierto MJ, Eckhaus MA, Ellison FM, Chen J, Young NS. Lymphocytes with aberrant expression of Fas or Fas ligand attenuate immune bone marrow failure in a mouse model. THE JOURNAL OF IMMUNOLOGY 2009; 182:3414-22. [PMID: 19265119 DOI: 10.4049/jimmunol.0801430] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone marrow (BM) and lymphocyte samples from aplastic anemia patients show up-regulated Fas and Fas-ligand (FasL) expression, respectively, supporting a relationship between immune-mediated BM destruction and the Fas apoptotic pathway. Mice with spontaneous lymphoproliferation (lpr) and generalized lymphoproliferative disease (gld) mutations exhibit abnormal expression of Fas and FasL, serving as potential models to elucidate underlying mechanisms of BM failure. We examined cellular and functional characteristics of lpr and gld mutants on the C57BL/6 (B6) background. Lymph node (LN) cells from lpr and gld mice produced less apoptosis when coincubated with C.B10-H2(b)/LilMcd (C.B10) BM cells in vitro. This functional difference was confirmed by infusing lpr, gld, and B6 LN cells into sublethally irradiated CB10 mice. All donor LN cells showed significant T cell expansion and activation, but only B6 LN cells caused severe BM destruction. Mice infused with gld LN cells developed mild to moderate BM failure despite receiving FasL-deficient effectors, thus suggesting the existence of alternative pathways or incomplete penetrance of the mutation. Paradoxically, mice that received Fas-deficient lpr LN cells also had reduced BM failure, likely due to down-regulation of proapoptotic genes, an effect that can be overcome by higher doses of lpr LN cells. Our model demonstrates that abnormal Fas or FasL expression interferes with the development of pancytopenia and marrow hypoplasia, validating a major role for the Fas/FasL cytotoxic pathway in immune-mediated BM failure, although disruption of this pathway does not completely abolish marrow destruction.
Collapse
Affiliation(s)
- Stephanie O Omokaro
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda,MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Secchiero P, Melloni E, Corallini F, Beltrami AP, Alviano F, Milani D, D'Aurizio F, di Iasio MG, Cesselli D, Bagnara GP, Zauli G. Tumor necrosis factor-related apoptosis-inducing ligand promotes migration of human bone marrow multipotent stromal cells. Stem Cells 2008; 26:2955-63. [PMID: 18772312 DOI: 10.1634/stemcells.2008-0512] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adult multipotent stromal cells (MSCs), also known as mesenchymal stem cells, represent an important source of cells for the repair of a number of damaged tissues. Both bone marrow (BM)-derived and amniotic MSCs expressed detectable surface levels of two (tumor necrosis factor-related apoptosis-inducing ligand receptor 2 [TRAIL-R2] and TRAIL-R4) of four transmembrane TRAIL receptors. Although the best-characterized activity of TRAIL-R2 is the transduction of apoptotic signals, neither recombinant TRAIL (rTRAIL) nor infection with an adenovirus-expressing TRAIL induced cytotoxic effects on MSCs. Moreover, whereas rTRAIL did not affect proliferation or differentiation of MSCs along the osteogenic and adipogenic lineages, it significantly promoted the migration of human MSCs in range of concentrations comparable to that of soluble TRAIL in human plasma (100 pg/ml). Since rTRAIL induced the rapid phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in MSC cultures and pretreatment with pharmacological inhibitors of the ERK1/2 pathway efficiently counteracted the rTRAIL-induced human MSC migration, these data indicate that ERK1/2 is involved in mediating the ability of rTRAIL to stimulate MSC migration. Taking into consideration that the soluble factors able to induce MSC migration have not been extensively characterized, our current data indicate that the TRAIL/TRAIL-R system might play an important role in the biology of MSCs. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Paola Secchiero
- aDepartment of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tumor-necrosis-factor-related apoptosis-inducing ligand and the regulation of hematopoiesis. Curr Opin Hematol 2008; 15:42-8. [PMID: 18043245 DOI: 10.1097/moh.0b013e3282f15fa6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW This review will focus on the emerging role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-receptors in the pathophysiology of hematopoiesis and on the potential therapeutic applications of either recombinant TRAIL or anti-TRAIL-R1/-R2 agonistic antibodies for the treatment of hematological malignancies. RECENT FINDINGS While CD34 stem/progenitor cells do not express TRAIL-receptors and are protected from TRAIL-induced apoptosis, accumulating evidence points to a role for elevated expression/release of TRAIL at the bone marrow level in the pathophysiology of aplastic anemia, Fanconi anemia, and myelodysplastic syndromes. In-vitro data show promising synergistic effects of recombinant TRAIL in association with proteasome or histone deacetylase inhibitors, natural compounds or small molecules in the therapy of myeloid and lymphoid malignancies. Moreover, although both recombinant TRAIL and anti-TRAIL-R1/-R2 antibodies are well tolerated in vivo, anti-TRAIL-R1/-R2 agonistic antibodies show the potential advantage of avoiding the neutralizing activity of the soluble receptor osteoprotegerin. SUMMARY While a chronic pathological elevation of TRAIL at the bone marrow level might contribute to the impairment of normal hematopoiesis, the use of recombinant TRAIL and anti-TRAIL-R1/-R2 agonistic antibodies appears particularly promising for the treatment of hematological malignancies in particular, of multiple myeloma, especially if used in association with innovative therapeutic compounds.
Collapse
|
19
|
Gu Y, Zhang J, Peng J, Hu X, Xu C. Elevated expression of IL-12 and IL-23 in patients with aplastic anemia. Int J Lab Hematol 2008; 31:207-14. [PMID: 18190588 DOI: 10.1111/j.1751-553x.2007.01026.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aplastic anemia (AA), which is characterized by hypocellular bone marrow (BM) and blood pancytopenia, was considered as a T-helper1 (Th1) mediated disease. Interleukin (IL)-12 and IL-23 produced by antigen presenting cells are essential for inducing and sustaining Th1 effector cells via different pathways. However, less is known with regard to the levels of expression and synthesis of these two cytokines in patients with AA. This was determined in the current study in 26 patients with AA as well as in 20 healthy controls. Our results showed that IL-12 p40, IL-12 p35 and IL-23 p19 gene expression can be detected in all samples both from the patients and the controls, using real-time reverse transcription polymerase chain reaction. Furthermore, an increased expression of IL-12 p40, IL-12 p35 and IL-23 p19 mRNA was observed in bone marrow mononuclear cells and peripheral blood mononuclear cells of patients with AA compared with the corresponding one in normal controls. Higher levels of IL-12 and IL-23 were also found in BM plasma and PB plasma in patients with AA than in normal controls. Therefore, the augmented expression of IL-12 and IL-23 in patients with AA may play an important role in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Y Gu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| | | | | | | | | |
Collapse
|
20
|
Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 2006; 108:2509-19. [PMID: 16778145 PMCID: PMC1895575 DOI: 10.1182/blood-2006-03-010777] [Citation(s) in RCA: 633] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aplastic anemia, an unusual hematologic disease, is the paradigm of the human bone marrow failure syndromes. Almost universally fatal just a few decades ago, aplastic anemia can now be cured or ameliorated by stem-cell transplantation or immunosuppressive drug therapy. The pathophysiology is immune mediated in most cases, with activated type 1 cytotoxic T cells implicated. The molecular basis of the aberrant immune response and deficiencies in hematopoietic cells is now being defined genetically; examples are telomere repair gene mutations in the target cells and dysregulated T-cell activation pathways. Immunosuppression with antithymocyte globulins and cyclosporine is effective at restoring blood-cell production in the majority of patients, but relapse and especially evolution of clonal hematologic diseases remain problematic. Allogeneic stem-cell transplant from histocompatible sibling donors is curative in the great majority of young patients with severe aplastic anemia; the major challenges are extending the benefits of transplantation to patients who are older or who lack family donors. Recent results with alternative sources of stem cells and a variety of conditioning regimens to achieve their engraftment have been promising, with survival in small pediatric case series rivaling conventional transplantation results.
Collapse
Affiliation(s)
- Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute/NIH, 10 Center Drive, Bldg 10/CRC, Rm 3E-5140, Bethesda, MD 20892-1202, USA.
| | | | | |
Collapse
|
21
|
Young NS. Pathophysiologic mechanisms in acquired aplastic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2006:72-7. [PMID: 17124043 DOI: 10.1182/asheducation-2006.1.72] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aplastic anemia, an unusual hematologic disease, is the paradigm of the human bone marrow failure syndromes. Absence of hematopoietic cells has been recognized from the characteristic morphology for a century; an immune pathophysiology has been inferred from improvement in blood counts with immunosuppressive therapy in the majority of patients. Molecular mechanisms underlying both T cell effector cells and the target marrow stem and progenitor cells are now being identified. Activated type 1 cytotoxic T cells and type 1 cytokines have been implicated in cell culture experiments; clues to the molecular basis of the aberrant immune response include cytokine gene polymorphisms and abnormalities in the regulatory pathways for gamma-interferon. For stem cell depletion, mutations in genes of the telomere repair complex are present in some patients with apparently acquired aplastic anemia. Telomerase deficiency is associated with short telomeres and a quantitative reduction in marrow progenitors and likely also a qualitative deficiency in the repair capacity of hematopoietic tissue.
Collapse
Affiliation(s)
- Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20891, USA.
| |
Collapse
|