1
|
Micellar Curcumin Substantially Increases the Antineoplastic Activity of the Alkylphosphocholine Erufosine against TWIST1 Positive Cutaneous T Cell Lymphoma Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14122688. [PMID: 36559182 PMCID: PMC9781439 DOI: 10.3390/pharmaceutics14122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare form of cancer with local as well as systemic manifestations. Concomitant bacterial infections increase morbidity and mortality rates due to impaired skin barrier and immune deficiency. In the current study, we demonstrated that the in vitro anti-lymphoma potential of erufosine is diminished by TWIST1 expression and micellar curcumin substantially increases its antineoplastic activity. Pharmacokinetic analysis showed that the micellar curcumin (MCRM) used in our study was characterized by low zeta potential, slow release of curcumin, and fast cell membrane penetration. The combination ratio 1:4 [erufosine:MCRM] achieved strong synergism by inhibiting cell proliferation and clonogenicity. The combined antiproliferative effects were calculated using the symbolic mathematical software MAPLE 15. The synergistic combination strongly decreased the expression of TWIST1 and protein kinase B/Akt as proven by western blotting. Significant reductions in NF-κB activation, induction of apoptosis, and altered glutathione levels were demonstrated by corresponding assays. In addition, the synergistic combination enhanced the anti-staphylococcal activity and prevented biofilm formation, as shown by crystal violet staining. Taken together, the above results show that the development of nanotechnological treatment modalities for CTCL, based on rational drug combinations exhibiting parallel antineoplastic and antibacterial effects, may prove efficacious.
Collapse
|
2
|
Abdik H. Antineoplastic effects of erufosine on small cell and non-small cell lung cancer cells through induction of apoptosis and cell cycle arrest. Mol Biol Rep 2022; 49:2963-2971. [PMID: 35015224 DOI: 10.1007/s11033-022-07117-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung cancer (LC) is the most common types of cancer worldwide and is marked by high mortality rate. LC is classified into two major types due to their molecular and histological properties; non-small cell lung cancer (NSCLC) A549 and small cell lung cancer (SCLC). Currently, surgery, chemotherapy and radiation therapy are the most common treatment options of LC. However, the survival rate of LC is still very poor. Therefore, new treatment strategies are urgently needed. Erufosine (ErPC3) is a novel alkylphosphocholine and inhibits the translocation of Akt to the plasma membrane. METHODS AND RESULTS In the current study, the effects of ErPC3 in NSCLC cell line A549 and SCLC cell line DMS 114 in terms of cell viability, induction of apoptosis, cell cycle phase distribution, gene and protein expression levels, and migration capacity were investigated. 25 µM ErPC3 exhibited dose-dependent cytotoxicity against in both cancer cells. However, DMS 114 was more sensitive to ErPC3 than A549. Similarly, ErPC3 induced apoptotic cell ratio in DMS114 was significantly greater than A549. 25 µM ErPC3 caused the accumulation of both cell in G2/M phase. The levels of BCL-2 were downregulated and CASPASE 3-7 and BAX were upregulated while p-Akt levels were reduced in A549 and DMS 114 cells treated with 25 µM ErPC3. Besides, ErPC3 displayed anti-migratory effect on A549 and DMS 114. CONCLUSION These findings suggest that ErPC3 may be a promising novel therapeutic candidate for treatment of LC. ErPC3 treatment merits further investigation as potential agent against LC.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
3
|
Avsar Abdik E, Abdik H, Turan D, Sahin F, Berger MR, Kaleagasioglu F. Dual Akt and Bcl-2 inhibition induces cell-type specific modulation of apoptotic and autophagic signaling in castration resistant prostate cancer cell lines. Mol Biol Rep 2021; 48:7755-7765. [PMID: 34647221 DOI: 10.1007/s11033-021-06786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cancer cell survival depends on the cross-regulation between apoptosis and autophagy which share common signaling pathways including PI3K/Akt/mTOR and Bcl-2. The aim of this study was to elucidate the modulation patterns between apoptosis and autophagy following dual inhibition by Akt inhibitor erufosine and Bcl-2 inhibitor ABT-737 in castration-resistant prostate cancer (CRPC) cell lines, PC-3 (Bax+) and DU-145 (Bax-). METHODS AND RESULTS Cell cycle progression, apoptotic and autophagic signaling were examined by flow cytometry, multi-caspase assay, Hoechst staining, acridine orange staining of acidic vesicular organelles (AVOs), qRT-PCR and Western Blot. Dual inhibition increased G2/M arrest in PC-3 and DU-145, but not in the healthy prostate epithelium cells, PNT-1A. Only in PC-3, dual inhibition induced synergistic apoptotic and additive autophagic effects. In DU-145 and PNT-1A cells, ABT-737 did not display any remarkable effect on multicaspase activity and erufosine and ABT-737, neither alone nor in combination induced AVOs. By dual inhibition, AKT, BCL-2 and NF-κB gene expressions were downregulated in PC-3, both ATG-5 and BECLIN-1 gene expressions were upregulated in DU-145 but Beclin-1 protein expression was substantially reduced in both CRPC cells. Dual inhibition-induced synergistic multicaspase activation in PC-3 degrades and disrupts autophagic activity of Beclin-1, enhancing caspase-dependent apoptosis. However, in DU-145, following dual inhibition, rate of multicaspase induction and apoptosis are lower but autophagy is completely abolished despite markedly increased BECLIN-1 gene expression. CONCLUSION In conclusion, antineoplastic drug combinations may display cell-type specific modulation of apoptotic and autophagic signaling and lack of protective autophagy may not necessarily indicate increased chemotherapeutic sensitivity in heterogenous tumor subpopulations.
Collapse
Affiliation(s)
- Ezgi Avsar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Duygu Turan
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Koç University, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Ferda Kaleagasioglu
- Department of Pharmacology and Clinical Pharmacology, Istinye University Faculty of Medicine, Topkapı Campus, Maltepe Neighbourhood, Teyyareci Sami St., No. 3, Zeytinburnu, Istanbul, Turkey.
| |
Collapse
|
4
|
Toshkova RA, Todorova KS, Tzoneva RD. Antineoplastic effects of erufosine on Graffi myeloid tumour in hamsters. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cancer has become one of the most significant health challenges for both human and veterinary medicine. The present study examined the antineoplastic and antimetastatic activity of the novel membrane-targeting anticancer agent erufosine. The antitumour effects of erufosine on Graffi virus-induced experimental myeloid tumour in hamsters was assessed by histopathological methods and evaluation of some biometric parameters of tumour growth. Two schemes of experimental antitumour therapy were applied - one that started simultaneously with the tumour transplantation and a second one that started after the appearance of palpable tumours. The results demonstrated protective antitumour effect of erufosine, expressed by decrease of transplantability, tumour growth inhibition, suppression of metastatic activity and extension of mean survival time. The effectivity of the experimental therapy was more pronounced when it was started simultaneously with the transplantation of the tumour cells. Presented results suggest that erufosine is a promising drug candidate for treatment of haematological malignances.
Collapse
Affiliation(s)
- R. A. Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - K. S. Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - R. D. Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
5
|
ABT-737 and erufosine combination against castration-resistant prostate cancer: a promising but cell-type specific response associated with the modulation of anti-apoptotic signaling. Anticancer Drugs 2020; 30:383-393. [PMID: 30557204 DOI: 10.1097/cad.0000000000000736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A deeper understanding of the molecular basis of castration-resistant prostate cancer (CRPC) paved the way for the rational design and development of targeted therapies, which yielded promising preclinical results. However, translation of these potentially promising agents into clinics has usually failed, partly because of tumor heterogeneity. In this study, anticancer activities of the Bcl-2 inhibitor ABT-737 and the Akt-inhibitor erufosine (ErPC3) alone and in combination were compared between CRPC (PC-3 and DU-145) and healthy (PNT-1A) cell lines. The combination of ABT-737 and ErPC3 showed synergistic antiproliferative, antimigratory, and apoptotic effects in PC-3 cells. In DU-145 cells, ErPC3 showed a resistant profile, with half-maximal inhibitory concentration (IC50) values more than two-fold of PC-3, and combining ErPC3 with ABT-737 yielded no added benefit for all the incubation periods compared with ErPC3 alone. In PNT-1A cells, ABT-737 and ErPC3 alone and in combination reduced cell survival slightly and only at the highest concentrations. Apoptosis analysis showed that ABT-737 induced increased Akt expression and ErPC3 induced increased Mcl-1 expression in DU-145 cells. In conclusion, the ABT-737 and ErPC3 combination seems to be promising against CRPC, with a favorable safety profile in healthy cells. However, CRPC cell-type-specific resistance may be induced by enhancement of antiapoptotic signaling.
Collapse
|
6
|
Kaleağasıoğlu F, Ali DM, Berger MR. Multiple Facets of Autophagy and the Emerging Role of Alkylphosphocholines as Autophagy Modulators. Front Pharmacol 2020; 11:547. [PMID: 32410999 PMCID: PMC7201076 DOI: 10.3389/fphar.2020.00547] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved multistep process and functions as passage for degrading and recycling protein aggregates and defective organelles in eukaryotic cells. Based on the nature of these materials, their size and degradation rate, four types of autophagy have been described, i.e. chaperone mediated autophagy, microautophagy, macroautophagy, and selective autophagy. One of the major regulators of this process is mTOR, which inhibits the downstream pathway of autophagy following the activation of its complex 1 (mTORC1). Alkylphosphocholine (APC) derivatives represent a novel class of antineoplastic agents that inhibit the serine-threonine kinase Akt (i.e. protein kinase B), which mediates cell survival and cause cell cycle arrest. They induce autophagy through inhibition of the Akt/mTOR cascade. They interfere with phospholipid turnover and thus modify signaling chains, which start from the cell membrane and modulate PI3K/Akt/mTOR, Ras-Raf-MAPK/ERK and SAPK/JNK pathways. APCs include miltefosine, perifosine, and erufosine, which represent the first-, second- and third generation of this class, respectively. In a high fraction of human cancers, constitutively active oncoprotein Akt1 suppresses autophagy in vitro and in vivo. mTOR is a down-stream target for Akt, the activation of which suppresses autophagy. However, treatment with APC derivatives will lead to dephosphorylation (hence deactivation) of mTOR and thus induces autophagy. Autophagy is a double-edged sword and may result in chemotherapeutic resistance as well as cancer cell death when apoptotic pathways are inactive. APCs display differential autophagy induction capabilities in different cancer cell types. Therefore, autophagy-dependent cellular responses need to be well understood in order to improve the chemotherapeutic outcome.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Department of Pharmacology, Faculty of Medicine, Near East University, Mersin, Turkey
| | - Doaa M. Ali
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Margaritova Zaharieva M, Dimitrov Kroumov A, Dimitrova L, Tsvetkova I, Trochopoulos A, Mihaylov Konstantinov S, Reinhold Berger M, Momchilova M, Yoncheva K, Miladinov Najdenski H. Micellar curcumin improves the antibacterial activity of the alkylphosphocholines erufosine and miltefosine against pathogenic Staphyloccocus aureus strains. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1533792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexander Dimitrov Kroumov
- Department of Applied Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lyudmila Dimitrova
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Tsvetkova
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Antonios Trochopoulos
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Spiro Mihaylov Konstantinov
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | | | - Milena Momchilova
- Department of Pharmaceutical Technology and Biopharmaceutics Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Hristo Miladinov Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
Induction of ER and mitochondrial stress by the alkylphosphocholine erufosine in oral squamous cell carcinoma cells. Cell Death Dis 2018; 9:296. [PMID: 29463797 PMCID: PMC5833417 DOI: 10.1038/s41419-018-0342-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) plays an essential role in cell function and survival. Accumulation of unfolded or misfolded proteins in the lumen of the ER activates the unfolded protein response (UPR), resulting in ER stress and subsequent apoptosis. The alkylphosphocholine erufosine is a known Akt-mTOR inhibitor in oral squamous cell carcinoma (OSCC). In the present study, we evaluate erufosine’s role to induce ER and mitochondrial stress leading to autophagy, apoptosis, and ROS induction. The cellular toxicity of erufosine was determined in two OSCC cell lines and gene expression and enrichment analyses were performed. A positive enrichment of ER stress upon erufosine exposure was observed, which was verified at protein levels for the ER stress sensors and their downstream mediators. Knockdown and pharmacological inhibition of the ER stress sensors PERK and XBP1 revealed their involvement into erufosine’s cellular effects, including proliferation, apoptosis, and autophagy induction. Autophagy was confirmed by increased acidic vacuoles and LC3-B levels. Upon erufosine exposure, calcium influx into the cytoplasm of the two OSCC cell lines was seen. Apoptosis was confirmed by nuclear staining, Annexin-V, and immunoblotting of caspases. The induction of mitochondrial stress upon erufosine exposure was predicted by gene set enrichment analysis (GSEA) and shown by erufosine’s effect on mitochondrial membrane potential, ATP, and ROS production in OSCC cells. These data show that ER and mitochondrial targeting by erufosine represents a new facet of its mechanism of action as well as a promising new framework in the treatment of head and neck cancers.
Collapse
|
10
|
Ríos-Marco P, Marco C, Gálvez X, Jiménez-López JM, Carrasco MP. Alkylphospholipids: An update on molecular mechanisms and clinical relevance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1657-1667. [PMID: 28238819 DOI: 10.1016/j.bbamem.2017.02.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022]
Abstract
Alkylphospholipids (APLs) represent a new class of drugs which do not interact directly with DNA but act on the cell membrane where they accumulate and interfere with lipid metabolism and signalling pathways. This review summarizes the mode of action at the molecular level of these compounds. In this sense, a diversity of mechanisms has been suggested to explain the actions of clinically-relevant APLs, in particular, in cancer treatment. One consistently reported finding is that APLs reduce the biosynthesis of phosphatidylcholine (PC) by inhibiting the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CT). APLs also alter intracellular cholesterol traffic and metabolism in human tumour-cell lines, leading to an accumulation of cholesterol inside the cell. An increase in cholesterol biosynthesis associated with a decrease in the synthesis of choline-containing phospholipids and cholesterol esterification leads to a change in the free-cholesterol:PC ratio in cells exposed to APLs. Akt phosphorylation status after APL exposure shows that this critical regulator for cell survival is modulated by changes in cholesterol levels induced in the plasma membrane by these lipid analogues. Furthermore, APLs produce cell ultrastructural alterations with an abundant autophagic vesicles and autolysosomes in treated cells, indicating an interference of autophagy process after APL exposure. Thus, antitumoural APLs interfere with the proliferation of tumour cells via a complex mechanism involving phospholipid and cholesterol metabolism, interfere with lipid-dependent survival-signalling pathways and autophagy. Although APLs also exert antiparasitic, antibacterial, and antifungal effects, in this review we provide a summary of the antileishmanial activity of these lipid analogues. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - Xiomara Gálvez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - José M Jiménez-López
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain.
| | - María P Carrasco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain.
| |
Collapse
|
11
|
Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 2016; 165:114-31. [DOI: 10.1016/j.pharmthera.2016.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
|
12
|
Rombout A, Verhasselt B, Philippé J. Lipoprotein lipase in chronic lymphocytic leukemia: function and prognostic implications. Eur J Haematol 2016; 97:409-415. [PMID: 27504855 DOI: 10.1111/ejh.12789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease characterized by the accumulation of a clonal population of B cells in peripheral blood, bone marrow, and lymphoid organs. More than 10 years ago, lipoprotein lipase (LPL) mRNA was identified as being strongly expressed in patients experiencing a more aggressive phenotype, while CLL patients with an indolent disease course lack expression of this marker. Since then, several reports confirmed the capability of LPL to predict CLL disease evolution at the moment of diagnosis. In contrast, data on the functional implications of LPL in CLL are scarce. LPL exerts a central role in overall lipid metabolism and transport, but plays additional, non-catalytic roles as well. Which of those is more important in the pathogenesis of CLL remains largely unclear. Here, we review the current knowledge on the prognostic and biological relevance of LPL in CLL.
Collapse
Affiliation(s)
- Ans Rombout
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Jan Philippé
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Zaharieva MM, Kirilov M, Chai M, Berger SM, Konstantinov S, Berger MR. Reduced expression of the retinoblastoma protein shows that the related signaling pathway is essential for mediating the antineoplastic activity of erufosine. PLoS One 2014; 9:e100950. [PMID: 24987858 PMCID: PMC4079453 DOI: 10.1371/journal.pone.0100950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023] Open
Abstract
Erufosine is a new antineoplastic agent of the group of alkylphosphocholines, which interferes with signal transduction and induces apoptosis in various leukemic and tumor cell lines. The present study was designed to examine for the first time the mechanism of resistance to erufosine in malignant cells with permanently reduced expression of the retinoblastoma (Rb) protein. Bearing in mind the high number of malignancies with reduced level of this tumor-suppressor, this investigation was deemed important for using erufosine, alone or in combination, in patients with compromised RB1 gene expression. For this purpose, clones of the leukemic T-cell line SKW-3 were used, which had been engineered to constantly express differently low Rb levels. The alkylphosphocholine induced apoptosis, stimulated the expression of the cyclin dependent kinase inhibitor p27Kip1 and inhibited the synthesis of cyclin D3, thereby causing a G2 phase cell cycle arrest and death of cells with wild type Rb expression. In contrast, Rb-deficiency impeded the changes induced by eru-fosine in the expression of these proteins and abrogated the induction of G2 arrest, which was correlated with reduced antiproliferative and anticlonogenic activities of the compound. In conclusion, analysis of our results showed for the first time that the Rb signaling pathway is essential for mediating the antineoplastic activity of erufosine and its efficacy in patients with malignant diseases may be predicted by determining the Rb status.
Collapse
Affiliation(s)
- Maya M. Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Milen Kirilov
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Minquang Chai
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Stefan M. Berger
- Department of Molecular Biology, Central Institute of Mental Health, Mannheim, Germany
| | - Spiro Konstantinov
- Laboratory for Molecular Pharmacology and Experimental Chemotherapy, Department for Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
14
|
Kaleağasıoğlu F, Berger MR. Differential effects of erufosine on proliferation, wound healing and apoptosis in colorectal cancer cell lines. Oncol Rep 2013; 31:1407-16. [PMID: 24366062 DOI: 10.3892/or.2013.2942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/21/2013] [Indexed: 11/05/2022] Open
Abstract
The alkylphosphocholine, erucylphospho-N,N, N-trimethylpropanolamine (erufosine), has demonstrated anticancer effects in various cell lines, including leukemia, multiple myeloma, bladder, breast and oral squamous cell carcinoma cells. The purpose of the present study was to investigate its antiproliferative, antimigratory and pro-apoptotic effects in colorectal cancer cell lines, SW480 and CC531. The antiproliferative effect was determined by (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) (MTT) dye reduction assay following exposure to erufosine (3.1-100 µM) for 24-72 h. The antimigratory effect of erufosine (1.6-6 µM) was investigated by a wound healing assay for 12-48 h. Caspase-3/-7 activity was measured to detect apoptotic cell death. Erufosine inhibited cell proliferation in a dose- and time-dependent manner. The IC50 values following 72 h of incubation were 3.4 and 25.4 µM for SW480 and CC531 cells, respectively. erufosine at concentrations of 50 and 100 µM induced caspase-3/-7 activity concentration-dependently in SW480 cells, but only at 100 µM in CC531 cells. Incubation of SW480 cells with erufosine (1.56 µM) for 48 h inhibited migration into the scratched area by 54% as compared to the untreated cells; whereas in CC531 cells, the wound width in the erufosine-treated (1.56-6.25 µM) cells following 48 h was closed 2-fold slower than the rate in the untreated group. Erufosine (25 µM) attenuated osteonectin expression and abolished COL1A1 expression in CC531 cells. Erufosine appears to be a promising treatment agent for colorectal cancer. Rat CC531 cells are less sensitive to erufosine than human SW480 cells.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Chaudhury A, Kulhari A, Sheorayan A. Targeted Chemotherapeutics: An Overview of the Recent Progress in Effectual Cancer Treatment. PHARMACOLOGIA 2013; 4:535-552. [DOI: 10.5567/pharmacologia.2013.535.552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
16
|
Porpaczy E, Tauber S, Bilban M, Kostner G, Gruber M, Eder S, Heintel D, Le T, Fleiss K, Skrabs C, Shehata M, Jäger U, Vanura K. Lipoprotein lipase in chronic lymphocytic leukaemia - strong biomarker with lack of functional significance. Leuk Res 2013; 37:631-6. [PMID: 23478142 DOI: 10.1016/j.leukres.2013.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 12/31/2022]
Abstract
In chronic lymphocytic leukaemia (CLL), lipoprotein lipase (LPL) mRNA overexpression is an established poor prognostic marker, its function, however, is poorly understood. Measuring extracellular LPL enzymatic activity and protein, we found no difference between levels in CLL patients and those of controls, both before and after heparin treatment in vivo and in vitro. Investigating LPL knock down effects, we determined five potential downstream targets, of which one gene, STXBP3, reportedly is involved in fatty acid metabolism. While possibly reflecting an epigenetic switch towards an incorrect transcriptional program, LPL overexpression by itself does not appear to significantly influence CLL cell survival.
Collapse
Affiliation(s)
- Edit Porpaczy
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pal I, Mandal M. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin 2012; 33:1441-58. [PMID: 22983389 DOI: 10.1038/aps.2012.72] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The PI3K-Akt pathway is a vital regulator of cell proliferation and survival. Alterations in the PIK3CA gene that lead to enhanced PI3K kinase activity have been reported in many human cancer types, including cancers of the colon, breast, brain, liver, stomach and lung. Deregulation of PI3K causes aberrant Akt activity. Therefore targeting this pathway could have implications for cancer treatment. The first generation PI3K-Akt inhibitors were proven to be highly effective with a low IC(50), but later, they were shown to have toxic side effects and poor pharmacological properties and selectivity. Thus, these inhibitors were only effective in preclinical models. However, derivatives of these first generation inhibitors are much more selective and are quite effective in targeting the PI3K-Akt pathway, either alone or in combination. These second-generation inhibitors are essentially a specific chemical moiety that helps to form a strong hydrogen bond interaction with the PI3K/Akt molecule. The goal of this review is to delineate the current efforts that have been undertaken to inhibit the various components of the PI3K and Akt pathway in different types of cancer both in vitro and in vivo. Our focus here is on these novel therapies and their inhibitory effects that depend upon their chemical nature, as well as their development towards clinical trials.
Collapse
|
18
|
Dineva IK, Zaharieva MM, Konstantinov SM, Eibl H, Berger MR. Erufosine suppresses breast cancer in vitro and in vivo for its activity on PI3K, c-Raf and Akt proteins. J Cancer Res Clin Oncol 2012; 138:1909-17. [PMID: 22752602 DOI: 10.1007/s00432-012-1271-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE This study investigated the antineoplastic effect of the membrane active alkylphosphocholine erufosine in breast carcinoma models in vitro and in vivo and determined its influence on the PI3K/Akt and Ras/Raf/MAPK signaling pathways. METHODS The antiproliferative effect of erufosine in vitro was determined by the MTT dye reduction assay, and the antineoplastic efficacy on tumor growth was investigated by relating the mean total tumor volumes of treated and control rats. Immunoblot analysis was used for detecting changes in the expression level of the signal molecules p-PI3K (p-p85), p-Akt at Thr 308 and p-cRaf. RESULTS Based on their IC(50) (40 μM, respectively), the breast carcinoma cell lines MCF-7 and MDA-MB 231, which are estrogen receptor positive and negative, respectively, were equally sensitive to erufosine. In addition, erufosine caused dose-dependent decreases in the phosphorylation of PI3K (p85), Akt (PKB) at Thr 308 and cRaf in both cell lines. Moreover, administration of erufosine to rats bearing autochthonous methylnitrosourea-induced rat mammary carcinomas caused a significant dose-related tumor remission by more than 85 % (p < 0.05), which was well tolerated, as evidenced by a body weight loss of maximally 7 % and reduced tumor-related mortality (2 of 35 instead of 6 of 18 controls, p < 0.002). CONCLUSIONS The results clearly indicate that erufosine possesses high antineoplastic activity not only in human breast cancer cell lines in vitro but also in rat mammary carcinoma in vivo. In addition, it can be derived that the mechanism of action of erufosine involves influence on both, PI3K/Akt and Ras/Raf/MAPK signaling pathways.
Collapse
Affiliation(s)
- Ilina K Dineva
- Toxicology and Chemotherapy Unit, German Cancer Research Center, INF 581, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
19
|
Bagley RG, Kurtzberg L, Rouleau C, Yao M, Teicher BA. Erufosine, an alkylphosphocholine, with differential toxicity to human cancer cells and bone marrow cells. Cancer Chemother Pharmacol 2011; 68:1537-46. [PMID: 21526352 DOI: 10.1007/s00280-011-1658-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/14/2011] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the activity and myeloprotective properties of erufosine, a novel alkylphosphocholine (APC), on human malignant cells and normal bone marrow cells. METHODS Human or mouse bone marrow cells were exposed to erufosine, miltefosine, perifosine, or edelfosine in CFU-GM assays. Human MDA-MB-231 breast carcinoma, Panc-1 pancreatic carcinoma, and RPMI8226 multiple myeloma cells were exposed to erufosine in colony formation assays. Colony formation of Panc-1 tumor cells and mouse bone marrow cells ex vivo were quantified following intravenous administration of erufosine to tumor-bearing mice. Western blotting methods were applied to human U87 glioblastoma cells exposed to erufosine to investigate Akt inhibition. RESULTS Erufosine was less toxic to human and mouse bone marrow cells than perifosine, miltefosine, and edelfosine and was equally toxic to human and mouse CFU-GM. The human cancer cells MDA-MB-231 breast, Panc-1 pancreatic, and RPMI8226 MM cells were more sensitive to erufosine in a colony formation assay than were human bone marrow cells generating an approximately tenfold differential in IC(90) values. Erufosine injected intravenously significantly reduced Panc-1 tumor cell colony formation ex vivo but not mouse bone marrow CFU-GM. Erufosine inhibited Akt phosphorylation in human U87 glioblastoma cells. CONCLUSIONS Erufosine offers potential as a novel therapeutic for cancer with a reduced toxicity profile to bone marrow cells compared with other agents in this class. Human cancer cells were more sensitive to erufosine than human or mouse bone marrow cells indicating a favorable therapeutic window for erufosine.
Collapse
Affiliation(s)
- Rebecca G Bagley
- Genzyme Corporation, 49 New York Ave, Framingham, MA 01701-9322, USA.
| | | | | | | | | |
Collapse
|
20
|
Rudner J, Ruiner CE, Handrick R, Eibl HJ, Belka C, Jendrossek V. The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation. Radiat Oncol 2010; 5:108. [PMID: 21080918 PMCID: PMC2998511 DOI: 10.1186/1748-717x-5-108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is frequently deregulated in prostate cancer and associated with neoplastic transformation, malignant progression, and enhanced resistance to classical chemotherapy and radiotherapy. Thus, it is a promising target for therapeutic intervention. In the present study, the cytotoxic action of the Akt inhibitor Erufosine (ErPC3) was analyzed in prostate cancer cells and compared to the cytotoxicity of the PI3K inhibitor LY294002. Moreover, the efficacy of combined treatment with Akt inhibitors and ionizing radiation in prostate cancer cells was examined. MATERIALS AND METHODS Prostate cancer cell lines PC3, DU145, and LNCaP were treated with ErPC3 (1-100 µM), LY294002 (25-100 µM), irradiated (0-10 Gy), or subjected to combined treatments. Cell viability was determined by the WST-1 assay. Apoptosis induction was analyzed by flow cytometry after staining with propidium iodide in a hypotonic citrate buffer, and by Western blotting using antibodies against caspase-3 and its substrate PARP. Akt activity and regulation of the expression of Bcl-2 family members and key downstream effectors involved in apoptosis regulation were examined by Western blot analysis. RESULTS The Akt inhibitor ErPC3 exerted anti-neoplastic effects in prostate cancer cells, however with different potency. The anti-neoplastic action of ErPC3 was associated with reduced phosphoserine 473-Akt levels and induction of apoptosis. PC3 and LNCaP prostate cancer cells were also sensitive to treatment with the PI3K inhibitor LY294002. However, the ErPC3-sensitive PC3-cells were less susceptible to LY294002 than the ErPC3-refractory LNCaP cells. Although both cell lines were largely resistant to radiation-induced apoptosis, both cell lines showed higher levels of apoptotic cell death when ErPC3 was combined with radiotherapy. CONCLUSIONS Our data suggest that constitutive Akt activation and survival are controlled by different different molecular mechanisms in the two prostate cancer cell lines - one which is sensitive to the Akt-inhibitor ErPC3 and one which is more sensitive to the PI3K-inhibitor LY294002. Our findings underline the importance for the definition of predictive biomarkers that allow the selection patients that may benefit from the treatment with a specific signal transduction modifier.
Collapse
Affiliation(s)
- Justine Rudner
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Straße 3, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|