1
|
Handa S, Schaniel C, Tripodi J, Ahire D, Mia MB, Klingborg S, Tremblay D, Marcellino BK, Hoffman R, Najfeld V. HMGA2 overexpression with specific chromosomal abnormalities predominate in CALR and ASXL1 mutated myelofibrosis. Leukemia 2025; 39:663-674. [PMID: 39715853 PMCID: PMC11879852 DOI: 10.1038/s41375-024-02496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Although multiple genetic events are thought to play a role in promoting progression of the myeloproliferative neoplasms (MPN), the individual events that are associated with the development of more aggressive disease phenotypes remain poorly defined. Here, we report that novel genomic deletions at chromosome 12q14.3, as detected by a high-resolution array comparative genomic hybridization plus single nucleotide polymorphisms platform, occur in 11% of MPN patients with myelofibrosis (MF) and MPN-accelerated/blast phase (AP/BP) but was not detected in patients with polycythemia vera or essential thrombocythemia. These 12q14.3 deletions resulted in the loss of most of the non-coding region of exon 5 and MIRLET7 binding sites in the 3'UTR of the high mobility group AT hook 2 (HMGA2), which negatively regulate HMGA2 expression. These acquired 12q14.3 deletions were predominately detected in MF patients with CALR and ASXL1 co-mutations and led to a greater degree of HMGA2 transcript overexpression, independent of the presence of an ASXL1 mutation. Patients with 12q structural abnormalities involving HMGA2 exhibited a more aggressive clinical course, with a higher frequency of MPN-AP/BP evolution. These findings indicate that HMGA2 overexpression associated with genomic deletion of its 3'UTR region is a newly recognized genetic event that contributes to MPN progression.
Collapse
Affiliation(s)
- Shivani Handa
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Christoph Schaniel
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Tripodi
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daiva Ahire
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Md Babu Mia
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophie Klingborg
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vesna Najfeld
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Ivanov D, Milosevic Feenstra JD, Sadovnik I, Herrmann H, Peter B, Willmann M, Greiner G, Slavnitsch K, Hadzijusufovic E, Rülicke T, Dahlhoff M, Hoermann G, Machherndl‐Spandl S, Eisenwort G, Fillitz M, Sliwa T, Krauth M, Bettelheim P, Sperr WR, Koller E, Pfeilstöcker M, Gisslinger H, Keil F, Kralovics R, Valent P. Phenotypic characterization of disease-initiating stem cells in JAK2- or CALR-mutated myeloproliferative neoplasms. Am J Hematol 2023; 98:770-783. [PMID: 36814396 PMCID: PMC10952374 DOI: 10.1002/ajh.26889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Myeloproliferative neoplasms (MPN) are characterized by uncontrolled expansion of myeloid cells, disease-related mutations in certain driver-genes including JAK2, CALR, and MPL, and a substantial risk to progress to secondary acute myeloid leukemia (sAML). Although behaving as stem cell neoplasms, little is known about disease-initiating stem cells in MPN. We established the phenotype of putative CD34+ /CD38- stem cells and CD34+ /CD38+ progenitor cells in MPN. A total of 111 patients with MPN suffering from polycythemia vera, essential thrombocythemia, or primary myelofibrosis (PMF) were examined. In almost all patients tested, CD34+ /CD38- stem cells expressed CD33, CD44, CD47, CD52, CD97, CD99, CD105, CD117, CD123, CD133, CD184, CD243, and CD274 (PD-L1). In patients with PMF, MPN stem cells often expressed CD25 and sometimes also CD26 in an aberrant manner. MPN stem cells did not exhibit substantial amounts of CD90, CD273 (PD-L2), CD279 (PD-1), CD366 (TIM-3), CD371 (CLL-1), or IL-1RAP. The phenotype of CD34+ /CD38- stem cells did not change profoundly during progression to sAML. The disease-initiating capacity of putative MPN stem cells was confirmed in NSGS mice. Whereas CD34+ /CD38- MPN cells engrafted in NSGS mice, no substantial engraftment was produced by CD34+ /CD38+ or CD34- cells. The JAK2-targeting drug fedratinib and the BRD4 degrader dBET6 induced apoptosis and suppressed proliferation in MPN stem cells. Together, MPN stem cells display a unique phenotype, including cytokine receptors, immune checkpoint molecules, and other clinically relevant target antigens. Phenotypic characterization of neoplastic stem cells in MPN and sAML should facilitate their enrichment and the development of stem cell-eradicating (curative) therapies.
Collapse
Affiliation(s)
- Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | | | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Radiation OncologyMedical University of ViennaViennaAustria
| | - Barbara Peter
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Michael Willmann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department for Companion Animals, Clinical Unit for Internal MedicineUniversity of Veterinary Medicine ViennaViennaAustria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Ihr Labor, Medical Diagnostic LaboratoriesViennaAustria
| | - Katharina Slavnitsch
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Emir Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department for Companion Animals, Clinical Unit for Internal MedicineUniversity of Veterinary Medicine ViennaViennaAustria
| | - Thomas Rülicke
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Department of Biomedical SciencesUniversity of Veterinary Medicine ViennaViennaAustria
| | - Maik Dahlhoff
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Institute of in vivo and in vitro ModelsUniversity of Veterinary Medicine ViennaViennaAustria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- MLL Munich Leukemia LaboratoryMunichGermany
| | - Sigrid Machherndl‐Spandl
- Hospital Ordensklinikum Elisabethinen LinzLinzAustria
- Johannes Kepler University, Medical FacultyLinzAustria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Michael Fillitz
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Thamer Sliwa
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Maria‐Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | | | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Elisabeth Koller
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Michael Pfeilstöcker
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Heinz Gisslinger
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Felix Keil
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
- Third Medical Department for Hematology and OncologyHanusch Hospital ViennaViennaAustria
| | - Robert Kralovics
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U. Progression in Ph-Chromosome-Negative Myeloproliferative Neoplasms: An Overview on Pathologic Issues and Molecular Determinants. Cancers (Basel) 2021; 13:5531. [PMID: 34771693 PMCID: PMC8583143 DOI: 10.3390/cancers13215531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Progression in Ph-chromosome-negative myeloproliferative neoplasms (MPN) develops with variable incidence and time sequence in essential thrombocythemia, polycythemia vera, and primary myelofibrosis. These diseases show different clinic-pathologic features and outcomes despite sharing deregulated JAK/STAT signaling due to mutations in either the Janus kinase 2 or myeloproliferative leukemia or CALReticulin genes, which are the primary drivers of the diseases, as well as defined diagnostic criteria and biomarkers in most cases. Progression is defined by the development or worsening of marrow fibrosis or the progressive increase in the marrow blast percentage. Progression is often related to additional genetic aberrations, although some can already be detected during the chronic phase. Detailed scoring systems for clinical usage that are mostly applied in patients with primary myelofibrosis have been defined, and the most recent ones include cytogenetic and molecular parameters with prognostic significance. Additional different clinic-pathologic changes have been reported that may occur during the course of the disease and that are, at present, classified as WHO-defined types of progression, although they likely represent such an event. The present review is meant to provide an updated overview on progression in Ph-chromosome-negative MPN, with a major focus on the pathologic side.
Collapse
Affiliation(s)
- Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine—DIMED, University of Padua, 35121 Padua, Italy;
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Clara Bertuzzi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
| | | | - Francesca Palandri
- Istituto di Ematologia “Seragnoli” IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| |
Collapse
|
4
|
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U. Progression in Ph-Chromosome-Negative Myeloproliferative Neoplasms: An Overview on Pathologic Issues and Molecular Determinants. Cancers (Basel) 2021. [PMID: 34771693 DOI: 10.3390/cancers13215531.pmid:34771693;pmcid:pmc8583143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Progression in Ph-chromosome-negative myeloproliferative neoplasms (MPN) develops with variable incidence and time sequence in essential thrombocythemia, polycythemia vera, and primary myelofibrosis. These diseases show different clinic-pathologic features and outcomes despite sharing deregulated JAK/STAT signaling due to mutations in either the Janus kinase 2 or myeloproliferative leukemia or CALReticulin genes, which are the primary drivers of the diseases, as well as defined diagnostic criteria and biomarkers in most cases. Progression is defined by the development or worsening of marrow fibrosis or the progressive increase in the marrow blast percentage. Progression is often related to additional genetic aberrations, although some can already be detected during the chronic phase. Detailed scoring systems for clinical usage that are mostly applied in patients with primary myelofibrosis have been defined, and the most recent ones include cytogenetic and molecular parameters with prognostic significance. Additional different clinic-pathologic changes have been reported that may occur during the course of the disease and that are, at present, classified as WHO-defined types of progression, although they likely represent such an event. The present review is meant to provide an updated overview on progression in Ph-chromosome-negative MPN, with a major focus on the pathologic side.
Collapse
Affiliation(s)
- Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, 35121 Padua, Italy
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Clara Bertuzzi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Francesca Palandri
- Istituto di Ematologia "Seragnoli" IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
5
|
Stuckey R, Gómez-Casares MT. Recent Advances in the Use of Molecular Analyses to Inform the Diagnosis and Prognosis of Patients with Polycythaemia Vera. Int J Mol Sci 2021; 22:5042. [PMID: 34068690 PMCID: PMC8126083 DOI: 10.3390/ijms22095042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/07/2023] Open
Abstract
Genetic studies in the past decade have improved our understanding of the molecular basis of the BCR-ABL1-negative myeloproliferative neoplasm (MPN) polycythaemia vera (PV). Such breakthroughs include the discovery of the JAK2V617F driver mutation in approximately 95% of patients with PV, as well as some very rare cases of familial hereditary MPN caused by inherited germline mutations. Patients with PV often progress to fibrosis or acute myeloid leukaemia, both associated with very poor clinical outcome. Moreover, thrombosis and major bleeding are the principal causes of morbidity and mortality. As a result of increasingly available and economical next-generation sequencing technologies, mutational studies have revealed the prognostic relevance of a few somatic mutations in terms of thrombotic risk and risk of transformation, helping to improve the risk stratification of patients with PV. Finally, knowledge of the molecular basis of PV has helped identify targets for directed therapy. The constitutive activation of the tyrosine kinase JAK2 is targeted by ruxolitinib, a JAK1/JAK2 tyrosine kinase inhibitor for PV patients who are resistant or intolerant to cytoreductive treatment with hydroxyurea. Other molecular mechanisms have also been revealed, and numerous agents are in various stages of development. Here, we will provide an update of the recent published literature on how molecular testing can improve the diagnosis and prognosis of patients with PV and present recent advances that may have prognostic value in the near future.
Collapse
Affiliation(s)
- Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas, Spain
| | | |
Collapse
|
6
|
Advanced forms of MPNs are accompanied by chromosomal abnormalities that lead to dysregulation of TP53. Blood Adv 2019; 2:3581-3589. [PMID: 30563882 DOI: 10.1182/bloodadvances.2018024018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
The Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocythemia (ET), and the prefibrotic form of primary myelofibrosis (PMF), frequently progress to more overt forms of MF and a type of acute leukemia termed MPN-accelerated phase/blast phase (MPN-AP/BP). Recent evidence indicates that dysregulation of the tumor suppressor tumor protein p53 (TP53) commonly occurs in the MPNs. The proteins MDM2 and MDM4 alter the cellular levels of TP53. We investigated in 1,294 patients whether abnormalities involving chromosomes 1 and 12, which harbor the genes for MDM4 and MDM2, respectively, and chromosome 17, where the gene for TP53 is located, are associated with MPN disease progression. Gain of 1q occurred not only in individuals with MPN-BP but also in patients with PV and ET, who, with further follow-up, eventually evolve to either MF and/or MPN-BP. These gains of 1q were most prevalent in patients with a history of PV and those who possessed the JAK2V617F driver mutation. The gains of 1q were accompanied by increased transcript levels of MDM4 In contrast, 12q chromosomal abnormalities were exclusively detected in patients who presented with MF or MPN-BP, but were not accompanied by further increases in MDM2/MDM4 transcript levels. Furthermore, all patients with a loss of 17p13, which leads to a deletion of TP53, had either MF or MPN-AP/BP. These findings suggest that gain of 1q, as well as deletions of 17p, are associated with perturbations of the TP53 pathway, which contribute to MPN disease progression.
Collapse
|
7
|
Safavi M, Gharib A, Haghi Ashtiani MT, Salajegheh P, Vasei M. Chromosome 12 Rearrangement in an Adolescent with Primary Myelofibrosis. Indian J Hematol Blood Transfus 2019; 35:387-389. [PMID: 30988589 DOI: 10.1007/s12288-018-1055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Moeinadin Safavi
- 1Molecular Pathology and Cytogenetics Section, Pathology Department, Children'S Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Gharib
- 1Molecular Pathology and Cytogenetics Section, Pathology Department, Children'S Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,2Pathology Department, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Haghi Ashtiani
- 1Molecular Pathology and Cytogenetics Section, Pathology Department, Children'S Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Poorya Salajegheh
- 3Pediatric Hematology-Oncology Ward, Afzalipoor Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Vasei
- 1Molecular Pathology and Cytogenetics Section, Pathology Department, Children'S Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Hmga2 promotes the development of myelofibrosis in Jak2 V617F knockin mice by enhancing TGF-β1 and Cxcl12 pathways. Blood 2017. [PMID: 28637665 DOI: 10.1182/blood-2016-12-757344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myelofibrosis (MF) is a devastating blood disorder. The JAK2V617F mutation has been detected in ∼50% cases of MF. Elevated expression of high-mobility group AT hook 2 (HMGA2) has also been frequently observed in patients with MF. Interestingly, upregulation of HMGA2 expression has been found in association with the JAK2V617F mutation in significant cases of MF. However, the contribution of HMGA2 in the pathogenesis of MF remains elusive. To determine the effects of concurrent expression of HMGA2 and JAK2V617F mutation in hematopoiesis, we transduced bone marrow cells from Jak2V617F knockin mice with lentivirus expressing Hmga2 and performed bone marrow transplantation. Expression of Hmga2 enhanced megakaryopoiesis, increased extramedullary hematopoiesis, and accelerated the development of MF in mice expressing Jak2V617F Mechanistically, the data show that expression of Hmga2 enhances the activation of transforming growth factor-β1 (TGF-β1) and Cxcl12 pathways in mice expressing Jak2V617F In addition, expression of Hmga2 causes upregulation of Fzd2, Ifi27l2a, and TGF-β receptor 2. Forced expression of Cxcl12, Fzd2, or Ifi27l2a increases megakaryocytic differentiation and proliferation in the bone marrow of Jak2V617F mice, whereas TGF-β1 or Cxcl12 stimulation induces collagen deposition in the bone marrow mesenchymal stromal cells. Together, these findings demonstrate that expression of Hmga2 cooperates with Jak2V617F in the pathogenesis of MF.
Collapse
|
9
|
Ikeda K, Ueda K, Sano T, Ogawa K, Ikezoe T, Hashimoto Y, Morishita S, Komatsu N, Ohto H, Takeishi Y. The Amelioration of Myelofibrosis with Thrombocytopenia by a JAK1/2 Inhibitor, Ruxolitinib, in a Post-polycythemia Vera Myelofibrosis Patient with a JAK2 Exon 12 Mutation. Intern Med 2017; 56:1705-1710. [PMID: 28674362 PMCID: PMC5519475 DOI: 10.2169/internalmedicine.56.7871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Less than 5% of patients with polycythemia vera (PV) show JAK2 exon 12 mutations. Although PV patients with JAK2 exon 12 mutations are known to develop post-PV myelofibrosis (MF) as well as PV with JAK2V617F, the role of JAK inhibitors in post-PV MF patients with JAK2 exon 12 mutations remains unknown. We describe how treatment with a JAK1/2 inhibitor, ruxolitinib, led to the rapid amelioration of marrow fibrosis, erythrocytosis and thrombocytopenia in a 77-year-old man with post-PV MF who carried a JAK2 exon 12 mutation (JAK2H538QK539L). This case suggests that ruxolitinib is a treatment option for post-PV MF in patients with thrombocytopenia or JAK2 exon 12 mutations.
Collapse
Affiliation(s)
- Kazuhiko Ikeda
- Department of Hematology, Fukushima Medical University, Japan
- Department of Transfusion and Transplantation Immunology, Fukushima Medical University, Japan
| | - Koki Ueda
- Department of Hematology, Fukushima Medical University, Japan
| | - Takahiro Sano
- Department of Hematology, Fukushima Medical University, Japan
| | - Kazuei Ogawa
- Department of Hematology, Fukushima Medical University, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Japan
| | - Yuko Hashimoto
- Department of Pathology and Diagnostic Pathology, Fukushima Medical University, Japan
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Japan
| | - Hitoshi Ohto
- Department of Transfusion and Transplantation Immunology, Fukushima Medical University, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Japan
| |
Collapse
|
10
|
Vannucchi AM. From leeches to personalized medicine: evolving concepts in the management of polycythemia vera. Haematologica 2016; 102:18-29. [PMID: 27884974 DOI: 10.3324/haematol.2015.129155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023] Open
Abstract
Polycythemia vera is a clonal disorder of hematopoietic stem/progenitor cells. It manifests as an expansion of red cell mass. It is the most common chronic myeloproliferative neoplasm. In virtually all cases, it is characterized by a V617F point mutation in JAK2 exon 14 or less common mutations in exon 12. The landmark discovery of the autonomously activated JAK/STAT signaling pathway paved the way for the clinical development of the first target drug, the JAK1 and JAK2 inhibitor ruxolitinib. This is now approved for patients with resistance or intolerance to hydroxyurea. Phlebotomies and hydroxyurea are still the cornerstone of treatment, and aim to prevent the first appearance or recurrence of cardiovascular events that, together with progression to post-polycythemia vera myelofibrosis and leukemia, represent the main causes of death. Interferon-α is an alternative drug and has been shown to induce molecular remissions. It is currently undergoing phase III trials that might eventually lead to its approval for clinical use. The last few years have witnessed important advances towards an accurate early diagnosis of polycythemia vera, greater understanding of its pathogenesis, and improved patient management. This review will focus on the most recent achievements and will aim to unify the different concepts involved in a personalized approach to the patient with polycythemia vera. In spite of many recent advances in the understanding of its pathogenesis and improved disease management, polycythemia vera remains a life-threatening myeloproliferative neoplasm for which there is no cure. This review will present a critical overview of evolving concepts in diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Alessandro M Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi, Firenze, DENOTHE Excellence Center, Italy
| |
Collapse
|
11
|
Salati S, Zini R, Nuzzo S, Guglielmelli P, Pennucci V, Prudente Z, Ruberti S, Rontauroli S, Norfo R, Bianchi E, Bogani C, Rotunno G, Fanelli T, Mannarelli C, Rosti V, Salmoiraghi S, Pietra D, Ferrari S, Barosi G, Rambaldi A, Cazzola M, Bicciato S, Tagliafico E, Vannucchi AM, Manfredini R. Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis. Int J Cancer 2016; 138:1657-69. [PMID: 26547506 DOI: 10.1002/ijc.29920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 12/27/2022]
Abstract
Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients.
Collapse
Affiliation(s)
- Simona Salati
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| | - Roberta Zini
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| | - Simona Nuzzo
- Center for Genome Research, University of Modena and Reggio Emilia, via Campi N.287, Modena, 41125, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Laboratorio Congiunto MMPC, University of Florence, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Valentina Pennucci
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| | - Zelia Prudente
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| | - Samantha Ruberti
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| | - Sebastiano Rontauroli
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| | - Ruggiero Norfo
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| | - Elisa Bianchi
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| | - Costanza Bogani
- Department of Experimental and Clinical Medicine, Laboratorio Congiunto MMPC, University of Florence, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Giada Rotunno
- Department of Experimental and Clinical Medicine, Laboratorio Congiunto MMPC, University of Florence, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Tiziana Fanelli
- Department of Experimental and Clinical Medicine, Laboratorio Congiunto MMPC, University of Florence, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Carmela Mannarelli
- Department of Experimental and Clinical Medicine, Laboratorio Congiunto MMPC, University of Florence, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Vittorio Rosti
- IRCCS Policlinico S.Matteo Foundation, Center for the Study of Myelofibrosis, Pavia, Italy
| | | | - Daniela Pietra
- Department of Hematology Oncology, IRCCS Policlinico San Matteo Foundation & University of Pavia, Pavia, Italy
| | - Sergio Ferrari
- Center for Genome Research, University of Modena and Reggio Emilia, via Campi N.287, Modena, 41125, Italy
| | - Giovanni Barosi
- IRCCS Policlinico S.Matteo Foundation, Center for the Study of Myelofibrosis, Pavia, Italy
| | | | - Mario Cazzola
- Department of Hematology Oncology, IRCCS Policlinico San Matteo Foundation & University of Pavia, Pavia, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, via Campi N.287, Modena, 41125, Italy
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, via Campi N.287, Modena, 41125, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, Laboratorio Congiunto MMPC, University of Florence, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Rossella Manfredini
- Life Sciences Department University of Modena and Reggio Emilia, Centre for Regenerative Medicine, via Gottardi N.100, Modena, 41125, Italy
| |
Collapse
|