1
|
Meyer CT, Smith BN, Wang J, Teuscher KB, Grieb BC, Howard GC, Silver AJ, Lorey SL, Stott GM, Moore WJ, Lee T, Savona MR, Weissmiller AM, Liu Q, Quaranta V, Fesik SW, Tansey WP. Expanded profiling of WD repeat domain 5 inhibitors reveals actionable strategies for the treatment of hematologic malignancies. Proc Natl Acad Sci U S A 2024; 121:e2408889121. [PMID: 39167600 PMCID: PMC11363251 DOI: 10.1073/pnas.2408889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.
Collapse
Affiliation(s)
- Christian T. Meyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Duet BioSystems, Nashville, TN37212
| | - Brianna N. Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Brian C. Grieb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Vito Quaranta
- Duet BioSystems, Nashville, TN37212
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| |
Collapse
|
2
|
Long ME, Koirala S, Sloan S, Brown-Burke F, Weigel C, Villagomez L, Corps K, Sharma A, Hout I, Harper M, Helmig-Mason J, Tallada S, Chen Z, Scherle P, Vaddi K, Chen-Kiang S, Di Liberto M, Meydan C, Foox J, Butler D, Mason C, Alinari L, Blaser BW, Baiocchi R. Resistance to PRMT5-targeted therapy in mantle cell lymphoma. Blood Adv 2024; 8:150-163. [PMID: 37782774 PMCID: PMC10787272 DOI: 10.1182/bloodadvances.2023010554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model. Decreased survival of mice engrafted with these PRMT5 inhibitor-resistant cells vs treatment-naive cells was observed (P = .005). MCL cell lines showed variable sensitivity to PRMT5 inhibition. Using PRT-382, cell lines were classified as sensitive (n = 4; 50% inhibitory concentration [IC50], 20-140 nM) or primary resistant (n = 4; 340-1650 nM). Prolonged culture of sensitive MCL lines with drug escalation produced PRMT5 inhibitor-resistant cell lines (n = 4; 200-500 nM). This resistant phenotype persisted after prolonged culture in the absence of drug and was observed with PRT-808. In the resistant PDX and cell line models, symmetric dimethylarginine reduction was achieved at the original PRMT5 inhibitor IC50, suggesting activation of alternative resistance pathways. Bulk RNA sequencing of resistant cell lines and PDX relative to sensitive or short-term-treated cells, respectively, highlighted shared upregulation of multiple pathways including mechanistic target of rapamycin kinase [mTOR] signaling (P < 10-5 and z score > 0.3 or < 0.3). Single-cell RNA sequencing analysis demonstrated a strong shift in global gene expression, with upregulation of mTOR signaling in resistant PDX MCL samples. Targeted blockade of mTORC1 with temsirolimus overcame the PRMT5 inhibitor-resistant phenotype, displayed therapeutic synergy in resistant MCL cell lines, and improved survival of a resistant PDX.
Collapse
Affiliation(s)
- Mackenzie Elizabeth Long
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Shelby Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Fiona Brown-Burke
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lynda Villagomez
- Division of Hematology and Oncology, Department of Pediatrics, The Ohio State University and Nationwide Children’s Hospital, Columbus, OH
| | - Kara Corps
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Archisha Sharma
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ian Hout
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Margaret Harper
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Sheetal Tallada
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | | | | | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Cem Meydan
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Jonathan Foox
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Daniel Butler
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Christopher Mason
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Bradley W. Blaser
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Robert Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Li G, Feng M, Zhang Z, Liu J, Zhang H. BACH1 Loss Exerts Antitumor Effects on Mantle Cell Lymphoma Cells via Inducing a Tumor-Intrinsic Innate Immune Response and Cell-Cycle Arrest. Mol Cancer Res 2023; 21:1274-1287. [PMID: 37713314 DOI: 10.1158/1541-7786.mcr-23-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
BTB and CNC homology 1 (BACH1) is a transcription repressor that regulates multiple physiological processes, including intracellular heme homeostasis and immune responses. Increasing lines of evidence indicate that BACH1 reshapes metastasis and metabolism of human solid tumors. However, its potential roles in mantle cell lymphoma (MCL) remain largely unknown. Here, we found that silencing BACH1 in MCL cells induced markedly cell-cycle arrest and cell apoptosis, whereas overexpression of BACH1 exhibited the opposite patterns. Increased BACH1 levels not only promoted tumor growth and dispersal in xenografts, but also conferred a long-term poor prognosis in patients with MCL. Interestingly, RNA sequencing analysis revealed noncanonical function of BACH1 in regulation of type I interferon (IFNI) response, DNA replication and repair, and cell cycle. Mechanistically, zinc finger and BTB domain containing 20 (ZBTB20) and HMG-box transcription factor 1 (HBP1) were for the first time identified as two novel downstream targets repressed by BACH1 in MCL cells. Further double-knockdown functional assays confirmed that loss of BACH1 induced ZBTB20-mediated IFNα production and HBP1-mediated cell-cycle arrest, indicating that BACH1-centered regulatory network may be a novel targetable vulnerability in MCL cells. IMPLICATIONS BACH1 serves as a pleotropic regulator of tumor-intrinsic innate immune response and cell-cycle progression, disruption of which may offer a promising therapeutic strategy for MCL treatment.
Collapse
Affiliation(s)
- Guilan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jiangyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
4
|
Hansen MH, Cédile O, Kjeldsen MLG, Thomassen M, Preiss B, von Neuhoff N, Abildgaard N, Nyvold CG. Toward Cytogenomics: Technical Assessment of Long-Read Nanopore Whole-Genome Sequencing for Detecting Large Chromosomal Alterations in Mantle Cell Lymphoma. J Mol Diagn 2023; 25:796-805. [PMID: 37683892 DOI: 10.1016/j.jmoldx.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
The current advances and success of next-generation sequencing hold the potential for the transition of cancer cytogenetics toward comprehensive cytogenomics. However, the conventional use of short reads impedes the resolution of chromosomal aberrations. Thus, this study evaluated the detection and reproducibility of extensive copy number alterations and chromosomal translocations using long-read Oxford Nanopore Technologies whole-genome sequencing compared with short-read Illumina sequencing. Using the mantle cell lymphoma cell line Granta-519, almost 99% copy-number reproducibility at the 100-kilobase resolution between replicates was demonstrated, with 98% concordance to Illumina. Collectively, the performance of copy number calling from 1.5 million to 7.5 million long reads was comparable to 1 billion Illumina-based reads (50× coverage). Expectedly, the long-read resolution of canonical translocation t(11;14)(q13;q32) was superior, with a sequence similarity of 89% to the already published CCND1/IGH junction (9× coverage), spanning up to 69 kilobases. The cytogenetic profile of Granta-519 was in general agreement with the literature and karyotype, although several differences remained unresolved. In conclusion, contemporary long-read sequencing is primed for future cytogenomics or sequencing-guided cytogenetics. The combined strength of long- and short-read sequencing is apparent, where the high-precision junctional mapping complements and splits paired-end reads. The potential is emphasized by the flexible single-sample genomic data acquisition of Oxford Nanopore Technologies with the high resolution of allelic imbalances using Illumina short-read sequencing.
Collapse
Affiliation(s)
- Marcus H Hansen
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark.
| | - Oriane Cédile
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Marie L G Kjeldsen
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Birgitte Preiss
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Nils von Neuhoff
- Department of Pediatric Hematology and Oncology, Essen University Hospital and University of Duisburg-Essen, Essen, Germany
| | - Niels Abildgaard
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Charlotte G Nyvold
- Hematology-Pathology Research Laboratory, Research Unit of Hematology and Research Unit of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
5
|
Zhou L, Yu T, Yang F, Han J, Zuo B, Huang L, Bai X, Jiang M, Wu D, Chen S, Xia L, Ruan J, Ruan C. G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Mantle Cell Lymphoma Growth in Preclinical Models. Front Oncol 2021; 11:668617. [PMID: 34211844 PMCID: PMC8239310 DOI: 10.3389/fonc.2021.668617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive form of non-Hodgkin’s B-cell lymphoma with poor prognosis. Despite recent advances, resistance to therapy and relapse remain significant clinical problems. G-protein-coupled estrogen receptor (GPER)-mediated estrogenic rapid signaling is implicated in the development of many cancers. However, its role in MCL is unknown. Here we report that GPER activation with selective agonist G-1 induced cell cycle arrest, DNA damage, mitochondria membrane potential abnormality, and eventually apoptosis of MCL cell lines. We found that G-1 induced DNA damage and apoptosis of MCL cells by promoting the expression of nicotinamide adenine dinucleotide phosphate oxidase and the generation of reactive oxygen species. In addition, G-1 inhibited MCL cell proliferation by inactivation of NF-κB signaling and exhibited anti-tumor functions in MCL xenografted mice. Most significantly, G-1 showed synergistic effect with ibrutinib making it a potential candidate for chemotherapy-free therapies against MCL.
Collapse
Affiliation(s)
- Lixia Zhou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zuo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Huang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jia Ruan
- Division of Hematology and Medical Oncology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Potent efficacy of MCL-1 inhibitor-based therapies in preclinical models of mantle cell lymphoma. Oncogene 2019; 39:2009-2023. [PMID: 31772331 DOI: 10.1038/s41388-019-1122-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Apoptosis-regulating BCL-2 family members, which can promote malignant transformation and resistance to therapy, have become prime therapeutic targets, as illustrated by the striking efficacy in certain lymphoid malignancies of the BCL-2-specific inhibitor venetoclax. In other lymphoid malignancies, however, such as the aggressive mantle cell lymphoma (MCL), cell survival might rely instead or also on BCL-2 relative MCL-1. We have explored MCL-1 as a target for killing MCL cells by both genetic and pharmacologic approaches. In several MCL cell lines, MCL-1 knockout with an inducible CRISPR/Cas9 system triggered spontaneous apoptosis. Accordingly, most MCL cell lines proved sensitive to the specific MCL-1 inhibitor S63845, and MCL-1 inhibition also proved efficacious in an MCL xenograft model. Furthermore, its killing efficacy rose on combination with venetoclax, the BCL-XL-specific inhibitor A-1331852, or Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which reduced pro-survival signals. We also tested the MCL-1 inhibitor in primary samples from 13 MCL patients, using CD40L-expressing feeder cells to model their microenvironmental support. Notably, all unstimulated primary MCL samples were very sensitive to S63845, but the CD40L stimulation attenuated their sensitivity. Mass cytometric analysis revealed that the stimulation likely conveyed protection by elevating BCL-XL and MCL-1. Accordingly, sensitivity of the CD40L-stimulated cells to S63845 was substantially restored by co-treatment with venetoclax, the BCL-XL-specific inhibitor or ibrutinib. Overall, our findings indicate that MCL-1 is very important for survival of MCL cells and that the MCL-1 inhibitor, both alone and together with ibrutinib, venetoclax or a BCL-XL inhibitor, offers promise for novel improved MCL therapies.
Collapse
|
7
|
Molecular signatures for CCN1, p21 and p27 in progressive mantle cell lymphoma. J Cell Commun Signal 2018; 13:421-434. [PMID: 30465121 DOI: 10.1007/s12079-018-0494-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin's lymphoma characterised by overexpression of cyclin D1. Many patients present with or progress to advanced stage disease within 3 years. MCL is considered an incurable disease with median survival between 3 and 4 years. We have investigated the role(s) of CCN1 (CYR61) and cell cycle regulators in progressive MCL. We have used the human MCL cell lines REC1 < G519 < JVM2 as a model for disease aggression. The magnitude of CCN1 expression in human MCL cells is REC1 > G519 > JVM2 cells by RQ-PCR, depicting a decrease in CCN1 expression with disease progression. Investigation of CCN1 isoform expression by western blotting showed that whilst expression of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18-20 and 28-30 kDa) decreased with disease progression. We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and p27KIP1) are also involved in disease progression. Cyclin D1 was highly expressed in REC1 cells (OD: 1.0), reduced to one fifth in G519 cells (OD: 0.2) and not detected by western blotting in JVM2 cells. p27KIP1 followed a similar profile of expression as cyclin D1. Conversely, p21CIP1 was absent in the REC1 cells and showed increasing expression in G519 and JVM2 cells. Subcellular localization detected p21CIP1/ p27KIP1 primarily within the cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance. Dysregulation of the CCN1 truncated forms are associated with MCL progression. In conjunction with reduced expression of cyclin D1 and increased expression of p21, this molecular signature may depict aggressive disease and treatment resistance.
Collapse
|
8
|
Zemanova J, Hylse O, Collakova J, Vesely P, Oltova A, Borsky M, Zaprazna K, Kasparkova M, Janovska P, Verner J, Kohoutek J, Dzimkova M, Bryja V, Jaskova Z, Brychtova Y, Paruch K, Trbusek M. Chk1 inhibition significantly potentiates activity of nucleoside analogs in TP53-mutated B-lymphoid cells. Oncotarget 2018; 7:62091-62106. [PMID: 27556692 PMCID: PMC5308713 DOI: 10.18632/oncotarget.11388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Treatment options for TP53-mutated lymphoid tumors are very limited. In experimental models, TP53-mutated lymphomas were sensitive to direct inhibition of checkpoint kinase 1 (Chk1), a pivotal regulator of replication. We initially tested the potential of the highly specific Chk1 inhibitor SCH900776 to synergize with nucleoside analogs (NAs) fludarabine, cytarabine and gemcitabine in cell lines derived from B-cell malignancies. In p53-proficient NALM-6 cells, SCH900776 added to NAs enhanced signaling towards Chk1 (pSer317/pSer345), effectively blocked Chk1 activation (Ser296 autophosphorylation), increased replication stress (p53 and γ-H2AX accumulation) and temporarily potentiated apoptosis. In p53-defective MEC-1 cell line representing adverse chronic lymphocytic leukemia (CLL), Chk1 inhibition together with NAs led to enhanced and sustained replication stress and significantly potentiated apoptosis. Altogether, among 17 tested cell lines SCH900776 sensitized four of them to all three NAs. Focusing further on MEC-1 and co-treatment of SCH900776 with fludarabine, we disclosed chromosome pulverization in cells undergoing aberrant mitoses. SCH900776 also increased the effect of fludarabine in a proportion of primary CLL samples treated with pro-proliferative stimuli, including those with TP53 disruption. Finally, we observed a fludarabine potentiation by SCH900776 in a T-cell leukemia 1 (TCL1)-driven mouse model of CLL. Collectively, we have substantiated the significant potential of Chk1 inhibition in B-lymphoid cells.
Collapse
Affiliation(s)
- Jana Zemanova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Hylse
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Collakova
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Vesely
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Alexandra Oltova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Borsky
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristina Zaprazna
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Kasparkova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavlina Janovska
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Verner
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Kohoutek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Marta Dzimkova
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Zuzana Jaskova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yvona Brychtova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamil Paruch
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature 2017; 542:489-493. [PMID: 28199309 PMCID: PMC5382874 DOI: 10.1038/nature21406] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients.
Collapse
|
10
|
|
11
|
Ryan RJH, Drier Y, Whitton H, Cotton MJ, Kaur J, Issner R, Gillespie S, Epstein CB, Nardi V, Sohani AR, Hochberg EP, Bernstein BE. Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-cell Lymphoma. Cancer Discov 2015; 5:1058-71. [PMID: 26229090 DOI: 10.1158/2159-8290.cd-15-0370] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED B-cell lymphomas frequently contain genomic rearrangements that lead to oncogene activation by heterologous distal regulatory elements. We used a novel approach called "pinpointing enhancer-associated rearrangements by chromatin immunoprecipitation," or PEAR-ChIP, to simultaneously map enhancer activity and proximal rearrangements in lymphoma cell lines and patient biopsies. This method detects rearrangements involving known cancer genes, including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1, as well as novel enhancer duplication events of likely oncogenic significance. We identify lymphoma subtype-specific enhancers in the MYC locus that are silenced in lymphomas with MYC-activating rearrangements and are associated with germline polymorphisms that alter lymphoma risk. We show that BCL6-locus enhancers are acetylated by the BCL6-activating transcription factor MEF2B, and can undergo genomic duplication, or target the MYC promoter for activation in the context of a "pseudo-double-hit" t(3;8)(q27;q24) rearrangement linking the BCL6 and MYC loci. Our work provides novel insights regarding enhancer-driven oncogene activation in lymphoma. SIGNIFICANCE We demonstrate a novel approach for simultaneous detection of genomic rearrangements and enhancer activity in tumor biopsies. We identify novel mechanisms of enhancer-driven regulation of the oncogenes MYC and BCL6, and show that the BCL6 locus can serve as an enhancer donor in an "enhancer hijacking" translocation.
Collapse
Affiliation(s)
- Russell J H Ryan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Yotam Drier
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Holly Whitton
- Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - M Joel Cotton
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Jasleen Kaur
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Robbyn Issner
- Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Shawn Gillespie
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Charles B Epstein
- Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aliyah R Sohani
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ephraim P Hochberg
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bradley E Bernstein
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts.
| |
Collapse
|
12
|
Prevalence and characterization of murine leukemia virus contamination in human cell lines. PLoS One 2015; 10:e0125622. [PMID: 25927683 PMCID: PMC4416031 DOI: 10.1371/journal.pone.0125622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 11/26/2022] Open
Abstract
Contaminations of cell cultures with microbiological organisms are well documented and can be managed in cell culture laboratories applying reliable detection, elimination and prevention strategies. However, the presence of viral contaminations in cell cultures is still a matter of debate and cannot be determined with general detection methods. In the present study we screened 577 human cell lines for the presence of murine leukemia viruses (MLV). Nineteen cell lines were found to be contaminated with MLV, including 22RV1 which is contaminated with the xenotropic murine leukemia virus-related virus variant of MLV. Of these, 17 cell lines were shown to produce active retroviruses determined by product enhanced reverse transcriptase PCR assay for reverse transcriptase activity. The contaminated cell lines derive from various solid tumor types as well as from leukemia and lymphoma types. A contamination of primary human cells from healthy volunteers could not be substantiated. Sequence analyses of 17 MLV PCR products and five complete MLV genomes of different infected cell lines revealed at least three groups of related MLV genotypes. The viruses harvested from the supernatants of infected cell cultures were infectious to uninfected cell cultures. In the course of the study we found that contamination of human genomic DNA preparations with murine DNA can lead to false-positive results. Presumably, xenotransplantations of the human tumor cells into immune-deficient mice to determine the tumorigenicity of the cells are mainly responsible for the MLV contaminations. Furthermore, the use of murine feeder layer cells during the establishment of human cell lines and a cross-contamination with MLV from infected cultures might be sources of infection. A screening of cell cultures for MLV contamination is recommended given a contamination rate of 3.3%.
Collapse
|
13
|
Fogli LK, Williams ME, Connors JM, Reid Y, Brown K, O'Connor OA. Development and characterization of a Mantle Cell Lymphoma Cell Bank in the American Type Culture Collection. Leuk Lymphoma 2014; 56:2114-22. [PMID: 25315077 DOI: 10.3109/10428194.2014.970548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mantle cell lymphoma (MCL) is a rare B-cell malignancy that carries a relatively poor prognosis compared to other forms of non-Hodgkin lymphoma. Standardized preclinical tools are desperately required to hasten the discovery and translation of promising new treatments for MCL. Via an initiative organized through the Mantle Cell Lymphoma Consortium and the Lymphoma Research Foundation, we gathered MCL cell lines from laboratories around the world to create a characterized MCL Cell Bank at the American Type Culture Collection (ATCC). Initiated in 2006, this collection now contains eight cell lines, all of which have been rigorously characterized and are now stored and available for distribution to the general scientific community. We believe the awareness and use of these standardized cell lines will decrease variability between investigators, harmonize international research efforts, improve our understanding of the pathogenesis of the disease and hasten the development of novel treatment strategies.
Collapse
Affiliation(s)
- Laura K Fogli
- Department of Pathology, NYU School of Medicine , New York, NY , USA
| | | | | | | | | | | |
Collapse
|
14
|
Rolland D, Basrur V, Conlon K, Wolfe T, Fermin D, Nesvizhskii AI, Lim MS, Elenitoba-Johnson KSJ. Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1331-42. [PMID: 24667141 DOI: 10.1016/j.ajpath.2014.01.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/05/2013] [Accepted: 01/02/2014] [Indexed: 12/23/2022]
Abstract
Deregulation of signaling pathways controlled by protein phosphorylation underlies the pathogenesis of hematological malignancies; however, the extent to which deregulated phosphorylation may be involved in B-cell non-Hodgkin lymphoma (B-NHL) pathogenesis is largely unknown. To identify phosphorylation events important in B-NHLs, we performed mass spectrometry-based, label-free, semiquantitative phosphoproteomic profiling of 11 cell lines derived from three B-NHL categories: Burkitt lymphoma, follicular lymphoma, and mantle-cell lymphoma. In all, 6579 unique phosphopeptides, corresponding to 1701 unique phosphorylated proteins, were identified and quantified. The data are available via ProteomeXchange with identifier PXD000658. Hierarchical clustering highlighted distinct phosphoproteomic signatures associated with each lymphoma subtype. Interestingly, germinal center-derived B-NHL cell lines were characterized by phosphorylation of proteins involved in the B-cell receptor signaling. Of these proteins, phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) was identified with the most phosphorylated tyrosine peptides in Burkitt lymphoma and follicular lymphoma. PAG1 knockdown resulted in perturbation of the tyrosine phosphosignature of B-cell receptor signaling components. Significantly, PAG1 knockdown increased cell proliferation and response to antigen stimulation of these germinal center-derived B-NHLs. These data provide a detailed annotation of phosphorylated proteins in human lymphoid cancer. Overall, our study revealed the utility of unbiased phosphoproteome interrogation in characterizing signaling networks that may provide insights into pathogenesis mechanisms in B-cell lymphomas.
Collapse
Affiliation(s)
- Delphine Rolland
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thomas Wolfe
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Damian Fermin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Megan S Lim
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan; Center for Protein Folding Disease, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
15
|
Robledo C, García JL, Hernández JM. Clinical applications of BAC array-CGH to the study of diffuse large B-cell lymphomas. Methods Mol Biol 2013; 973:121-145. [PMID: 23412787 DOI: 10.1007/978-1-62703-281-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BAC array-CGH is a powerful method to identify DNA copy number changes (gains, amplifications and deletions) on a genome-wide scale, and to map these changes to genomic sequence. It is based on the analysis of genomic DNA isolated from test and reference cell populations, the differential labelling with fluorescent dyes and the co-hybridization with a genomic array. BAC array-CGH has proven to be a specific, sensitive, and reliable technique, with considerable advantages compared to other methods used for the analysis of DNA copy number changes. The application of genome scanning technologies and the recent advances in bioinformatics tools that enable us to perform a robust and highly sensitive analysis of array-CGH data, useful not only for genome scanning of tumor cells but also in the identification of novel cancer related genes, oncogenes and suppressor genes. Cytogenetic analysis provides essential information for diagnosis and prognosis in patients with hematologic malignancies such as lymphomas. However, the chromosomal interpretation in non-Hodgkin lymphoma (NHL) is sometimes inconclusive. Copy number aberrations identified by BAC array-CGH analyses could be a complementary methodology to chromosomal analysis. In NHL the genomic imbalances might have a prognostic rather than a diagnostic value. In fact, the diagnosis of NHL is based on pathological and molecular cytogenetics data. Furthermore genetic variations and their association with specific types of lymphoma development, and elucidation of the variable genetic pathways leading to lymphoma development, are important directions for future cancer research. Array-CGH, along with FISH and PCR, will be used for routine diagnostic purposes in near future.
Collapse
Affiliation(s)
- Cristina Robledo
- Unidad de Diagnóstico Molecular y Celular del Cáncer, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, Salamanca, Spain
| | | | | |
Collapse
|
16
|
Molecular characterization of chromosomal band 5p15.33: a recurrent breakpoint region in mantle cell lymphoma involving the TERT-CLPTM1L locus. Leuk Res 2012; 37:280-6. [PMID: 23137523 DOI: 10.1016/j.leukres.2012.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/06/2012] [Accepted: 10/12/2012] [Indexed: 11/22/2022]
Abstract
Secondary chromosomal aberrations may contribute to the development of a malignant phenotype in mantle cell lymphoma. Chromosomal band 5p15.33 represents a new recurrent breakpoint in B-cell malignancies. We present a molecular cytogenetic study of 8 mantle cell lymphoma (MCL) cell lines and 23 patients with MCL to determine and characterize novel secondary aberrations. We detected new secondary recurrent rearrangements in all cell lines and in 7 patients and confirmed 5p15.33 as a recurrent breakpoint in 4 cell lines and one patient. Further molecular characterization by flow-FISH and quantitative RT-PCR suggest TERT and CLPTM1L as target genes of 5p15.33 rearrangements.
Collapse
|
17
|
Ahrens AK, Chaturvedi NK, Nordgren TM, Dave BJ, Joshi SS. Establishment and characterization of therapy-resistant mantle cell lymphoma cell lines derived from different tissue sites. Leuk Lymphoma 2012; 53:2269-78. [PMID: 22568512 DOI: 10.3109/10428194.2012.691481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mantle cell lymphoma (MCL) is a rare but aggressive form of B cell non-Hodgkin lymphoma in which therapy resistance is common. New therapeutic options have extended survival in refractory MCL but have not provided durable remission. Tools are needed to assess the molecular and genetic changes associated with therapy resistance. Therefore, therapy-resistant MCL cell lines were established from the liver, kidney and lungs of human Granta 519-bearing NOD-SCID (non-obese diabetic-severe combined immunodeficiency) mice following treatment with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy in combination with bortezomib. The cytomorphologies, immunophenotypes, growth patterns in semi-solid agar, cytogenetic profiles and gene expression differences between these cell lines were characterized to identify major changes associated with therapy resistance. Therapy-resistant cell lines exhibit more aggressive growth patterns and markedly different gene expression profiles compared to parental Granta 519 cells. Thus, these stable therapy-resistant cell lines are useful models to further study the molecular basis of drug resistance and to identify clinically relevant molecular targets in MCL.
Collapse
Affiliation(s)
- Adam K Ahrens
- Department of Genetics, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | |
Collapse
|
18
|
Zullo K, Amengual JE, O'Connor OA, Scotto L. Murine models in mantle cell lymphoma. Best Pract Res Clin Haematol 2012; 25:153-63. [PMID: 22687451 DOI: 10.1016/j.beha.2012.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mantle cell lymphoma (MCL), an aggressive, heterogeneous B-cell lymphoma associated with a relatively short survival has been challenging to study in the laboratory due to the lack of in vitro and in vivo models that accurately recapitulate the disease. Advancement has been made in the characterization of MCL cell lines through the generation of the ATCC MCL bank, enabling their use in xenograft murine models. These models provide valuable but limited information for the preclinical evaluation and development of targeted therapies for MCL despite their deficiencies of a functioning immune system and correct micro-environment. Currently, there is only one double transgenic murine model known to develop spontaneous MCL. There is an urgency to develop innovative transgenic murine models that could be used to better predict therapeutic responses and precisely decipher mechanisms of action, to foster refinement of novel therapeutics for mantle cell lymphoma.
Collapse
Affiliation(s)
- Kelly Zullo
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY 10032, USA
| | | | | | | |
Collapse
|
19
|
The proteasome inhibitor bortezomib targets cell cycle and apoptosis and acts synergistically in a sequence-dependent way with chemotherapeutic agents in mantle cell lymphoma. Ann Hematol 2012; 91:847-56. [PMID: 22231280 DOI: 10.1007/s00277-011-1377-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/19/2011] [Indexed: 01/05/2023]
Abstract
Single-agent bortezomib, a potent, selective, and reversible inhibitor of the 26S proteasome, has demonstrated clinical efficacy in relapsed and refractory mantle cell lymphoma (MCL). Objective response is achieved in up to 45% of the MCL patients; however, complete remission rates are low and duration of response proved to be relatively short. These limitations may be overcome by combining proteasome inhibition with conventional chemotherapy. Rational combination treatment and schedules require profound knowledge of underlying molecular mechanisms. Here we show that single-agent bortezomib treatment of MCL cell lines leads to G2/M arrest and induction of apoptosis accompanied by downregulation of EIF4E and CCND1 mRNA but upregulation of p15(INK4B) and p21 mRNA. We further present synergistic efficacy of bortezomib combined with cytarabine in MCL cell lines. Interestingly this sequence-dependent synergistic effect was seen almost exclusively in combination with AraC, indicating that pretreatment with cytarabine, followed by proteasome inhibition, may be the preferred approach.
Collapse
|
20
|
Golla RM, Li M, Shen Y, Ji M, Yan Y, Fu K, Greiner TC, McKeithan TW, Chan WC. Inhibition of poly(ADP-ribose) polymerase (PARP) and ataxia telangiectasia mutated (ATM) on the chemosensitivity of mantle cell lymphoma to agents that induce DNA strand breaks. Hematol Oncol 2011; 30:175-9. [PMID: 22170260 DOI: 10.1002/hon.1020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 02/02/2023]
Abstract
There is a high incidence of genomic aberration of ataxia telangiectasia mutated (ATM) and genes encoding proteins involved in the ATM pathway in mantle cell lymphoma (MCL). It has been shown that poly(ADP-ribose) polymerase inhibitor (PARPi) strongly enhances the cytotoxicity of agents, causing single-strand DNA breaks in cells with impaired homologous recombination repair. Here, we show that PARPi AG14361 potentiates the cytotoxicity induced by topotecan treatment in MCL cell lines, which was not dependent on either TP53 or CHEK2 status. Inhibition and/or knockdown of ATM and BRCA2 did not potentiate the cytotoxic effect of treatment with PARPi and topotecan. With loss of function of ATM, other kinases can still mediate activation of ATM substrates as demonstrated by continued phosphorylation of CHEK2 (Thr-68), although attenuated and delayed. These results suggest that PARPi may enhance the therapeutic efficacy of DNA damaging agents on MCL through TP53-independent mechanisms without requiring the inhibition of either ATM or BRCA2.
Collapse
Affiliation(s)
- Radha M Golla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Seiser EL, Thomas R, Richards KL, Kelley MK, Moore P, Suter SE, Breen M. Reading between the lines: molecular characterization of five widely used canine lymphoid tumour cell lines. Vet Comp Oncol 2011; 11:30-50. [PMID: 22236332 DOI: 10.1111/j.1476-5829.2011.00299.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular characterization of tumour cell lines is increasingly regarded as a prerequisite for defining their validity as models of in vivo neoplasia. We present the first comprehensive catalogue of genomic and transcriptional characteristics of five widely used canine lymphoid tumour cell lines. High-resolution microarray-based comparative genomic hybridization defined their unique profiles of genomic DNA copy number imbalance. Multicolour fluorescence in situ hybridization identified aberrant gains of MYC, KIT and FLT3 and deletions of PTEN and CDKN2 in individual cell lines, and also revealed examples of extensive structural chromosome reorganization. Gene expression profiling and RT-PCR analyses defined the relationship between genomic imbalance and transcriptional dysregulation in each cell line, clarifying their relevance as models of discrete functional pathways with biological and therapeutic significance. In combination, these data provide an extensive resource of molecular data for directing the appropriate use of these cell lines as tools for studying canine lymphoid neoplasia.
Collapse
Affiliation(s)
- E L Seiser
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Wasik AM, Almestrand S, Wang X, Hultenby K, Dackland ÅL, Andersson P, Kimby E, Christensson B, Sander B. WIN55,212-2 induces cytoplasmic vacuolation in apoptosis-resistant MCL cells. Cell Death Dis 2011; 2:e225. [PMID: 22048168 PMCID: PMC3223692 DOI: 10.1038/cddis.2011.106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cannabinoid receptors 1 (CB1) and/or 2 (CB2) are overexpressed in many types of human malignancies including mantle cell lymphoma (MCL). Agonists to CB1 and CB2 promote ceramide de novo synthesis, p38–mitogen-activated protein kinase-dependent activation of caspase-3 and apoptotic cell death in most MCLs. However, in this report we describe that in some MCLs the response to treatment with cannabinoids decreased cell viability as assessed by metabolic activity but did not involve the caspase-3 cascade or loss of plasma membrane integrity. Both primary cells from one MCL patient and the MCL cell line Granta519 responded to treatment with cannabinoids by formation of cycloheximide-sensitive cytoplasmic vacuoles, but did not enter apoptosis. The persistent expression of mammalian homolog of Atg8 with microtubule-associated protein-1 light chain-3 II (LC3 II) and p62, as well as the lack of protection from chloroquine, indicates that lysosomal degradation is not involved in this cytoplasmic vacuolation process, distinguishing from classical autophagy. Transmission electron microscopy images and immunofluorescence staining of endoplasmic reticulum (ER) chaperone calreticulin showed that the vacuoles were of ER origin and that chromatin remained normal. These features resemble paraptosis-like cell death—a third type of a programmed cell death not previously described in response to cannabinoids.
Collapse
Affiliation(s)
- A M Wasik
- Division of Pathology, Department of Laboratory Medicine, F46, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE 141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pighi C, Gu TL, Dalai I, Barbi S, Parolini C, Bertolaso A, Pedron S, Parisi A, Ren J, Cecconi D, Chilosi M, Menestrina F, Zamò A. Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol (Dordr) 2011; 34:141-53. [PMID: 21394647 PMCID: PMC3063577 DOI: 10.1007/s13402-011-0019-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2011] [Indexed: 01/29/2023] Open
Abstract
Background Mantle cell lymphoma (MCL) is currently an incurable entity, and new therapeutic approaches are needed. We have applied a high-throughput phospho-proteomic technique to MCL cell lines to identify activated pathways and we have then validated our data in both cell lines and tumor tissues. Methods PhosphoScan analysis was performed on MCL cell lines. Results were validated by flow cytometry and western blotting. Functional validation was performed by blocking the most active pathway in MCL cell lines. Results PhosphoScan identified more than 300 tyrosine-phosporylated proteins, among which many protein kinases. The most abundant peptides belonged to proteins connected with B-cell receptor (BCR) signaling. Active BCR signaling was demonstrated by flow cytometry in MCL cells and by western blotting in MCL tumor tissues. Blocking BCR signaling by Syk inhibitor piceatannol induced dose/time-dependent apoptosis in MCL cell lines, as well as several modifications in the phosphorylation status of BCR pathway members and a collapse of cyclin D1 protein levels. Conclusion Our data support a pro-survival role of BCR signaling in MCL and suggest that this pathway might be a candidate for therapy. Our findings also suggest that Syk activation patterns might be different in MCL compared to other lymphoma subtypes. Electronic supplementary material The online version of this article (doi:10.1007/s13402-011-0019-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiara Pighi
- Department of Pathology and Diagnostics, University of Verona, P.le Scuro 10, 37134, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kerrigan L, Nims RW. Authentication of human cell-based products: the role of a new consensus standard. Regen Med 2011; 6:255-60. [DOI: 10.2217/rme.11.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Authentication of human tissues, cell lines and primary cell cultures (including stem cell preparations) used as therapeutic modalities is often performed using phenotyping and technologies capable of assessing identity to the species level (e.g., isoenzyme analysis and/or karyotyping). This authentication paradigm alone cannot provide assurance that the correct human cell preparation is administered, so careful labeling and tracking of cells from the donor, during manufacture and as part of the final product are also employed. Precise, accurate identification of human cells to the individual donor level could, however, significantly reduce the risks of exposing human subjects to misidentified cells. The availability of a standardized method for achieving this will provide a way to improve the safety profile of human cell-based products by providing assurance that a given lot of cells originated from the intended donor and were not inadvertently mixed or replaced with cells from other donors. In support of this goal, an international team of scientists has prepared a consensus standard on authentication of human cells using short tandem repeat profiling. Associated with the standard itself will be the establishment and maintenance of a public database of short tandem repeat profiles for commonly used cell lines.
Collapse
Affiliation(s)
- Liz Kerrigan
- Standards & Certification, ATCC, 10801 University Blvd, Manassas, VA 20110, USA
| | - Raymond W Nims
- RMC Pharmaceutical Solutions, Inc., 2150 Miller Drive, Suite A, Longmont, CO 80501, USA
| |
Collapse
|
25
|
Interleukin 22 signaling promotes cell growth in mantle cell lymphoma. Transl Oncol 2011; 4:9-19. [PMID: 21286373 DOI: 10.1593/tlo.10172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/05/2010] [Accepted: 10/07/2010] [Indexed: 12/28/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a specific type of aggressive B-cell non-Hodgkin lymphoma. We recently found that IL-22RA1, one of the two subunits of the interleukin 22 (IL-22) receptor, is expressed in MCL cell lines but not benign lymphocytes. In view of normal functions of IL-22 signaling, we hypothesized that the aberrant expression of IL-22RA1 may contribute to the deregulation of various cell signaling pathways, thereby promoting cell growth in MCL. In this study, we first demonstrated the expression of IL-22RA1 in all three MCL cell lines and eight frozen tumors examined using reverse transcription-polymerase chain reaction and Western blot analysis. In support of the concept that IL-22 signaling is biologically important in MCL, we found that MCL cells treated with recombinant IL-22 had a significant increase in cell growth that was associated with STAT3 activation. To investigate the mechanism underlying the aberrant expression of IL-22RA1, we analyzed the gene promoter of IL-22RA1, and we found multiple binding sites for NF-κB, a transcriptional factor strongly implicated in the pathogenesis of MCL. Pharmacologic inhibition of NF-κB resulted in a substantial reduction in the level of IL-22RA1 protein expression in MCL cells. To conclude, IL-22RA is aberrantly expressed in MCL, and we have provided evidence that IL-22 signaling contributes to the pathogenesis of MCL.
Collapse
|
26
|
Nims RW, Sykes G, Cottrill K, Ikonomi P, Elmore E. Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification. In Vitro Cell Dev Biol Anim 2010; 46:811-9. [PMID: 20927602 PMCID: PMC2995877 DOI: 10.1007/s11626-010-9352-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/13/2010] [Indexed: 11/16/2022]
Abstract
The role of cell authentication in biomedical science has received considerable attention, especially within the past decade. This quality control attribute is now beginning to be given the emphasis it deserves by granting agencies and by scientific journals. Short tandem repeat (STR) profiling, one of a few DNA profiling technologies now available, is being proposed for routine identification (authentication) of human cell lines, stem cells, and tissues. The advantage of this technique over methods such as isoenzyme analysis, karyotyping, human leukocyte antigen typing, etc., is that STR profiling can establish identity to the individual level, provided that the appropriate number and types of loci are evaluated. To best employ this technology, a standardized protocol and a data-driven, quality-controlled, and publically searchable database will be necessary. This public STR database (currently under development) will enable investigators to rapidly authenticate human-based cultures to the individual from whom the cells were sourced. Use of similar approaches for non-human animal cells will require developing other suitable loci sets. While implementing STR analysis on a more routine basis should significantly reduce the frequency of cell misidentification, additional technologies may be needed as part of an overall authentication paradigm. For instance, isoenzyme analysis, PCR-based DNA amplification, and sequence-based barcoding methods enable rapid confirmation of a cell line's species of origin while screening against cross-contaminations, especially when the cells present are not recognized by the species-specific STR method. Karyotyping may also be needed as a supporting tool during establishment of an STR database. Finally, good cell culture practices must always remain a major component of any effort to reduce the frequency of cell misidentification.
Collapse
Affiliation(s)
- Raymond W. Nims
- RMC Pharmaceutical Solutions, Inc, 2150 Miller Drive, Suite A, Longmont, CO 80501 USA
| | - Greg Sykes
- ATCC, 10801 University Blvd., Manassas, VA 20110 USA
| | | | | | - Eugene Elmore
- Department of Radiation Oncology, University of California, Medical Sciences I, B146D, Irvine, CA 92697 USA
| |
Collapse
|
27
|
Milani V, Lorenz M, Weinkauf M, Rieken M, Pastore A, Dreyling M, Issels R. Combination of hyperthermia and bortezomib results in additive killing in mantle cell lymphoma cells. Int J Hyperthermia 2009; 25:262-72. [PMID: 19670095 DOI: 10.1080/02656730902835664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The proteasome inhibitor bortezomib exhibits antitumor activity in many malignancies including mantle cell lymphoma (MCL). Unfortunately, many patients fail to respond to treatment or become refractory. Hyperthermia is an effective chemosensitizer that in combination with some chemotherapeutic agents has shown clinical activity in phase II and III studies. The aim of this study was to use MCL cell lines to investigate the potential benefit of combining clinically relevant doses of bortezomib with two different thermal doses (41.8 degrees C/120 min and 44 degrees C/30 min) that mimic the heterogeneity of the temperature distributions achieved within tumors during hyperthermia. Treated tumor cells were assessed for proliferation using the WST-1 assay and for apoptosis by annexin V staining, while heat shock protein (HSP) levels were determined following western blot analysis. Our results demonstrated that MCL cell lines that are sensitive to bortezomib are also thermosensitive and have low basal expression of hsp27, whereas the bortezomib-resistant MCL cell line strongly expresses hsp27 and is thermoresistant. Interestingly, pre-treatment of MCL cell lines with heat at the two different thermal doses, and the transient elevation of hsp27 and hsp70, do not impair their primary sensitivity to bortezomib. Finally, we show that the concurrent treatment of heat and bortezomib results in additive killing in MCL cell lines.In conclusion, these results suggest that the application of bortezomib, under thermal conditions, in mantle cell lymphoma cells may be beneficial and warrants further investigation.
Collapse
Affiliation(s)
- Valeria Milani
- Department of Medical Oncology, University Medical Center Grosshadern, 81377 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Bogner C, Dechow T, Ringshausen I, Wagner M, Oelsner M, Lutzny G, Licht T, Peschel C, Pastan I, Kreitman RJ, Decker T. Immunotoxin BL22 induces apoptosis in mantle cell lymphoma (MCL) cells dependent on Bcl-2 expression. Br J Haematol 2009; 148:99-109. [PMID: 19821820 DOI: 10.1111/j.1365-2141.2009.07939.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mantle cell lymphoma (MCL) is an incurable mature B cell proliferation, combining the unfavourable clinical features of aggressive and indolent lymphomas. The blastic variant of MCL has an even worse prognosis and new treatment options are clearly needed. We analysed the effects of BL22, an immunotoxin composed of the Fv portion of an anti- CD22 antibody fused to a 38-kDa Pseudomonas exotoxin-A fragment on four MCL cell lines as well as on primary cells of four MCL patients. Apoptosis induction by BL22 was much more pronounced in MCL cell lines with low Bcl-2 expression (NCEB-1, JeKo-1 and JVM-2) compared to Granta-519 cells with high Bcl-2 expression. While the expression of the antiapoptotic protein Mcl-1 declined (NCEB-1, Granta-519), Bcl-2 levels remained unchanged in Granta-519 cells. However transfection of BCL2 cDNA into NCEB-1, JeKo-1 and JVM-2 cells significantly reduced BL22-mediated toxicity. Accordingly we examined the effects of Bcl-2 inactivation in Granta-519 cells using siRNA. Indeed, apoptosis induction was strongly enhanced in Granta-519 cells with silenced Bcl-2. Our results were confirmed in freshly isolated MCL-cells from patients with leukaemic MCL. We conclude that Bcl-2 expression is important for mediating resistance against the immunotoxin BL22 in MCL cells.
Collapse
Affiliation(s)
- Christian Bogner
- IIIrd Department of Medicine, Technical University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Navarro A, Beà S, Fernández V, Prieto M, Salaverria I, Jares P, Hartmann E, Mozos A, López-Guillermo A, Villamor N, Colomer D, Puig X, Ott G, Solé F, Serrano S, Rosenwald A, Campo E, Hernández L. MicroRNA expression, chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in Mantle cell lymphomas. Cancer Res 2009; 69:7071-8. [PMID: 19690137 DOI: 10.1158/0008-5472.can-09-1095] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The contribution of microRNAs (miR) to the pathogenesis of mantle cell lymphoma (MCL) is not well known. We investigated the expression of 86 mature miRs mapped to frequently altered genomic regions in MCL in CD5(+)/CD5(-) normal B cells, reactive lymph nodes, and purified tumor cells of 17 leukemic MCL, 12 nodal MCL, and 8 MCL cell lines. Genomic alterations of the tumors were studied by single nucleotide polymorphism arrays and comparative genomic hybridization. Leukemic and nodal tumors showed a high number of differentially expressed miRs compared with purified normal B cells, but only some of them were commonly deregulated in both tumor types. An unsupervised analysis of miR expression profile in purified leukemic MCL cells revealed two clusters of tumors characterized by different mutational status of the immunoglobulin genes, proliferation signature, and number of genomic alterations. The expression of most miRs was not related to copy number changes in their respective chromosomal loci. Only the levels of miRs included in the miR-17-92 cluster were significantly related to genetic alterations at 13q31. Moreover, overexpression of miR-17-5p/miR-20a from this cluster was associated with high MYC mRNA levels in tumors with a more aggressive behavior. In conclusion, the miR expression pattern of MCL is deregulated in comparison with normal lymphoid cells and distinguishes two subgroups of tumors with different biological features.
Collapse
Affiliation(s)
- Alba Navarro
- Department of Pathology (Hematopathology Unit), Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Weinkauf M, Zimmermann Y, Hartmann E, Rosenwald A, Rieken M, Pastore A, Hutter G, Hiddemann W, Dreyling M. 2-D PAGE-based comparison of proteasome inhibitor bortezomib in sensitive and resistant mantle cell lymphoma. Electrophoresis 2009; 30:974-86. [PMID: 19309015 DOI: 10.1002/elps.200800508] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although gene expression following bortezomib treatment has been previously explored, direct effects of bortezomib-induced proteasome inhibition on protein level has not been analyzed so far. Using 2-D PAGE in five mantle cell lymphoma cell lines, we screened for cellular protein level alterations following treatment with 25 nM bortezomib for up to 4 h. Using MS, we identified 38 of the 41 most prominent reliably detected protein spots. Twenty-one were affected in all cell lines, whereas the remaining 20 protein spots were exclusively altered in sensitive cell lines. Western blot analysis was performed for 17 of the 38 identified proteins and 70.6% of the observed protein level alterations in 2-D gels was verified. All cell lines exhibited alterations of the cellular protein levels of heat shock-induced protein species (HSPA9, HSP7C, HSPA5, HSPD1), whereas sensitive cell lines also displayed altered cellular protein levels of energy metabolism (ATP5B, AK5, TPI1, ENO-1, ALDOC, GAPDH), RNA and transcriptional regulation (HNRPL, SFRS12) and cell division (NEBL, ACTB, SMC1A, C20orf23) as well as tumor suppressor genes (ENO-1, FH). These proteins clustered in a tight interaction network centered on the major cellular checkpoints TP53. The results were confirmed in primary mantle cell lymphoma, thus confirming the critical role of these candidate proteins of proteasome inhibition.
Collapse
Affiliation(s)
- Marc Weinkauf
- CCG Leukemia, Department of Medicine III, University Hospital Grosshadern/LMU, Munich, Germany, in association with Helmholtz Center Munich, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stabilization and activation of p53 downregulates mTOR signaling through AMPK in mantle cell lymphoma. Leukemia 2009; 23:784-90. [PMID: 19225536 DOI: 10.1038/leu.2008.348] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mantle cell lymphoma (MCL) is a clinically aggressive B-cell non-Hodgkin lymphoma characterized by the t(11;14)(q13;q32) and overexpression of cyclin D1. A high proportion of MCL tumors harbor wild-type (wt) and potentially functional p53 gene. We show here that stabilization and activation of wt-p53 using a recently developed potent MDM2 inhibitor, nutlin 3A, results in significant p53-dependent G1-S cell cycle arrest and apoptosis in MCL cells through regulation of p53 target genes. As mTOR signaling is activated in MCL and may control cyclin D1 levels, we show that p53 activation may downregulate the AKT/mTOR pathway through a mechanism involving AMP kinase (AMPK). Despite the non-genotoxic mode of nutlin 3A treatment, we show evidence that stabilization of p53 is associated with its phosphorylation at serine 15 residue and activation of AMPK. Stimulation of AMPK kinase activity using AICAR inhibits phosphorylation of critical downstream effectors of mTOR signaling, such as 4E-BP1 and rpS6. Pharmacologic inhibition of AMPK using compound C in nutlin-3A-treated MCL cells harboring wt-p53 did not affect the level of (ser15)p-p53, suggesting that the (ser15)p-p53 --> AMPK is the direction involved in the p53/AMPK/mTOR cross talk. These data establish a p53 --> AMPK --> mTOR mechanism in MCL and uncover a novel biologic effect of potent MDM2 inhibitors in preclinical models of MCL.
Collapse
|
32
|
Roué G, López-Guerra M, Milpied P, Pérez-Galán P, Villamor N, Montserrat E, Campo E, Colomer D. Bendamustine is effective in p53-deficient B-cell neoplasms and requires oxidative stress and caspase-independent signaling. Clin Cancer Res 2008; 14:6907-15. [PMID: 18980985 DOI: 10.1158/1078-0432.ccr-08-0388] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are two incurable B-cell lymphoid neoplasms characterized by distinct clinical presentation and evolution. Bendamustine hydrochloride is a multifunctional, alkylating agent with a purine-like ring system that exhibits activity in multiple cancer models, including CLL and MCL, but whose mechanism is only partially described. Our aim was to analyze the apoptotic pathways activated by bendamustine in CLL and MCL together with the relevance of p53 mutation in determining the response to this drug. EXPERIMENTAL DESIGN Thirteen CLL/MCL cell lines and primary tumor cells from 8 MCL and 25 CLL patients were cultured for up to 24 h with bendamustine followed by cytotoxic assays, flow cytometry, immunofluorescence, and Western blot analysis of p53 response pathway and apoptosis-related factors. RESULTS Bendamustine displayed cytotoxic activity on most CLL and MCL primary cells and cell lines irrespective of ZAP-70 expression and p53 status. Bendamustine was found to act synergistically with nucleoside analogues in both CLL and MCL, this combination being effective in p53 mutated cases resistant to standard chemotherapy. Bendamustine cytotoxicity was mediated by the generation of reactive oxygen species and triggering of the intrinsic apoptotic pathway involving up-regulation of PUMA and NOXA, conformational activation of BAX and BAK, and cytosolic release of caspase-related and caspase-unrelated mitochondrial apoptogenic proteins. CONCLUSIONS Our findings support the use of bendamustine as a therapeutic agent, alone or in combination, for CLL and MCL with p53 alterations and describe the molecular basis of its activity in these entities.
Collapse
Affiliation(s)
- Gaël Roué
- Hematopathology Unit, Department of Pathology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Salaverria I, Espinet B, Carrió A, Costa D, Astier L, Slotta-Huspenina J, Quintanilla-Martinez L, Fend F, Solé F, Colomer D, Serrano S, Miró R, Beà S, Campo E. Multiple recurrent chromosomal breakpoints in mantle cell lymphoma revealed by a combination of molecular cytogenetic techniques. Genes Chromosomes Cancer 2008; 47:1086-97. [PMID: 18709664 DOI: 10.1002/gcc.20609] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mantle cell lymphoma (MCL) is genetically characterized by 11q13 translocations leading to the overexpression of CCND1, and additional secondary genomic alterations that may be important in the progression of this disease. We have analyzed 22 MCL cases and 10 MCL cell lines using multicolor fluorescence in situ hybridization (M-FISH), FISH, and comparative genomic hybridization (CGH). The 19 cases with abnormal karyotype showed the t(11;14)(q13;q32) translocation and, additionally, 89% of cases showed both numerical (n = 58) and structural (n = 77) aberrations. All but one MCL cell line showed t(11;14) and structural and numerical alterations in highly complex karyotypes. Besides 11 and 14, the most commonly rearranged chromosomes were 1, 8, and 10 in the tumors and 1, 8, and 9 in the cell lines. No recurrent translocations other than the t(11;14) were identified. However, we identified 17 recurrent breakpoints, the most frequent being 1p22 and 8p11, each observed in four cases and two cell lines. Interestingly, five tumors and four cell lines displayed a complex t(11;14), cryptic in one case and two cell lines, preferentially involving chromosome 8. In typical MCL, ATM gene deletions were significantly associated with a high number of structural and numerical alterations. In conclusion, MCL does not have recurrent translocations other than t(11;14), but shows recurrent chromosomal breakpoints. Furthermore, most MCL harbor complex karyotypes with a high number of both structural and numerical alterations affecting several common breakpoints, leading to various balanced and unbalanced translocations.
Collapse
Affiliation(s)
- Itziar Salaverria
- Department of Pathology, Hematopathology Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vater I, Wagner F, Kreuz M, Berger H, Martín-Subero JI, Pott C, Martinez-Climent JA, Klapper W, Krause K, Dyer MJS, Gesk S, Harder L, Zamo A, Dreyling M, Hasenclever D, Arnold N, Siebert R. GeneChip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma. Br J Haematol 2008; 144:317-31. [PMID: 19016712 DOI: 10.1111/j.1365-2141.2008.07443.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The translocation t(11;14)(q13;q32) is the genetic hallmark of mantle cell lymphoma (MCL) but is not sufficient for inducing lymphomagenesis. Here we performed genome-wide 100K GeneChip Mapping in 26 t(11;14)-positive MCL and six MCL cell lines. Partial uniparental disomy (pUPD) was shown to be a recurrent chromosomal event not only in MCL cell lines but also in primary MCL. Remarkably, pUPD affected recurrent targets of deletion like 11q, 13q and 17p. Moreover, we identified 12 novel regions of recurrent gain and loss as well as 12 high-level amplifications and eight homozygously deleted regions hitherto undescribed in MCL. Interestingly, GeneChip analyses identified different genes, encoding proteins involved in microtubule dynamics, such as MAP2, MAP6 and TP53, as targets for chromosomal aberration in MCL. Further investigation, including mutation analyses, fluorescence in situ hybridisation as well as epigenetic and expression studies, revealed additional aberrations frequently affecting these genes. In total, 19 of 20 MCL cases, which were subjected to genetic and epigenetic analyses, and five of six MCL cell lines harboured at least one aberration in MAP2, MAP6 or TP53. These findings provide evidence that alterations of microtubule dynamics might be one of the critical events in MCL lymphomagenesis contributing to chromosomal instability.
Collapse
Affiliation(s)
- Inga Vater
- Institute of Human Genetics, Christian-Albrechts University Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2008; 113:396-402. [PMID: 18941111 DOI: 10.1182/blood-2008-07-163907] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant overexpression of the miR-17-92 polycistron is strongly associated with B-cell lymphomagenesis. Recent studies have shown that miR-17-92 down-regulates the proapoptotic protein Bim, leading to overexpression of Bcl2, which likely plays a key role in lymphomagenesis. However, the fact that Jeko-1 cells derived from mantle cell lymphoma exhibit both homozygous deletion of BIM and overexpression of miR-17-92 suggests other targets are also involved in B-cell lymphomagenesis. To identify essential target(s) of miR-17-92 in lymphomagenesis, we first transfected miR-17-92 into 2 genetically distinct B-cell lymphoma cell lines: Raji, which overexpress c-Myc, and SUDHL4, which overexpress Bcl2. Raji transfected with miR-17-19b-1 exhibited down-regulated expression of Bim and a slight up-regulation in Bcl2 expression. On the other hand, SUDHL4 transfectants showed aggressive cell growth reflecting facilitated cell cycle progression at the G(1) to S transition and decreased expression of CDKN1A mRNA and p21 protein (CDKN1A/p21) that was independent of p53 expression. Conversely, transfection of antisense oligonucleotides against miR-17 and miR-20a into Jeko-1 led to up-regulation of CDKN1A/p21, resulting in decreased cell growth with G(1) to S arrest. Thus, CDKN1A/p21 appears to be an essential target of miR-17-92 during B-cell lymphomagenesis, which suggests the miR-17-92 polycistron has distinct targets in different B-cell lymphoma subtypes.
Collapse
|
36
|
Abstract
Cyclin D1 (CCND1) is a well-known regulator of cell-cycle progression. It is overexpressed in several types of cancer including breast, lung, squamous, neuroblastoma, and lymphomas. The most well-known mechanism of overexpression is the t(11;14)(q13;q32) translocation found in mantle cell lymphoma (MCL). It has previously been shown that truncated CCND1 mRNA in MCL correlates with poor prognosis. We hypothesized that truncations of the CCND1 mRNA alter its ability to be down-regulated by microRNAs in MCL. MicroRNAs are a new class of abundant small RNAs that play important regulatory roles at the posttranscriptional level by binding to the 3' untranslated region (UTR) of mRNAs blocking either their translation or initiating their degradation. In this study, we have identified the truncation in CCND1 mRNA in MCL cell lines. We also found that truncated CCND1 mRNA leads to increased CCND1 protein expression and increased S-phase cell fraction. Furthermore, we demonstrated that this truncation alters miR-16-1 binding sites, and through the use of reporter constructs, we were able to show that miR-16-1 regulates CCND1 mRNA expression. This study introduces the role of miR-16-1 in the regulation of CCND1 in MCL.
Collapse
|
37
|
Lentiviral (HIV)-based RNA interference screen in human B-cell receptor regulatory networks reveals MCL1-induced oncogenic pathways. Blood 2007; 111:1665-76. [PMID: 18032706 DOI: 10.1182/blood-2007-09-110601] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant inhibition of B-cell receptor (BCR)-induced programmed cell death pathways is frequently associated with the development of human auto-reactive B-cell lymphomas. Here, we integrated loss-of-function, genomic, and bioinformatics approaches for the identification of oncogenic mechanisms linked to the inhibition of BCR-induced clonal deletion pathways in human B-cell lymphomas. Lentiviral (HIV)-based RNA interference screen identified MCL1 as a key survival molecule linked to BCR signaling. Loss of MCL1 by RNA interference rendered human B-cell lymphomas sensitive to BCR-induced programmed cell death. Conversely, MCL1 overexpression blocked programmed cell death on BCR stimulation. To get insight into the mechanisms of MCL1-induced survival and transformation, we screened 41 000 human genes in a genome-wide gene expression profile analysis of MCL1-overexpressing B-cell lymphomas. Bioinformatic gene network reconstruction illustrated reprogramming of relevant oncoproteins within beta-catenin-T-cell factor signaling pathways induced by enforced MCL1 expression. Overall, our findings not only illustrate MCL1 as an aberrantly expressed reprogramming oncoprotein in follicular lymphomas but also highlight MCL1 as key therapeutic target.
Collapse
|
38
|
Heider U, Metzler IV, Kaiser M, Rosche M, Sterz J, Rötzer S, Rademacher J, Jakob C, Fleissner C, Kuckelkorn U, Kloetzel PM, Sezer O. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma. Eur J Haematol 2007; 80:133-42. [DOI: 10.1111/j.1600-0609.2007.00995.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007; 7:750-62. [PMID: 17891190 DOI: 10.1038/nrc2230] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mantle cell lymphoma (MCL) is a well-defined lymphoid malignancy characterized by a rapid clinical evolution and poor response to current therapeutic protocols. The genetic and molecular mechanisms involved in its pathogenesis combine the dysregulation of cell proliferation and survival pathways with a high level of chromosome instability that seems related to the disruption of the DNA damage response pathway. Understanding these mechanisms and how they affect tumour behaviour is providing the rationale for the identification of reliable predictors of clinical evolution and the design of innovative therapeutic strategies that could open new avenues for the treatment of patients with MCL.
Collapse
Affiliation(s)
- Pedro Jares
- Haematopathology Section, Laboratory of Pathology, and Genomics Unit, Hospital Clinic, Institut de Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
40
|
Pinyol M, Bea S, Plà L, Ribrag V, Bosq J, Rosenwald A, Campo E, Jares P. Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis. Blood 2007; 109:5422-9. [PMID: 17332242 DOI: 10.1182/blood-2006-11-057208] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mantle-cell lymphoma (MCL) is genetically characterized by the translocation t(11;14)(q13;q32) and a high number of secondary chromosomal abnormalities. To identify genes inactivated in this lymphoma, we examined 5 MCL cell lines following a strategy previously described in tumors with microsatellite instability that is based on the combined inhibition of the nonsense-mediated mRNA decay pathway and gene-expression profiling. This approach, together with the design of a conservative algorithm for analysis of the results, allowed the identification of 3 genes carrying premature stop codons. These genes were p53 with a mutation previously described in JEKO-1, the leukocyte-derived arginine aminopeptidase (LRAP) gene in REC-1 that showed a new splicing isoform generating a premature stop codon, and RB1 in UPN-1 that contained an intragenic homozygous deletion resulting in a truncated transcript and total loss of protein expression. The new LRAP isoform was detected also in 2 primary MCLs, whereas inactivating intragenic deletions of RB1 were found in the primary tumor from which UPN-1 was derived and 1 additional blastoid MCL. These tumors carried a concomitant inactivation of p53, whereas p16INK4a was wild type. These results indicate for the first time that RB1 may be inactivated in aggressive MCL by intragenic deletions.
Collapse
Affiliation(s)
- Magda Pinyol
- Genomics Unit, Department of Pathology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lepelletier Y, Camara-Clayette V, Jin H, Hermant A, Coulon S, Dussiot M, Arcos-Fajardo M, Baude C, Canionni D, Delarue R, Brousse N, Benaroch P, Benhamou M, Ribrag V, Monteiro RC, Moura IC, Hermine O. Prevention of Mantle Lymphoma Tumor Establishment by Routing Transferrin Receptor toward Lysosomal Compartments. Cancer Res 2007; 67:1145-54. [PMID: 17283149 DOI: 10.1158/0008-5472.can-06-1962] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mantle cell lymphoma (MCL) is one of the most frequent of the newly recognized non-Hodgkin's lymphomas. The major problem of MCL therapy is the occurrence of relapse and subsequent resistance to chemotherapy and immunotherapy in virtually all cases. Here, we show that one injection of anti-human transferrin receptor (TfR) monoclonal antibody A24 totally prevented xenografted MCL tumor establishment in nude mice. It also delayed and inhibited tumor progression of established tumors, prolonging mice survival. In vitro, A24 induced up to 85% reduction of MCL cell proliferation (IC(50) = 3.75 nmol/L) independently of antibody aggregation, complement-dependent or antibody-dependent cell-mediated cytotoxicity. A24 induced MCL cell apoptosis through caspase-3 and caspase-9 activation, either alone or synergistically with chemotherapeutic agents. A24 induced TfR endocytosis via the clathrin adaptor protein-2 complex pathway followed by transport to lysosomal compartments. Therefore, A24-based therapies alone or in association with classic chemotherapies could provide a new alternative strategy against MCL, particularly in relapsing cases.
Collapse
Affiliation(s)
- Yves Lepelletier
- Centre National de la Recherche Scientifique UMR 8147, Université Paris V, Hôpital Necker, 161 rue de Sevres, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Marcé S, Balagué O, Colomo L, Martinez A, Höller S, Villamor N, Bosch F, Ott G, Rosenwald A, Leoni L, Esteller M, Fraga MF, Montserrat E, Colomer D, Campo E. Lack of methylthioadenosine phosphorylase expression in mantle cell lymphoma is associated with shorter survival: implications for a potential targeted therapy. Clin Cancer Res 2006; 12:3754-61. [PMID: 16778103 DOI: 10.1158/1078-0432.ccr-05-2780] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the methylthioadenosine phosphorylase (MTAP) gene alterations in mantle cell lymphoma (MCL) and to investigate whether the targeted inactivation of the alternative de novo AMP synthesis pathway may be a useful therapeutic strategy in tumors with inactivation of this enzyme. EXPERIMENTAL DESIGN MTAP gene deletion and protein expression were studied in 64 and 52 primary MCL, respectively, and the results were correlated with clinical behavior. Five MCL cell lines were analyzed for MTAP expression and for the in vitro sensitivity to L-alanosine, an inhibitor of adenylosuccinate synthetase, and hence de novo AMP synthesis. RESULTS No protein expression was detected in 8 of 52 (15%) tumors and one cell line (Granta 519). Six of these MTAP negative tumors and Granta 519 cell line had a codeletion of MTAP and p16 genes; one case showed a deletion of MTAP, but not p16, and one tumor had no deletions in neither of these genes. Patients with MTAP deletions had a significant shorter overall survival (mean, 16.1 months) than patients with wild-type MTAP (mean, 63.6 months; P < 0.0001). L-Alanosine induced cytotoxicity and activation of the intrinsic mitochondrial-dependent apoptotic pathway in MCL cells. 9-beta-D-Erythrofuranosyladenine, an analogue of 5'-methylthioadenosine, selectively rescued MTAP-positive cells from L-alanosine toxicity. CONCLUSIONS MTAP gene deletion and lack of protein expression are associated with poor prognosis in MCL and might identify patients who might benefit from treatment with de novo AMP synthesis pathway-targeted therapies.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 14
- DNA Primers
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Mantle-Cell/enzymology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/mortality
- Lymphoma, Mantle-Cell/pathology
- Purine-Nucleoside Phosphorylase/deficiency
- Purine-Nucleoside Phosphorylase/genetics
- Retrospective Studies
- Survival Analysis
- Time Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- Silvia Marcé
- Pathology Department, Hematopathology Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rudelius M, Pittaluga S, Nishizuka S, Pham THT, Fend F, Jaffe ES, Quintanilla-Martinez L, Raffeld M. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 2006; 108:1668-76. [PMID: 16645163 PMCID: PMC1895501 DOI: 10.1182/blood-2006-04-015586] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether the PI3K/Akt signaling pathway is involved in the pathogenesis of mantle cell lymphoma (MCL), we investigated the phosphorylation status of Akt and multiple downstream targets in primary MCL cases and cell lines. Akt was phosphorylated in 12 of 12 aggressive blastoid MCL variants and in 4 of 4 MCL cell lines. In contrast, phosphorylated Akt was present in only 5 of 16 typical MCL, 3 at comparable levels to the blastoid cases, and 2 at low levels. The presence of p-Akt was accompanied by the phosphorylation of p27(kip1), FRKHL-1, MDM2, Bad, mTOR, and p70S6K. Inhibition of the PI3K/Akt pathway in the MCL cell lines abrogated or reduced the phosphorylation of Akt, p27(kip1), FRKHL-1, MDM2, Bad, mTOR, GSK-3beta, IkappaB, and led to cell-cycle arrest and apoptosis. Six MCL cases (5 with activated Akt and 1 with inactive Akt) and 3 of 4 cell lines showed loss of PTEN expression. PIK3CA mutations were not detected. We conclude that constitutive activation of the PI3K/Akt pathway contributes to the pathogenesis of MCL and preferentially occurs in blastoid variants. One possible mechanism of activation is loss of PTEN expression. These data suggest that PI3K/Akt inhibitors may be effective in the treatment of Akt-activated MCL.
Collapse
Affiliation(s)
- Martina Rudelius
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Drexler HG, MacLeod RAF. Mantle cell lymphoma-derived cell lines: unique research tools. Leuk Res 2006; 30:911-3. [PMID: 16563503 DOI: 10.1016/j.leukres.2006.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 02/02/2006] [Accepted: 02/02/2006] [Indexed: 11/24/2022]
|