1
|
Kittke V, Zhao C, Lam DD, Harrer P, Krezel W, Schormair B, Oexle K, Winkelmann J. RLS-associated MEIS transcription factors control distinct processes in human neural stem cells. Sci Rep 2024; 14:28986. [PMID: 39578497 PMCID: PMC11584712 DOI: 10.1038/s41598-024-80266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
MEIS1 and MEIS2 encode highly conserved homeodomain transcription factors crucial for developmental processes in a wide range of tissues, including the brain. They can execute redundant functions when co-expressed in the same cell types, but their roles during early stages of neural differentiation have not been systematically compared. By separate knockout and overexpression of MEIS1 and MEIS2 in human neural stem cells, we find they control specific sets of target genes, associated with distinct biological processes. Integration of DNA binding sites with differential transcriptomics implicates MEIS1 to co-regulate gene expression by interaction with transcription factors of the SOX and FOX families. MEIS1 harbors the strongest risk factor for restless legs syndrome (RLS). Our data suggest that MEIS1 can directly regulate the RLS-associated genes NTNG1, MDGA1 and DACH1, constituting new approaches to study the elusive pathomechanism or RLS.
Collapse
Affiliation(s)
- Volker Kittke
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel D Lam
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Philip Harrer
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
2
|
Hemida AS, Ahmed MM, Tantawy MS. HOXA9 and CD163 potentiate pancreatic ductal adenocarcinoma progression. Diagn Pathol 2024; 19:141. [PMID: 39462379 PMCID: PMC11514874 DOI: 10.1186/s13000-024-01563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The role of HOXA9 requires investigations in pancreatic ductal adenocarcinoma (PDAC) as HOXA9 inhibitors are being developed. HOXA9 might attract CD163 expressed tumor associated macrophages (TAM) and could affect PDAC prognosis. This work aims to study the expression and relevance of HOXA9 and CD163 in PDAC progression. MATERIALS AND METHODS Selected 98 PDAC and 98 adjacent non tumor tissues as a control group were immunostained with HOXA9 and CD163 antibodies. RESULTS PDAC displayed highly significant higher HOXA9 staining intensity, percent and H score values than control group. HOXA9 staining of PDAC cases showed significant associations with poor prognostic indicators including larger tumor size, higher grade and advanced stage. PDAC showed highly significant differences regarding CD163 macrophage-specific staining intensity, percent and H score values than control group. CD163 showed significant higher expressions with larger tumor size, higher histological grade and advanced stage group. HOXA9 staining in PDAC showed highly significant direct correlations with CD163 positive macrophages. Follow up of PDAC cases revealed that high median H score of HOXA9 and CD163 were significantly associated with worse overall survival. CD163 was an independent prognostic marker of worse survival. CONCLUSIONS In conclusion, HOXA9 could potentiate PDAC progression by stimulating CD163 expressed TAM attraction in tumors. HOXA9 and CD163 could participate in PDAC therapy. HOXA9 and CD163 could be predictors of worse prognosis and shorter survival in PDAC.
Collapse
Affiliation(s)
- Aiat Shaban Hemida
- Pathology Department, Faculty of Medicine, Menoufia University, Yassin Abd Elghafar Street, Shibin El Kom, Menoufia, 32511, Egypt.
| | - Mohamed Mohamady Ahmed
- Pathology Technician Fellow, National Liver Institute- Menoufia University, Shibin El Kom, Egypt
| | - Mona Saeed Tantawy
- Pathology Department, National Liver Institute- Menoufia University, Shibin El Kom, Egypt
| |
Collapse
|
3
|
Shenoy US, Adiga D, Alhedyan F, Kabekkodu SP, Radhakrishnan R. HOXA9 transcription factor is a double-edged sword: from development to cancer progression. Cancer Metastasis Rev 2024; 43:709-728. [PMID: 38062297 PMCID: PMC11156722 DOI: 10.1007/s10555-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024]
Abstract
The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Faisal Alhedyan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
4
|
Schneider P, Crump NT, Arentsen-Peters STCJM, Smith AL, Hagelaar R, Adriaanse FRS, Bos RS, de Jong A, Nierkens S, Koopmans B, Milne TA, Pieters R, Stam RW. Modelling acquired resistance to DOT1L inhibition exhibits the adaptive potential of KMT2A-rearranged acute lymphoblastic leukemia. Exp Hematol Oncol 2023; 12:81. [PMID: 37740239 PMCID: PMC10517487 DOI: 10.1186/s40164-023-00445-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
In KMT2A-rearranged acute lymphoblastic leukemia (ALL), an aggressive malignancy, oncogenic KMT2A-fusion proteins inappropriately recruit DOT1L to promote leukemogenesis, highlighting DOT1L as an attractive therapeutic target. Unfortunately, treatment with the first-in-class DOT1L inhibitor pinometostat eventually leads to non-responsiveness. To understand this we established acquired pinometostat resistance in pediatric KMT2A::AFF1+ B-ALL cells. Interestingly, these cells became mostly independent of DOT1L-mediated H3K79 methylation, but still relied on the physical presence of DOT1L, HOXA9 and the KMT2A::AFF1 fusion. Moreover, these cells selectively lost the epigenetic regulation and expression of various KMT2A-fusion target genes such as PROM1/CD133, while other KMT2A::AFF1 target genes, including HOXA9 and CDK6 remained unaffected. Concomitantly, these pinometostat-resistant cells showed upregulation of several myeloid-associated genes, including CD33 and LILRB4/CD85k. Taken together, this model comprehensively shows the adaptive potential of KMT2A-rearranged ALL cells upon losing dependency on one of its main oncogenic properties.
Collapse
Affiliation(s)
- Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Alastair L Smith
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Romy S Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anja de Jong
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Rasouli M, Blair H, Troester S, Szoltysek K, Cameron R, Ashtiani M, Krippner-Heidenreich A, Grebien F, McGeehan G, Zwaan CM, Heidenreich O. The MLL-Menin Interaction is a Therapeutic Vulnerability in NUP98-rearranged AML. Hemasphere 2023; 7:e935. [PMID: 37520776 PMCID: PMC10378738 DOI: 10.1097/hs9.0000000000000935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Chromosomal translocations involving the NUP98 locus are among the most prevalent rearrangements in pediatric acute myeloid leukemia (AML). AML with NUP98 fusions is characterized by high expression of HOXA and MEIS1 genes and is associated with poor clinical outcome. NUP98 fusion proteins are recruited to their target genes by the mixed lineage leukemia (MLL) complex, which involves a direct interaction between MLL and Menin. Here, we show that therapeutic targeting of the Menin-MLL interaction inhibits the propagation of NUP98-rearrranged AML both ex vivo and in vivo. Treatment of primary AML cells with the Menin inhibitor revumenib (SNDX-5613) impairs proliferation and clonogenicity ex vivo in long-term coculture and drives myeloid differentiation. These phenotypic effects are associated with global gene expression changes in primary AML samples that involve the downregulation of many critical NUP98 fusion protein-target genes, such as MEIS1 and CDK6. In addition, Menin inhibition reduces the expression of both wild-type FLT3 and mutated FLT3-ITD, and in combination with FLT3 inhibitor, suppresses patient-derived NUP98-r AML cells in a synergistic manner. Revumenib treatment blocks leukemic engraftment and prevents leukemia-associated death of immunodeficient mice transplanted with NUP98::NSD1 FLT3-ITD-positive patient-derived AML cells. These results demonstrate that NUP98-rearranged AMLs are highly susceptible to inhibition of the MLL-Menin interaction and suggest the inclusion of AML patients harboring NUP98 fusions into the clinical evaluation of Menin inhibitors.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Austria
| | - Katarzyna Szoltysek
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Maria Sklodowska-Curie Institute – Oncology Center, Gliwice Branch, Poland
| | - Rachel Cameron
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Minoo Ashtiani
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
| | | | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Austria
| | | | - C. Michel Zwaan
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
A Systematic Pan-Cancer Analysis of MEIS1 in Human Tumors as Prognostic Biomarker and Immunotherapy Target. J Clin Med 2023; 12:jcm12041646. [PMID: 36836180 PMCID: PMC9964192 DOI: 10.3390/jcm12041646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND We intended to explore the potential immunological functions and prognostic value of Myeloid Ecotropic Viral Integration Site 1 (MEIS1) across 33 cancer types. METHODS The data were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Gene expression omnibus (GEO) datasets. Bioinformatics was used to excavate the potential mechanisms of MEIS1 across different cancers. RESULTS MEIS1 was downregulated in most tumors, and it was linked to the immune infiltration level of cancer patients. MEIS1 expression was different in various immune subtypes including C2 (IFN-gamma dominant), C5 (immunologically quiet), C3 (inflammatory), C4 (lymphocyte depleted), C6 (TGF-b dominant) and C1 (wound healing) in various cancers. MEIS1 expression was correlated with Macrophages_M2, CD8+T cells, Macrophages_M1, Macrophages_M0 and neutrophils in many cancers. MEIS1 expression was negatively related to tumor mutational burden (TMB), microsatellite instability (MSI) and neoantigen (NEO) in several cancers. Low MEIS1 expression predicts poor overall survival (OS) in adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), and kidney renal clear cell carcinoma (KIRC) patients, while high MEIS1 expression predicts poor OS in colon adenocarcinoma (COAD) and low grade glioma (LGG) patients. CONCLUSION Our findings revealed that MEIS1 is likely to be a potential new target for immuno-oncology.
Collapse
|
7
|
Li XF, Zhang HB, Huo Y. High HOXA9 gene expression predicts response to chemotherapy and prognosis of high-grade serous ovarian cancer patients. J Int Med Res 2022; 50:3000605221135864. [PMID: 36366735 PMCID: PMC9659939 DOI: 10.1177/03000605221135864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/22/2022] [Indexed: 02/28/2025] Open
Abstract
OBJECTIVE High-grade serous ovarian cancer (HGSOC) is a deadly malignancy. Homeobox protein A9 (HOXA9) is linked with serous papillary histotype differentiation, and inappropriate HOXA9 expression is a step in ovarian cancer that induces aberrant differentiation. This study aimed to reveal the significance of HOXA9 in HGSOC. METHODS HOXA9 mRNA and protein expression were examined by quantitative PCR and immunohistochemistry, respectively. The chi-square test was used to evaluate associations between HOXA9 expression and clinical characteristics. The prognostic value of HOXA9 was calculated by the Kaplan-Meier method. The Kaplan-Meier Plotter database was used to assess the prognostic value of HOXA9. RESULTS The mRNA and protein expression of HOXA9 were significantly upregulated in chemotherapy-resistant HGSOC compared with chemotherapy-sensitive HGSOC. The chi-square test showed that high HOXA9 expression was significantly related with grade, clinical stage, and residual disease. High HOXA9 expression was significantly associated with poor prognosis. The Kaplan-Meier Plotter database further confirmed these results. Cox hazard regression showed that high HOXA9 expression was an independent prognostic factor for survival in HGSOC patients. CONCLUSION This study showed that HOXA9 expression was associated with chemotherapy resistance and poor outcomes in HGSOC patients. High HOXA9 expression might be a prognostic indicator for HGSOC.
Collapse
Affiliation(s)
- Xiao-fei Li
- Department of Obstetrics and Gynecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Hai-Bo Zhang
- Department of Obstetrics and Gynecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Yan Huo
- Department of Intensive Care Unit, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| |
Collapse
|
8
|
Wang W, Li H, Huang M, Wang X, Li W, Qian X, Jing L. Hoxa9/ meis1-transgenic zebrafish develops acute myeloid leukaemia-like disease with rapid onset and high penetrance. Open Biol 2022; 12:220172. [PMID: 36285442 PMCID: PMC9597180 DOI: 10.1098/rsob.220172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
HOXA9 and MEIS1 are co-expressed in over 50% of acute myeloid leukaemia (AML) and play essential roles in leukaemogenesis, but the mechanisms involved are poorly understood. Diverse animal models offer valuable tools to recapitulate different aspects of AML and link in vitro studies to clinical trials. We generated a double transgenic zebrafish that enables hoxa9 overexpression in blood cells under the draculin (drl) regulatory element and an inducible expression of meis1 through a heat shock promoter. After induction, Tg(drl:hoxa9;hsp70:meis1) embryos developed a preleukaemic state with reduced myeloid and erythroid differentiation coupled with the poor production of haematopoietic stem cells and myeloid progenitors. Importantly, most adult Tg(drl:hoxa9;hsp70:meis1) fish at 3 months old showed abundant accumulations of immature myeloid precursors, interrupted differentiation and anaemia in the kidney marrow, and infiltration of myeloid precursors in peripheral blood, resembling human AML. Genome-wide transcriptional analysis also confirmed AML transformation by the transgene. Moreover, the dihydroorotate dehydrogenase (DHODH) inhibitor that reduces leukaemogenesis in mammals effectively restored haematopoiesis in Tg(drl:hoxa9;hsp70:meis1) embryos and improved their late survival. Thus, Tg(drl:hoxa9;hsp70:meis1) zebrafish is a rapid-onset high-penetrance AML-like disease model, which provides a novel tool to harness the unique advantages of zebrafish for mechanistic studies and drug screening against HOXA9/MEIS1 overexpressed high-risk AML.
Collapse
Affiliation(s)
- Wei Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongji Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Mengling Huang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xue Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Li
- Core facility and technical service center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lili Jing
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Jin Y, Wang J, Zhao M, Lin J, Hong L. Myeloid ecotropic viral integration site-1 inhibition promotes apoptosis, suppresses proliferation of acute myeloid leukemia cells, accentuates the effects of anticancer drugs. Bioengineered 2022; 13:5700-5708. [PMID: 35212611 PMCID: PMC8974192 DOI: 10.1080/21655979.2021.2000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To investigate the effects of myeloid ecotropic viral integration site-1 (MEIS1) on the proliferation and apoptosis of acute myeloid leukemia (AML) cells and the anticancer effects of the drug, we screened Kasumi-6, KG-1, and Kasumi-1 cells using quantitative reverse transcription polymerase chain reaction. Kasumi-6 and Kasumi-1 cells were subjected to human antigen R (HuR)-mediated interference (IV). Hexokinase 2 (HK2) expression and phosphorylation of protein kinase B (p-AKT) and mammalian target of rapamycin (p-mTOR) were observed with Western blotting. Cell proliferation was assessed using Cell Counting Kit-8, apoptosis was examined using Hoechst 33,258 staining, and glucose uptake was detected with a colorimetric biochemical assay kit. We found that, among the three cell lines tested, MEIS1 expression was highest in Kasumi-1 cells, which were therefore selected for subsequent experiments. Kasumi-1 cells receiving IV showed significantly decreased proliferation (p < 0.05) and increased apoptosis compared to the control group. Compared with the controls, IV significantly increased the expression of HK2, p-AKT, p-mTOR, multidrug resistance-associated protein 1 and P-glycoprotein (P < 0.05), but decreased glucose uptake. Treatment with adriamycin, daunorubicin and imatinib resulted in a progressive increase in inhibition of cell proliferation, with the IV group showing the highest inhibition rate among the three groups (P < 0.05). Thus, inhibition of MEIS1 activity promoted apoptosis, inhibited the proliferation of Kasumi-1 and Kasumi-6 cells, and increaseed the anticancer effect of the drugs, suggesting that inhibition of MEIS1 may be a potential strategy for the treatment of AML.
Collapse
Affiliation(s)
- Yinglan Jin
- Department of Hematology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinghua Wang
- Department of Hematology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingming Zhao
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyi Lin
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luojia Hong
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Shenoy US, Adiga D, Kabekkodu SP, Hunter KD, Radhakrishnan R. Molecular implications of HOX genes targeting multiple signaling pathways in cancer. Cell Biol Toxicol 2022; 38:1-30. [PMID: 34617205 PMCID: PMC8789642 DOI: 10.1007/s10565-021-09657-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
11
|
Meriç N, Kocabaş F. The Historical Relationship Between Meis1 and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:127-144. [DOI: 10.1007/5584_2021_705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
13
|
Chung HY, Lin BA, Lin YX, Chang CW, Tzou WS, Pei TW, Hu CH. Meis1, Hi1α, and GATA1 are integrated into a hierarchical regulatory network to mediate primitive erythropoiesis. FASEB J 2021; 35:e21915. [PMID: 34496088 DOI: 10.1096/fj.202001044rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
During development, erythroid cells are generated by two waves of hematopoiesis. In zebrafish, primitive erythropoiesis takes place in the intermediate cell mass region, and definitive erythropoiesis arises from the aorta-gonad mesonephros. TALE-homeoproteins Meis1 and Pbx1 function upstream of GATA1 to specify the erythroid lineage. Embryos lacking Meis1 or Pbx1 have weak gata1 expression and fail to produce primitive erythrocytes. Nevertheless, the underlying mechanism of how Meis1 and Pbx1 mediate gata1 transcription in erythrocytes remains unclear. Here we show that Hif1α acts downstream of Meis1 to mediate gata1 expression in zebrafish embryos. Inhibition of Meis1 expression resulted in suppression of hif1a expression and abrogated primitive erythropoiesis, while injection with in vitro-synthesized hif1α mRNA rescued gata1 transcription in Meis1 morphants and recovered their erythropoiesis. Ablation of Hif1α expression either by morpholino knockdown or Crispr-Cas9 knockout suppressed gata1 transcription and abrogated primitive erythropoiesis. Results of chromatin immunoprecipitation assays showed that Hif1α associates with hypoxia-response elements located in the 3'-flanking region of gata1 during development, suggesting that Hif1α regulates gata1 expression in vivo. Together, our results indicate that Meis1, Hif1α, and GATA1 indeed comprise a hierarchical regulatory network in which Hif1α acts downstream of Meis1 to activate gata1 transcription through direct interactions with its cis-acting elements in primitive erythrocytes.
Collapse
Affiliation(s)
- Hsin-Yu Chung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Bo-An Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Xuan Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chen-Wei Chang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pei
- Department of Computer Science and Information Engineering, National Taipei University of Technology
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
14
|
Tsartsalis AN, Tagka A, Kotoulas A, Mirkopoulou D, Geronikolou SA, G L. Adiponectin and Its Effects on Acute Leukemia Cells: An Experimental and Bioinformatics Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1338:117-127. [DOI: 10.1007/978-3-030-78775-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
G L, Adamaki M, Hatziagapiou K, Geronikolou SA, Tsartsalis AN, Vlahopoulos S. Early and Very Early GRIM19 and MCL1 Expression Are Correlated to Late Acquired Prednisolone Effects in a T-Cell Acute Leukemia Cell Line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:147-160. [DOI: 10.1007/978-3-030-78787-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Stem cell characteristics promote aggressiveness of diffuse large B-cell lymphoma. Sci Rep 2020; 10:21342. [PMID: 33288848 PMCID: PMC7721882 DOI: 10.1038/s41598-020-78508-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) may present initially in bone marrow, liver and spleen without any lymphadenopathy (referred to as BLS-type DLBCL), which is aggressive and frequently associated with hemophagocytic syndrome. Its tumorigenesis and molecular mechanisms warrant clarification. By gene microarray profiling with bioinformatics analysis, we found higher expression of the stem cell markers HOXA9 and NANOG, as well as BMP8B, CCR6 and S100A8 in BLS-type than conventional DLBCL. We further validated expression of these markers in a large cohort of DLBCL including BLS-type cases and found that expression of HOXA9 and NANOG correlated with inferior outcome and poor prognostic parameters. Functional studies with gene-overexpressed and gene-silenced DLBCL cell lines showed that expression of NANOG and HOXA9 promoted cell viability and inhibited apoptosis through suppression of G2 arrest in vitro and enhanced tumor formation and hepatosplenic infiltration in a tail-vein-injected mouse model. Additionally, HOXA9-transfected tumor cells showed significantly increased soft-agar clonogenic ability and tumor sphere formation. Interestingly, B cells with higher CCR6 expression revealed a higher chemotactic migration for CCL20. Taken together, our findings support the concept that tumor or precursor cells of BLS-type DLBCL are attracted by chemotaxis and home to the bone marrow, where the microenvironment promotes the expression of stem cell characteristics and aggressiveness of tumor cells.
Collapse
|
17
|
Zha J, Lai Q, Deng M, Shi P, Zhao H, Chen Q, Wu H, Xu B. Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors' Therapeutic Sensitivity in Acute Myeloid Leukemia. Stem Cell Rev Rep 2020; 16:1280-1291. [PMID: 33057942 DOI: 10.1007/s12015-020-10057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Both HOX gene expression and CTCF regulation have been well demonstrated to play a critical role in regulating maintenance of leukemic stem cells (LSCs) that are known to be resistant to BET inhibitor (BETi). To investigate the regulatory role of CTCF boundary in aberrant HOX gene expression and the therapeutic sensitivity of BETi in AML, we employed CRISPR-Cas9 genome editing technology to delete 47 base pairs of the CTCF binding motif which is located between HOXA7 and HOXA9 genes (CBS7/9) in different subtypes of AML with either MLL-rearrangement or NPM1 mutation. Our results revealed that HOXA9 is significantly downregulated in response to the CBS7/9 deletion. Moreover, CBS7/9 boundary deletion sensitized the BETi treatment reaction in both MOLM-13 and OCI-AML3 cells. To further examine whether BETi therapeutic sensitivity in AML is depended on the expression level of the HOXA9 gene, we overexpressed the HOXA9 in the CBS7/9 deleted AML cell lines, which can rescue and restore the resistance to BETi treatment of the CBS7/9 KO cells by activating MAPK signaling pathway. Deletion of CBS7/9 specifically decreased the recruitment of BRD4 and RNA pol II to the posterior HOXA genes, in which, a transcription elongation factor ELL3 is the key factor in regulating HOXA gene transcription monitored by CBS7/9 chromatin boundary. Thus, disruption of CBS7/9 boundary perturbs HOXA9 transcription and regulates BETi sensitivity in AML treatment. Moreover, alteration of CTCF boundaries in the oncogene loci may provide a novel strategy to overcome the drug resistance of LSCs. Graphical abstract.
Collapse
Affiliation(s)
- Jie Zha
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Qian Lai
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Manman Deng
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital. Southern Medical University, Guangzhou, 510515, China
| | - Haijun Zhao
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Qinwei Chen
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Hua Wu
- Department of Nuclear Medicine, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Bing Xu
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China.
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China.
| |
Collapse
|
18
|
Schneider E, Pochert N, Ruess C, MacPhee L, Escano L, Miller C, Krowiorz K, Delsing Malmberg E, Heravi-Moussavi A, Lorzadeh A, Ashouri A, Grasedieck S, Sperb N, Kumar Kopparapu P, Iben S, Staffas A, Xiang P, Rösler R, Kanduri M, Larsson E, Fogelstrand L, Döhner H, Döhner K, Wiese S, Hirst M, Keith Humphries R, Palmqvist L, Kuchenbauer F, Rouhi A. MicroRNA-708 is a novel regulator of the Hoxa9 program in myeloid cells. Leukemia 2019; 34:1253-1265. [DOI: 10.1038/s41375-019-0651-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/09/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
|
19
|
Association between Hand Digit Ratio (2D : 4D) and Acute Lymphoblastic Leukemia. DISEASE MARKERS 2019; 2018:4938725. [PMID: 30598707 PMCID: PMC6287137 DOI: 10.1155/2018/4938725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
Abstract
Objective Digit ratio (2D : 4D) has been suggested as a biomarker for prenatal hormone activity and has been linked to several types of cancer. This study investigated the possible correlation between 2D : 4D ratios and acute lymphoblastic leukemia. Methods A case-control study was performed with Brazilian subjects. Direct measurements of the lengths of index and ring fingers of both hands of patients with acute lymphoblastic leukemia (n = 43) and controls matched by age and gender (n = 86) were obtained by using a digital vernier caliper. Mean ratios between the second and fourth digits were compared. Data were analyzed by Student's t-test with a significance level of 5%. Results No significant difference was found between the mean digit ratios of the right and left hands between the groups for any analysis (p > 0.05), neither for the whole sample nor for the distribution by gender. Conclusions We observed that patients with acute lymphoblastic leukemia do not have a different digit pattern when compared with unaffected individuals, which may suggest that exposure to prenatal sex hormone is similar between groups.
Collapse
|
20
|
Haider Z, Larsson P, Landfors M, Köhn L, Schmiegelow K, Flaegstad T, Kanerva J, Heyman M, Hultdin M, Degerman S. An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression. Cancer Med 2018; 8:311-324. [PMID: 30575306 PMCID: PMC6346238 DOI: 10.1002/cam4.1917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
Classification of pediatric T‐cell acute lymphoblastic leukemia (T‐ALL) patients into CIMP (CpG Island Methylator Phenotype) subgroups has the potential to improve current risk stratification. To investigate the biology behind these CIMP subgroups, diagnostic samples from Nordic pediatric T‐ALL patients were characterized by genome‐wide methylation arrays, followed by targeted exome sequencing, telomere length measurement, and RNA sequencing. The CIMP subgroups did not correlate significantly with variations in epigenetic regulators. However, the CIMP+ subgroup, associated with better prognosis, showed indicators of longer replicative history, including shorter telomere length (P = 0.015) and older epigenetic (P < 0.001) and mitotic age (P < 0.001). Moreover, the CIMP+ subgroup had significantly higher expression of ANTP homeobox oncogenes, namely TLX3, HOXA9, HOXA10, and NKX2‐1, and novel genes in T‐ALL biology including PLCB4, PLXND1, and MYO18B. The CIMP− subgroup, with worse prognosis, was associated with higher expression of TAL1 along with frequent STIL‐TAL1 fusions (2/40 in CIMP+ vs 11/24 in CIMP−), as well as stronger expression of BEX1. Altogether, our findings suggest different routes for leukemogenic transformation in the T‐ALL CIMP subgroups, indicated by different replicative histories and distinct methylomic and transcriptomic profiles. These novel findings can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Linda Köhn
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Trond Flaegstad
- Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Jukka Kanerva
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Mats Heyman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
蒋 光, 陈 燕, 郭 维, 张 航, 邹 琳. [Screening and verification of key genes in T-cell acute lymphoblastic leukemia]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:261-267. [PMID: 29643030 PMCID: PMC6744169 DOI: 10.3969/j.issn.1673-4254.2018.03.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To explore the key genes in T-cell acute lymphoblastic leukemia (T-ALL) using bioinformatics method to better understand the pathogenic mechanisms of T-ALL. METHODS The gene expression profiles of GSE14317 were obtained from Gene Expression Omnibus database. The differentially expressed genes (DEGs) in T-ALL were analyzed using R package Limma. The online analysis tool DAVID was used to perform the functional and pathway enrichment analysis. The protein-protein interaction network was constructed by STRING and visualized by Cytoscape. Based on the JASPAR database, the transcription factors (TFs) of the hub genes were obtained. RT-PCR was used to test the mRNA expression level of the key genes. RESULTS A total of 1443 DEGs were identified, including 800 up-regulated genes and 643 down-regulated genes. These DEGs were significantly enriched in the cell cycle, hematopoietic cell lineage, cytokine-cytokine receptor interaction and T cell receptor signaling pathway. The top 10 hub genes identified from the PPI networks included CDK1, PIK3R1, CCNB1, CCNA2, CDC20, JUN, GNG11, PLK1, PCNA and CCNB2, which were enriched in chemokine signaling pathway, ubiquition mediated proteolysis and cell cycle. In the TF-target gene network, 42 differentially expressed TFs were identified, among which ELF5, HIC2 and MEISI had binding sites with 9 of the candidate hub genes. RT-PCR showed that the mRNA expression level of all the candidate hub genes except for GNG11 were consistent with the gene expression profiles. CONCLUSION The hub genes CDK1, PIK3R1, CCNB1, CCNA2, CDC20, JUN, PLK1, PCNA, CCNB2, ELF5, HIC2 and MEISI participate in the occurrence of T-ALL. Our finding provides new insights into the pathogenesis of T-ALL.
Collapse
Affiliation(s)
- 光洁 蒋
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国 家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/ Key Laboratory of Pediatrics in Chongqing/ Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - 燕华 陈
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国 家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/ Key Laboratory of Pediatrics in Chongqing/ Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - 维 郭
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国 家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/ Key Laboratory of Pediatrics in Chongqing/ Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - 航 张
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国 家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/ Key Laboratory of Pediatrics in Chongqing/ Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - 琳 邹
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国 家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/ Key Laboratory of Pediatrics in Chongqing/ Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| |
Collapse
|
22
|
Xie H, Yu H, Tian S, Yang X, Wang X, Wang H, Guo Z. MEIS-1 level in unresectable hepatocellular carcinoma can predict the post-treatment outcomes of radiofrequency ablation. Oncotarget 2018; 9:15252-15265. [PMID: 29632641 PMCID: PMC5880601 DOI: 10.18632/oncotarget.24165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Radiofrequency ablation (RFA) is a local-ablative therapy for unresectable hepatocellular carcinoma (HCC). At present, there is no predictive marker for RFA treatment outcomes. This work aimed to valuate myeloid ecotropic viral integration site 1 (MEIS-1) in predicting post-RFA treatment outcomes of unresectable HCC patients. The time to progression (TTP) and overall survival (OS) of 81 HCC patients who received RFA treatment were measured. The protein level of MEIS-1 in tumor specimens was measured by western blot. The role of MEIS-1 in RFA-treating HCC in vivo growth nude mouse model was examined via PET/CT imaging. Higher level of MEIS-1 in tumor tissue is associated with better RFA treatment outcomes. The median TTP was 9.0 (95% confidence interval [CI]: 6.8-11.3) months in patients with high MEIS-1 expression (n = 43) versus 6.0 (95% CI: 4.6-7.4) months in patients with low MEIS-1 expression (n = 38). Moreover, in rodent HCC model we found overexpression of MEIS-1 enhanced the anti-tumor effect of RFA treatment. We conclude that high level of MEIS-1 expression predicts better RFA treatment outcome in HCC.
Collapse
Affiliation(s)
- Hui Xie
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300070, PR China
- Department of interventional therapy, 302 Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Haipeng Yu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300070, PR China
| | - Shengtao Tian
- Department of interventional therapy, 302 Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Xueling Yang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300070, PR China
| | - Ximing Wang
- Department of interventional therapy, 302 Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Huaming Wang
- Department of interventional therapy, 302 Hospital of People's Liberation Army, Beijing 100039, PR China
| | - Zhi Guo
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Cancer Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300070, PR China
| |
Collapse
|
23
|
Burillo-Sanz S, Morales-Camacho RM, Caballero-Velázquez T, Carrillo E, Sánchez J, Pérez-López O, Pérez de Soto I, González Campos J, Prats-Martín C, Bernal R, Vargas MT. MLL-rearranged acute myeloid leukemia: Influence of the genetic partner in allo-HSCT response and prognostic factor of MLL 3' region mRNA expression. Eur J Haematol 2018; 100:436-443. [PMID: 29384595 DOI: 10.1111/ejh.13037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE MLL gene is involved in more than 80 known genetic fusions in acute leukemia. To study the relevance of MLL partner gene and selected gene's expression, in this work, we have studied a cohort of 20 MLL-rearranged acute myeloid leukemia (AML). METHODS Twenty MLL-rearranged AML patients along with a control cohort of 138 AML patients are included in this work. By RT-PCR and sequencing, MLL genetic fusion was characterized, and relative gene expression quantification was carried out for EVI1, MEIS1, MLL-3', RUNX1, SETBP1, HOXA5, and FLT3 genes. Risk stratification and association of MLL genetic partner and gene expression to overall survival, in the context of received therapy, were performed. RESULTS MLLr cohort showed to have an OS more similar to intermediate-risk AML. Type of MLL genetic partner showed to be relevant in allo-HSCT response; having MLLT1 and MLLT3, a better benefit from it. Expression of MLL-3' region, EVI1 and FLT3, showed association with OS in patients undergoing allo-HSCT. CONCLUSION We show that the MLL genetic partner could have implications in allo-HSCT response, and we propose three genes whose expression could be useful for the prognosis of this leukemia in patients undergoing allo-HSCT: 3' region of MLL, EVI1, and FLT3.
Collapse
Affiliation(s)
- Sergio Burillo-Sanz
- Department of Immunology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Rosario M Morales-Camacho
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Estrella Carrillo
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Javier Sánchez
- Department of Genetics, Reproduction and Fetal Medicine, Hospital Universitario Virgen del Rocío, Seville, Spain.,Centre of Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Olga Pérez-López
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Inmaculada Pérez de Soto
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José González Campos
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Concepción Prats-Martín
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Ricardo Bernal
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - María Teresa Vargas
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
24
|
Silencing of HMGA2 reverses retardance of cell differentiation in human myeloid leukaemia. Br J Cancer 2018; 118:405-415. [PMID: 29384529 PMCID: PMC5808023 DOI: 10.1038/bjc.2017.403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/07/2017] [Accepted: 10/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background: High-mobility group AT-hook 2 (HMGA2) may serve as an architectural transcription factor, and it can regulate a range of normal biological processes including proliferation and differentiation. Upregulation of HMGA2 expression is correlated to the undifferentiated phenotype of immature leukaemic cells. However, the underlying mechanism of HMGA2-dependent myeloid differentiation blockage in leukaemia is unknown. Methods: To reveal the role and mechanism of HMGA2 in differentiation arrest of myeloid leukaemia cells, the quantitative expression of HMGA2 and homeobox A9 (HOXA9) was analysed by real-time PCR (qRT-PCR). The regulatory function of HMGA2 in blockage of differentiation in human myeloid leukaemia was investigated through in vitro assays (XTT assay, May–Grünwald–Giemsa, flow cytometry analysis and western blot). Results: We found that the expression of HMGA2 and HOXA9 was reduced during the process of granulo-monocytic maturation of acute myeloid leukaemia (AML) cells, knockdown of HMGA2 promotes terminal (granulocytic and monocytic) differentiation of myeloid leukaemia primary blasts and cell lines, and HOXA9 was significantly downregulated in leukaemic cells with knockdown of HMGA2. Downregulation of HOXA9 in myeloid leukaemia cells led to increased differentiation capacity in vitro. Conclusions: Our data suggest that increased expression of HMGA2 represents a possible new mechanism of myeloid differentiation blockage of leukaemia. Aberrant expression of HMGA2 may enhance HOXA9-dependent leukaemogenesis and myeloid leukaemia phenotype. Disturbance of the HMGA2–HOXA9 pathway is probably a therapeutic strategy in myeloid leukaemia.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW HOXA9 is a homeodomain transcription factor that plays an essential role in normal hematopoiesis and acute leukemia, in which its overexpression is strongly correlated with poor prognosis. The present review highlights recent advances in the understanding of genetic alterations leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated transformation. RECENT FINDINGS A variety of genetic alterations including MLL translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high-level HOXA9 expression in acute leukemias. The mechanisms resulting in HOXA9 overexpression are beginning to be defined and represent attractive therapeutic targets. Small molecules targeting MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, CDX4, INK4A/INK4B/ARF, mir-21, and mir-196b and many others provide another avenue for potential drug development. SUMMARY HOXA9 deregulation underlies a large subset of aggressive acute leukemias. Understanding the mechanisms regulating the expression and activity of HOXA9, along with its critical downstream targets, shows promise for the development of more selective and effective leukemia therapies.
Collapse
|
26
|
Zhu J, Cui L, Xu A, Yin X, Li F, Gao J. MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration. BMC Cancer 2017; 17:176. [PMID: 28270206 PMCID: PMC5341457 DOI: 10.1186/s12885-017-3155-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/23/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Myeloid ecotropic viral integration site 1 (MEIS1) protein plays a synergistic causative role in acute myeloid leukemia (AML). However, MEIS1 has also shown to be a potential tumor suppressor in some other cancers, such as non-small-cell lung cancer (NSCLC) and prostate cancer. Although multiple roles of MEIS1 in cancer development and progression have been identified, there is an urgent demand to discover more functions of this molecule for further therapeutic design. METHODS MEIS1 was overexpressed via adenovirus vector in clear cell renal cell carcinoma (ccRCC) cells. Western blot and real-time qPCR (quantitative Polymerase Chain Reaction) was performed to examine the protein and mRNA levels of MEIS1. Cell proliferation, survival, in vitro migration and invasion were tested by MTT, colony formation, soft-agar, transwell (in vitro invasion/migration) assays, and tumor in vivo growthwas measured on nude mice model. In addition, flow-cytometry analysis was used to detect cell cycle arrest or non-apoptotic cell death of ccRCC cells induced by MEIS1. RESULTS MEIS1 exhibits a decreased expression in ccRCC cell lines than that in non-tumor cell lines. MEIS1 overexpression inhibits ccRCC cells proliferation and induces G1/S arrest concomitant with marked reduction of G1/S transition regulators, Cyclin D1 and Cyclin A. Moreover, MEIS1-1 overexpression also induces non-apoptotic cell death of ccRCC cells via decreasing the levels of pro-survival regulators Survivin and BCL-2. Transwell migration assay (TMA) shows that MEIS1 attenuates in vitro invasion and migration of ccRCC cells with down-regulated epithelial-mesenchymal transition (EMT) process. Further, in nude mice model, MEIS1 inhibits the in vivo growth of Caki-1 cells. CONCLUSIONS By investigating the role of MEIS1 in ccRCC cells' survival, proliferation, anchorage-independent growth, cell cycle progress, apoptosis and metastasis, in the present work, we propose that MEIS1 may play an important role in clear cell renal cell carcinoma (ccRCC) development.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Liang Cui
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
- Department of Urology, Civil Aviation General Hospital/Civil Aviation Medical College of Peking University, Beijing, 100123 People’s Republic of China
| | - Axiang Xu
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Xiaotao Yin
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Fanglong Li
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| | - Jiangping Gao
- Department of Urology, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China
| |
Collapse
|
27
|
Sykes DB, Kfoury YS, Mercier FE, Wawer MJ, Law JM, Haynes MK, Lewis TA, Schajnovitz A, Jain E, Lee D, Meyer H, Pierce KA, Tolliday NJ, Waller A, Ferrara SJ, Eheim AL, Stoeckigt D, Maxcy KL, Cobert JM, Bachand J, Szekely BA, Mukherjee S, Sklar LA, Kotz JD, Clish CB, Sadreyev RI, Clemons PA, Janzer A, Schreiber SL, Scadden DT. Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia. Cell 2016; 167:171-186.e15. [PMID: 27641501 DOI: 10.1016/j.cell.2016.08.057] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.
Collapse
Affiliation(s)
- David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Youmna S Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - François E Mercier
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Mathias J Wawer
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason M Law
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mark K Haynes
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, USA
| | - Timothy A Lewis
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Amir Schajnovitz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Esha Jain
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dongjun Lee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | | | - Kerry A Pierce
- Metabolite Profiling Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Nicola J Tolliday
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, USA
| | - Steven J Ferrara
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Katrina L Maxcy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julien M Cobert
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacqueline Bachand
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian A Szekely
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Siddhartha Mukherjee
- Irving Cancer Research Center, Columbia University School of Medicine, New York, NY 10032, USA
| | - Larry A Sklar
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joanne D Kotz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Clary B Clish
- Metabolite Profiling Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Paul A Clemons
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | | | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|