1
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
2
|
Kusakabe Y, Moriya SS, Sugiyama T, Miyata Y. Isolation and identification of the new baicalin target protein to develop flavonoid structure-based therapeutic agents. Bioorg Med Chem 2023; 90:117362. [PMID: 37320992 DOI: 10.1016/j.bmc.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Proteins are vital constituents of all living organisms. As many therapeutic agents alter the activity of functional proteins, identifying functional target proteins of small bioactive molecules isessential for the rational design of stronger medicines. Flavonoids with antioxidant, anti-allergy, and anti-inflammatory effects are expected to have preventive effects for several diseases closely related to oxidation and inflammation, including heart disease, cancer, neurodegenerative disorders, and eye diseases. Therefore, identifying the proteins involved in the pharmacological actions of flavonoids, and designing a flavonoid structure-based medicine that strongly and specifically inhibits flavonoid target proteins, could aid the development of more effective medicines for treating heart disease, cancer, neurodegenerative disorders, and ocular diseases with few side effects. To isolate the flavonoid target protein, we conducted a novel affinity chromatography in a column wherein baicalin, a representative flavonoid, was attached to Affi-Gel 102. Through affinity chromatography and nano LC-MS/MS, we identified GAPDH as a flavonoid target protein. Then, we performed fluorescence quenching and an enzyme inhibition assay to experimentally confirmbaicalin's binding affinity for, and inhibition of, GAPDH. We also conducted in silico docking simulations to visualize the binding modes of baicalin and the newly identified flavonoid target protein, GAPDH. From the results of this study, it was considered that one of the reasons why baicalin exhibits the effects on cancer and neurodegenerative diseases is that it inhibits the activity of GAPDH. In summary, we showed that Affi-Gel102 could quickly and accurately isolate the target protein for bioactive small molecules, without the need for isotopic labeling or a fluorescent probe. By using the method presented here, it was possible to easily isolate the target protein of a medicine containing a carboxylic acid.
Collapse
Affiliation(s)
- Yoshio Kusakabe
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan.
| | | | - Toru Sugiyama
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yoshiki Miyata
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
3
|
Tringides ML, Zhang Z, Morgan CE, Su CC, Yu EW. A cryo-electron microscopic approach to elucidate protein structures from human brain microsomes. Life Sci Alliance 2023; 6:6/2/e202201724. [PMID: 36450447 PMCID: PMC9713474 DOI: 10.26508/lsa.202201724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
We recently developed a "Build and Retrieve" cryo-electron microscopy (cryo-EM) methodology, which is capable of simultaneously producing near-atomic resolution cryo-EM maps for several individual proteins from a heterogeneous, multiprotein sample. Here we report the use of "Build and Retrieve" to define the composition of a raw human brain microsomal lysate. From this sample, we simultaneously identify and solve cryo-EM structures of five different brain enzymes whose functions affect neurotransmitter recycling, iron metabolism, glycolysis, axonal development, energy homeostasis, and retinoic acid biosynthesis. Interestingly, malfunction of these important proteins has been directly linked to several neurodegenerative disorders, such as Alzheimer's, Huntington's, and Parkinson's diseases. Our work underscores the importance of cryo-EM in facilitating tissue and organ proteomics at the atomic level.
Collapse
Affiliation(s)
- Marios L Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
4
|
Tossounian MA, Zhang B, Gout I. The Writers, Readers, and Erasers in Redox Regulation of GAPDH. Antioxidants (Basel) 2020; 9:antiox9121288. [PMID: 33339386 PMCID: PMC7765867 DOI: 10.3390/antiox9121288] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde 3–phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme, which is crucial for the breakdown of glucose to provide cellular energy. Over the past decade, GAPDH has been reported to be one of the most prominent cellular targets of post-translational modifications (PTMs), which divert GAPDH toward different non-glycolytic functions. Hence, it is termed a moonlighting protein. During metabolic and oxidative stress, GAPDH is a target of different oxidative PTMs (oxPTM), e.g., sulfenylation, S-thiolation, nitrosylation, and sulfhydration. These modifications alter the enzyme’s conformation, subcellular localization, and regulatory interactions with downstream partners, which impact its glycolytic and non-glycolytic functions. In this review, we discuss the redox regulation of GAPDH by different redox writers, which introduce the oxPTM code on GAPDH to instruct a redox response; the GAPDH readers, which decipher the oxPTM code through regulatory interactions and coordinate cellular response via the formation of multi-enzyme signaling complexes; and the redox erasers, which are the reducing systems that regenerate the GAPDH catalytic activity. Human pathologies associated with the oxidation-induced dysregulation of GAPDH are also discussed, featuring the importance of the redox regulation of GAPDH in neurodegeneration and metabolic disorders.
Collapse
|
5
|
Glyceraldehyde-3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics 2020; 12:pharmaceutics12050416. [PMID: 32370188 PMCID: PMC7285110 DOI: 10.3390/pharmaceutics12050416] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme whose role in cell metabolism and homeostasis is well defined, while its function in pathologic processes needs further elucidation. Depending on the cell context, GAPDH may bind a number of physiologically important proteins, control their function and correspondingly affect the cell’s fate. These interprotein interactions and post-translational modifications of GAPDH mediate its cytotoxic or cytoprotective functions in the manner of a Janus-like molecule. In this review, we discuss the functional features of the enzyme in cellular physiology and its possible involvement in human pathologies. In the last part of the article, we describe drugs that can be employed to modulate this enzyme’s function in some pathologic states.
Collapse
|
6
|
Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 2017; 9:501-515. [PMID: 28905328 DOI: 10.1007/s12551-017-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
Collapse
|
7
|
Nakajima H, Itakura M, Kubo T, Kaneshige A, Harada N, Izawa T, Azuma YT, Kuwamura M, Yamaji R, Takeuchi T. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death. J Biol Chem 2017; 292:4727-4742. [PMID: 28167533 PMCID: PMC5377786 DOI: 10.1074/jbc.m116.759084] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/23/2017] [Indexed: 01/24/2023] Open
Abstract
Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH aggregation specifically induces mitochondrial dysfunction via PTP opening, leading to cell death.
Collapse
Affiliation(s)
| | | | - Takeya Kubo
- From the Laboratory of Veterinary Pharmacology
| | | | | | - Takeshi Izawa
- the Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka 5988531, Japan
| | | | - Mitsuru Kuwamura
- the Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka 5988531, Japan
| | | | | |
Collapse
|
8
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|
9
|
Lazarev VF, Nikotina AD, Semenyuk PI, Evstafyeva DB, Mikhaylova ER, Muronetz VI, Shevtsov MA, Tolkacheva AV, Dobrodumov AV, Shavarda AL, Guzhova IV, Margulis BA. Small molecules preventing GAPDH aggregation are therapeutically applicable in cell and rat models of oxidative stress. Free Radic Biol Med 2016; 92:29-38. [PMID: 26748070 DOI: 10.1016/j.freeradbiomed.2015.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the most abundant targets of the oxidative stress. Oxidation of the enzyme causes its inactivation and the formation of intermolecular disulfide bonds, and leads to the accumulation of GAPDH aggregates and ultimately to cell death. The aim of this work was to reveal the ability of chemicals to break the described above pathologic linkage by inhibiting GAPDH aggregation. Using the model of oxidative stress based on SK-N-SH human neuroblastoma cells treated with hydrogen peroxide, we found that lentivirus-mediated down- or up-regulation of GAPDH content caused inhibition or enhancement of the protein aggregation and respectively reduced or increased the level of cell death. To reveal substances that are able to inhibit GAPDH aggregation, we developed a special assay based on dot ultrafiltration using the collection of small molecules of plant origin. In the first round of screening, five compounds were found to possess anti-aggregation activity as established by ultrafiltration and dynamic light scattering; some of the substances efficiently inhibited GAPDH aggregation in nanomolar concentrations. The ability of the compounds to bind GAPDH molecules was proved by the drug affinity responsive target stability assay, molecular docking and differential scanning calorimetry. Results of experiments with SK-N-SH human neuroblastoma treated with hydrogen peroxide show that two substances, RX409 and RX426, lowered the degree of GAPDH aggregation and reduced cell death by 30%. Oxidative injury was emulated in vivo by injecting of malonic acid into the rat brain, and we showed that the treatment with RX409 or RX426 inhibited GAPDH-mediated aggregation in the brain, reduced areas of the injury as proved by magnetic resonance imaging, and augmented the behavioral status of the rats as established by the "beam walking" test. In conclusion, the data show that two GAPDH binders could be therapeutically relevant in the treatment of injuries stemming from hard oxidative stress.
Collapse
Affiliation(s)
- Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia.
| | - Alina D Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Diana B Evstafyeva
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Elena R Mikhaylova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Maxim A Shevtsov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Anastasia V Tolkacheva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Anatoly V Dobrodumov
- Institute of Macromolecular Compounds Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Alexey L Shavarda
- Komarov Botanical Institute Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| |
Collapse
|
10
|
Itakura M, Nakajima H, Kubo T, Semi Y, Kume S, Higashida S, Kaneshige A, Kuwamura M, Harada N, Kita A, Azuma YT, Yamaji R, Inui T, Takeuchi T. Glyceraldehyde-3-phosphate Dehydrogenase Aggregates Accelerate Amyloid-β Amyloidogenesis in Alzheimer Disease. J Biol Chem 2015; 290:26072-87. [PMID: 26359500 DOI: 10.1074/jbc.m115.669291] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by loss of neurons and formation of pathological extracellular deposits induced by amyloid-β peptide (Aβ). Numerous studies have established Aβ amyloidogenesis as a hallmark of AD pathogenesis, particularly with respect to mitochondrial dysfunction. We have previously shown that glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forms amyloid-like aggregates upon exposure to oxidative stress and that these aggregates contribute to neuronal cell death. Here, we report that GAPDH aggregates accelerate Aβ amyloidogenesis and subsequent neuronal cell death both in vitro and in vivo. Co-incubation of Aβ40 with small amounts of GAPDH aggregates significantly enhanced Aβ40 amyloidogenesis, as assessed by in vitro thioflavin-T assays. Similarly, structural analyses using Congo red staining, circular dichroism, and atomic force microscopy revealed that GAPDH aggregates induced Aβ40 amyloidogenesis. In PC12 cells, GAPDH aggregates augmented Aβ40-induced cell death, concomitant with disruption of mitochondrial membrane potential. Furthermore, mice injected intracerebroventricularly with Aβ40 co-incubated with GAPDH aggregates exhibited Aβ40-induced pyramidal cell death and gliosis in the hippocampal CA3 region. These observations were accompanied by nuclear translocation of apoptosis-inducing factor and cytosolic release of cytochrome c from mitochondria. Finally, in the 3×Tg-AD mouse model of AD, GAPDH/Aβ co-aggregation and mitochondrial dysfunction were consistently detected in an age-dependent manner, and Aβ aggregate formation was attenuated by GAPDH siRNA treatment. Thus, this study suggests that GAPDH aggregates accelerate Aβ amyloidogenesis, subsequently leading to mitochondrial dysfunction and neuronal cell death in the pathogenesis of AD.
Collapse
Affiliation(s)
- Masanori Itakura
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Hidemitsu Nakajima
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Takeya Kubo
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Yuko Semi
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Satoshi Kume
- the Laboratories of Biological Macromolecules and
| | - Shusaku Higashida
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Akihiro Kaneshige
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka 5988531 and
| | - Naoki Harada
- Nutrition Chemistry, Osaka Prefecture University, Osaka 5998531, Japan
| | - Akinori Kita
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Yasu-Taka Azuma
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| | - Ryoichi Yamaji
- Nutrition Chemistry, Osaka Prefecture University, Osaka 5998531, Japan
| | - Takashi Inui
- the Laboratories of Biological Macromolecules and
| | - Tadayoshi Takeuchi
- From the Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, and
| |
Collapse
|
11
|
Smith RW, Cash P, Hogg DW, Buck LT. Proteomic changes in the brain of the western painted turtle (Chrysemys picta bellii) during exposure to anoxia. Proteomics 2015; 15:1587-97. [PMID: 25583675 DOI: 10.1002/pmic.201300229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
During anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca(2+). In terms of neural protection programed cell death 6 interacting protein (PDCD6IP; a protein associated with apoptosis), dihydropyrimidinase-like protein, t-complex protein, and guanine nucleotide protein G(o) subunit alpha (Go alpha; proteins associated with neural degradation and impaired cognitive function) also declined. A decline in actin, gelsolin, and PDCD6IP, together with an increase in tubulin, also provided evidence for the induction of a neurological repair response. Although these proteomic alterations show some similarities with the crucian carp (another anoxia-tolerant species), there are species-specific responses, which supports the theory of no single strategy for anoxia tolerance. These findings also suggest the anoxic turtle brain could be an etiological model for investigating mammalian hypoxic damage and clinical neurological disorders.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
12
|
Smith RW, Wang J, Mothersill CE, Lee LEJ, Seymour CB. Proteomic responses in the gills of fathead minnows (Pimephales promelas, Rafinesque, 1820) after 6 months and 2 years of continuous exposure to environmentally relevant dietary226Ra. Int J Radiat Biol 2015; 91:248-56. [DOI: 10.3109/09553002.2014.988894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Lao YM, Lu Y, Jiang JG, Luo LX. Six regulatory elements lying in the promoter region imply the functional diversity of chloroplast GAPDH in Duanliella bardawil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9211-9220. [PMID: 22906227 DOI: 10.1021/jf302659z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-known proverbial protein involved in various functions in vivo. The functional diversity of GAPDH from Dunaliella bardawil (DbGAPDH) may relate to the regulatory elements lying in the promoter at the transcriptional level. Using RT-PCR and RACE reactions, gapdh cDNA was isolated, and the full-length genomic sequence was obtained by LA-PCR-based genome walking. The full-length cDNA sequence was 1645 bp containing an 1128 bp putative open reading frame (ORF), which coded a 375 amino acids-deduced polypeptide whose molecular weight was 40.27 kDa computationally. Protein conserved domain search and structural computation found that DbGAPDH consists of two structural conserved domains highly homologous in most species; multiple sequence alignment discovered two positive charge residues (Lys164 and Arg 233), which play a critical role in the protein-protein interaction between GAPDH, phosphoribulokinase (PRK), and CP12. Phylogenetic analysis demonstrated that DbGAPDH has a closer relationship with analogues from algae and higher plants than with those from other species. In silico analysis of the promoter region revealed six potential regulatory elements might be involved in four hypothesized functions characterized by chloroplast GAPDH: oxygen-, light-, pathogen-, and cold-induced regulation. These results might supply some hints for the functional diversity mechanisms of DbGAPDH, and fresh information for further research to bridge the gap between our knowledge of DNA and protein structure and our understanding of functional biology in GAPDH regulation.
Collapse
Affiliation(s)
- Yong-Min Lao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
14
|
Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 2012; 97:719-29. [DOI: 10.1007/s00253-012-4223-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
|
15
|
Penna I, Vella S, Gigoni A, Russo C, Cancedda R, Pagano A. Selection of candidate housekeeping genes for normalization in human postmortem brain samples. Int J Mol Sci 2011; 12:5461-70. [PMID: 22016602 PMCID: PMC3189726 DOI: 10.3390/ijms12095461] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/28/2011] [Accepted: 08/17/2011] [Indexed: 12/19/2022] Open
Abstract
The most frequently used technique to study the expression profile of genes involved in common neurological disorders is quantitative real-time RT-PCR, which allows the indirect detection of very low amounts of selected mRNAs in tissue samples. Expression analysis by RT-qPCR requires an appropriate normalization to the expression level of genes characterized by a stable, constitutive transcription. However, the identification of a gene transcribed at a very stable level is difficult if not impossible, since significant fluctuations of the level of mRNA synthesis often accompanies changes of cell behavior. The aim of this study is to identify the most stable genes in postmortem human brain samples of patients affected by Alzheimer’s disease (AD) suitable as reference genes. The experiments analyzed 12 commonly used reference genes in brain samples from eight individuals with AD and seven controls. After a careful analysis of the results calculated by geNorm and NormFinder algorithms, we found that CYC1 and EIF4A2 are the best reference genes. We remark on the importance of the determination of the best reference genes for each sample to be analyzed and suggest a practical combination of reference genes to be used in the analysis of human postmortem samples.
Collapse
Affiliation(s)
- Ilaria Penna
- Oncology, Biology, and Genetics Department (DOBiG), University of Genoa, Largo R. Benzi, 10, 16132 Genoa, Italy; E-Mails: (I.P.); (S.V.); (A.G.); (R.C.)
| | - Serena Vella
- Oncology, Biology, and Genetics Department (DOBiG), University of Genoa, Largo R. Benzi, 10, 16132 Genoa, Italy; E-Mails: (I.P.); (S.V.); (A.G.); (R.C.)
| | - Arianna Gigoni
- Oncology, Biology, and Genetics Department (DOBiG), University of Genoa, Largo R. Benzi, 10, 16132 Genoa, Italy; E-Mails: (I.P.); (S.V.); (A.G.); (R.C.)
| | - Claudio Russo
- Department of Health Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; E-Mail:
| | - Ranieri Cancedda
- Oncology, Biology, and Genetics Department (DOBiG), University of Genoa, Largo R. Benzi, 10, 16132 Genoa, Italy; E-Mails: (I.P.); (S.V.); (A.G.); (R.C.)
- National Institute for Cancer Research (IST) Genoa, Largo R. Benzi, 10, 16132 Genoa, Italy
| | - Aldo Pagano
- Oncology, Biology, and Genetics Department (DOBiG), University of Genoa, Largo R. Benzi, 10, 16132 Genoa, Italy; E-Mails: (I.P.); (S.V.); (A.G.); (R.C.)
- National Institute for Cancer Research (IST) Genoa, Largo R. Benzi, 10, 16132 Genoa, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-010-5737241; Fax: +39-010-5737257
| |
Collapse
|
16
|
PAN ZY, DENG XX. Proteomic Comparison Between Leaves from a Red-Flesh Mutant and Its Wild-Type in Sweet Orange. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60111-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim Biophys Acta Gen Subj 2011; 1820:736-42. [PMID: 21803124 DOI: 10.1016/j.bbagen.2011.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/21/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death. SCOPE OF REVIEW The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death. MAJOR CONCLUSIONS S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects. GENERAL SIGNIFICANCE Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
18
|
Shahani N, Sawa A. Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation. Antioxid Redox Signal 2011; 14:1493-504. [PMID: 20812870 DOI: 10.1089/ars.2010.3580] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric oxide (NO) mediates cellular signaling pathways that regulate a plethora of physiological processes. One of the signaling mechanisms mediated by NO is through S-nitrosylation of cysteine residues in target proteins, which is now regarded as an important redox-based physiological action. Deregulation of the protein S-nitrosylation upon nitrosative stress, however, has also been linked to various human diseases, such as neurodegenerative disorders. Between these physiological and pathophysiological roles, there are mechanisms whereby a milder level of nitrosative stress provides S-nitrosylation of some proteins that counteracts the pathological processes, serving as a negative feedback mechanism. In addition, NO has recently emerged as a mediator of epigenetic gene expression and chromatin changes. In this review, these molecular mechanisms, especially those in the central nervous system and neurodegenerative disorders, are described.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600N Wolfe St., Baltimore, MD 21287, USA
| | | |
Collapse
|
19
|
Krishnan K, Ker JEA, Mohammed SM, Nadarajah VD. Identification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells. J Biomed Sci 2010; 17:86. [PMID: 21073742 PMCID: PMC2996362 DOI: 10.1186/1423-0127-17-86] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/13/2010] [Indexed: 12/30/2022] Open
Abstract
Background Bacillus thuringiensis (Bt), an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS) but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa), human breast cancer (MCF-7) and colon cancer (HT-29) suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. Methods Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. Results Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18) for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Double immunofluorescence staining showed co-localisation of Bt18 and GAPDH on the plasma membrane of the CEM-SS cells. Conclusions GAPDH has been well known as a glycolytic enzyme, but recently GAPDH was discovered to have roles in apoptosis and carcinogenesis. Pre-incubation of anti-GAPDH antibody with CEM-SS cells decreases binding of Bt18 to the susceptible cells. Based on a qualitative analysis of the immunoblot and immunofluorescence results, GAPDH was identified as a binding protein on the plasma membrane of CEM-SS cells for Bt18 parasporal protein.
Collapse
Affiliation(s)
- Kanakeswary Krishnan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, International Medical University, No 126 Jalan 19/155B Bukit Jalil, Kuala Lumpur, 57000 Malaysia
| | | | | | | |
Collapse
|
20
|
The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 2010; 23:317-23. [PMID: 20727968 DOI: 10.1016/j.cellsig.2010.08.003] [Citation(s) in RCA: 466] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/10/2010] [Indexed: 11/23/2022]
Abstract
Multiple roles for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been recently appreciated. In addition to the cytoplasm where the majority of GAPDH is located under the basal condition, GAPDH is also found in the particulate fractions, such as the nucleus, the mitochondria, and the small vesicular fractions. When cells are exposed to various stressors, dynamic subcellular re-distribution of GAPDH occurs. Here we review these multifunctional properties of GAPDH, especially linking them to its oligomerization, posttranslational modification, and subcellular localization. This includes mechanistic descriptions of how S-nitrosylation of GAPDH under oxidative stress may lead to cell death/dysfunction via nuclear translocation of GAPDH, which is counteracted by a cytosolic GOSPEL. GAPDH is also involved in various diseases, especially neurodegenerative disorders and cancers. Therapeutic strategies to these conditions based on molecular understanding of GAPDH are discussed.
Collapse
|
21
|
Yego ECK, Mohr S. siah-1 Protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells. J Biol Chem 2010; 285:3181-90. [PMID: 19940145 PMCID: PMC2823464 DOI: 10.1074/jbc.m109.083907] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Indexed: 11/06/2022] Open
Abstract
The translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the nucleus has closely been associated with cell death induction. However, the mechanism of this process has not been completely understood. The E3 ubiquitin ligase siah-1 (seven in absentia homolog 1) has recently been identified as a potential shuttle protein to transport GAPDH from the cytosol to the nucleus. Previously, we have demonstrated that elevated glucose levels induce GAPDH nuclear accumulation in retinal Müller cells. Therefore, this study investigated the role of siah-1 in high glucose-induced GAPDH nuclear translocation and subsequent cell death in retinal Müller cells. High glucose significantly increased siah-1 expression within 12 h. Under hyperglycemic conditions, siah-1 formed a complex with GAPDH and was predominantly localized in the nucleus of Müller cells. siah-1 knockdown using 50 nm siah-1 small interfering RNA significantly decreased high glucose-induced GAPDH nuclear accumulation at 24 h by 43.8 +/- 4.0%. Further, knockdown of siah-1 prevented high glucose-induced cell death of Müller cells potentially by inhibiting p53 phosphorylation consistent with previous observations, indicating that nuclear GAPDH induces cell death via p53 activation. Therefore, inhibition of GAPDH nuclear translocation and accumulation by targeting siah-1 promotes Müller cell survival under hyperglycemic conditions.
Collapse
Affiliation(s)
- E. Chepchumba K. Yego
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Susanne Mohr
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
- the Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
22
|
Colell A, Green DR, Ricci JE. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 2009; 16:1573-81. [PMID: 19779498 DOI: 10.1038/cdd.2009.137] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growing evidence points to the fact that glucose metabolism has a central role in carcinogenesis. Among the enzymes controlling this energy production pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest. Initially identified as a glycolytic enzyme and considered as a housekeeping gene, this enzyme is actually tightly regulated and is involved in numerous cellular functions. Particularly intriguing are recent reports describing GAPDH as a regulator of cell death. However, its role in cell death is unclear; whereas some studies point toward a proapoptotic function, others describe a protective role and suggest its participation in tumor progression. In this study, we highlight recent findings and discuss potential mechanisms through which cells regulate GAPDH to fulfill its diverse functions to influence cell fate.
Collapse
Affiliation(s)
- A Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas and Liver Unit, Hospital Clinic i Provincial, Centro de Investigaciones Biomédicas Esther Koplowitz, and CIBEREHD, IDIBAPS, 08036-Barcelona, Spain.
| | | | | |
Collapse
|
23
|
Silberberg G, Baruch K, Navon R. Detection of stable reference genes for real-time PCR analysis in schizophrenia and bipolar disorder. Anal Biochem 2009; 391:91-7. [DOI: 10.1016/j.ab.2009.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
|
24
|
Smith RW, Cash P, Ellefsen S, Nilsson GE. Proteomic changes in the crucian carp brain during exposure to anoxia. Proteomics 2009; 9:2217-29. [PMID: 19322784 DOI: 10.1002/pmic.200800662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
25
|
Mountassif D, Baibai T, Fourrat L, Moutaouakkil A, Iddar A, El Kebbaj MS, Soukri A. Immunoaffinity purification and characterization of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. Acta Biochim Biophys Sin (Shanghai) 2009; 41:399-406. [PMID: 19430704 DOI: 10.1093/abbs/gmp026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new procedure utilizing immunoaffinity column chromatography has been used for the purification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from human erythrocytes. The comparison between this rapid method (one step) and the traditional procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography shows that the new method gives a highest specific activity with a highest yield in a short time. The characterization of the purified GAPDH reveals that the native enzyme is a homotetramer of ~150 kDa with an absolute specificity for the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). Western blot analysis using purified monospecific polyclonal antibodies raised against the purified GAPDH showed a single 36 kDa band corresponding to the enzyme subunit. Studies on the effect of temperature and pH on enzyme activity revealed optimal values of about 43 degrees C and 8.5, respectively. The kinetic parameters were also calculated: the Vmax was 4.3 U/mg and the Km values against G3P and NAD(+) were 20.7 and 17.8 muM, respectively. The new protocol described represents a simple, economic, and reproducible tool for the purification of GAPDH and can be used for other proteins.
Collapse
Affiliation(s)
- Driss Mountassif
- Laboratoire de Biochimie et Biologie Moleculaire, Universite Hassan II-Ain Chock, Faculte des Sciences Ain Chock, km 8 route d'El Jadida BP. 5366, Maarif, Casablanca, Morocco.
| | | | | | | | | | | | | |
Collapse
|
26
|
Nakajima H, Amano W, Fujita A, Fukuhara A, Azuma YT, Hata F, Inui T, Takeuchi T. The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J Biol Chem 2007; 282:26562-74. [PMID: 17613523 DOI: 10.1074/jbc.m704199200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies have revealed that the redox-sensitive glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is involved in neuronal cell death that is triggered by oxidative stress. GAPDH is locally deposited in disulfide-bonded aggregates at lesion sites in certain neurodegenerative diseases. In this study, we investigated the molecular mechanism that underlies oxidative stress-induced aggregation of GAPDH and the relationship between structural abnormalities in GAPDH and cell death. Under nonreducing in vitro conditions, oxidants induced oligomerization and insoluble aggregation of GAPDH via the formation of intermolecular disulfide bonds. Because GAPDH has four cysteine residues, including the active site Cys(149), we prepared the cysteine-substituted mutants C149S, C153S, C244A, C281S, and C149S/C281S to identify which is responsible for disulfide-bonded aggregation. Whereas the aggregation levels of C281S were reduced compared with the wild-type enzyme, neither C149S nor C149S/C281S aggregated, suggesting that the active site cysteine plays an essential role. Oxidants also caused conformational changes in GAPDH concomitant with an increase in beta-sheet content; these abnormal conformations specifically led to amyloid-like fibril formation via disulfide bonds, including Cys(149). Additionally, continuous exposure of GAPDH-overexpressing HeLa cells to oxidants produced disulfide bonds in GAPDH leading to both detergent-insoluble and thioflavin-S-positive aggregates, which were associated with oxidative stress-induced cell death. Thus, oxidative stresses induce amyloid-like aggregation of GAPDH via aberrant disulfide bonds of the active site cysteine, and the formation of such abnormal aggregates promotes cell death.
Collapse
Affiliation(s)
- Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai City 599-8531, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cueille N, Blanc CT, Riederer IM, Riederer BM. Microtubule-associated protein 1B binds glyceraldehyde-3-phosphate dehydrogenase. J Proteome Res 2007; 6:2640-7. [PMID: 17521179 DOI: 10.1021/pr070081z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubule-associated protein 1B, MAP1B, is a major cytoskeletal protein during brain development and one of the largest brain MAPs associated with microtubules and microfilaments. Here, we identified several proteins that bind to MAP1B via immunoprecipitation with a MAP1B-specific antibody, by one and two-dimensional gel electrophoresis and subsequent mass spectrometry identification of precipitated proteins. In addition to tubulin and actin, a variety of proteins were identified. Among these proteins were glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 8, dihydropyrimidinase related proteins 2 and 3, protein-L-isoaspartate O-methyltransferase, beta-spectrin, and clathrin protein MKIAA0034, linking either directly or indirectly to MAP1B. In particular, GAPDH, a key glycolytic enzyme, was bound in large quantity to the heavy chain of MAP1B in adult brain tissue. In vitro binding studies confirmed a direct binding of GAPDH to MAP1B. In PC12 cells, GAPDH was found in cytoplasm and nuclei and partially co-localized with MAP1B. It disappeared from the cytoplasm under oxidative stress or after a disruption of cytoskeletal elements after colcemid or cytochalasin exposure. GAPDH may be essential in the local energy provision of cytoskeletal structures and MAP1B may help to keep this key enzyme close to the cytoskeleton.
Collapse
Affiliation(s)
- Nathalie Cueille
- Département de Biologie Cellulaire et de Morphologie (DBCM), Université de Lausanne, 9 Rue du Bugnon, 1005 Lausanne, Suisse
| | | | | | | |
Collapse
|
28
|
Abstract
In this work, a ligation-independent, fully gene-specific, nested polymerase chain reaction (PCR) method for the elucidation of 5' cDNA sequence is described and demonstrated for the first time. Two manifestations of the method, rapid amplification of cDNA ends (RACE) by lariat-dependent nested PCR 5' (RACE LaNe), at least as simple to perform as conventional RACE, were successfully applied to the murine housekeeping genes phosphoglycerate kinase 1 (PGK1), beta-actin (beta-ACT), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the alpha thalassemia mental retardation Y homolog (ATRY) gene of the marsupial, Macropus eugenii. Significantly, a new murine GAPDH 5' exon, separated by 365 kb of intronic sequence from previously annotated GAPDH sequence, was discovered using 5'RACE LaNe.
Collapse
Affiliation(s)
- Daniel Jonathan Park
- Department of Zoology, The University of Melbourne, 22 Rutland Street, Clifton Hill, Melbourne, Vic., 3068, Australia.
| |
Collapse
|
29
|
Cumming RC, Schubert D. Amyloid‐β induces disulfide bonding and aggregation of GAPDH in Alzheimer's disease. FASEB J 2005; 19:2060-2. [PMID: 16186172 DOI: 10.1096/fj.05-4195fje] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
GAPDH is a redox-sensitive glycolytic enzyme that also promotes apoptosis when translocated to the nucleus and associates with aggregate-prone proteins involved in neurodegenerative disorders. Recent evidence indicates that polymorphic variation within GAPDH genes is associated with an elevated risk of developing Alzheimer's disease (AD). We previously demonstrated that GAPDH readily undergoes disulfide bonding following oxidant exposure, although the consequence of disulfide bonding on GAPDH activity or function is unknown. Here we show that increased GAPDH disulfide bonding is observed in detergent-insoluble extracts from AD patient and transgenic AD mouse brain tissue compared with age-matched controls. Exposure of primary rat cortical neurons to the pro-oxidant amyloid beta peptide promotes nuclear accumulation of a disulfide-linked form of GAPDH, which becomes detergent-insoluble. Disulfide bonding leads to a reduction in GAPDH enzymatic activity and correlates with the appearance of punctate aggregate-like GAPDH staining within the cytoplasm of both oxidant-treated HT22 cells and amyloid beta-treated primary cortical neurons. Our findings suggest that disulfide bonding of GAPDH and subsequent protein aggregate formation may have relevance to the pathophysiology of AD.
Collapse
Affiliation(s)
- Robert C Cumming
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
30
|
Sirover MA. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 2005; 95:45-52. [PMID: 15770658 DOI: 10.1002/jcb.20399] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies establish that the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is not simply a classical metabolic protein involved in energy production. Instead, it is a multifunctional protein with defined functions in numerous subcellular processes. New investigations establish a primary role for GAPDH in a variety of critical nuclear pathways apart from its already recognized role in apoptosis. These new roles include its requirement for transcriptional control of histone gene expression, its essential function in nuclear membrane fusion, its necessity for the recognition of fraudulently incorporated nucleotides in DNA, and its mandatory participation in the maintenance of telomere structure. Each of these new functions requires GAPDH association into a series of multienzyme complexes. Although other proteins in those complexes are variable, GAPDH remains the single constant protein in each structure. To undertake these new functions, GAPDH is recruited to the nucleus in S phase or its intracellular distribution is regulated as a function of drug exposure. Other investigations relate a substantial role for nuclear GAPDH in hyperglycemic stress and the development of metabolic syndrome. Considerations of future directions as well as the role of GAPDH post-translational modification as a basis for its multifunctional activities is suggested.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
31
|
Sriram G, Martinez JA, McCabe ERB, Liao JC, Dipple KM. Single-gene disorders: what role could moonlighting enzymes play? Am J Hum Genet 2005; 76:911-24. [PMID: 15877277 PMCID: PMC1196451 DOI: 10.1086/430799] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 04/05/2005] [Indexed: 11/03/2022] Open
Abstract
Single-gene disorders with "simple" Mendelian inheritance do not always imply that there will be an easy prediction of the phenotype from the genotype, which has been shown for a number of metabolic disorders. We propose that moonlighting enzymes (i.e., metabolic enzymes with additional functional activities) could contribute to the complexity of such disorders. The lack of knowledge about the additional functional activities of proteins could result in a lack of correlation between genotype and phenotype. In this review, we highlight some notable and recent examples of moonlighting enzymes and their possible contributions to human disease. Because knowledge and cataloging of the moonlighting activities of proteins are essential for the study of cellular function and human physiology, we also review recently reported and recommended methods for the discovery of moonlighting activities.
Collapse
Affiliation(s)
- Ganesh Sriram
- Department of Human Genetics and Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, Department of Chemical Engineering, Henry Samueli School of Engineering and Applied Science, and Mattel Children’s Hospital, University of California–Los Angeles, Los Angeles
| | - Julian A. Martinez
- Department of Human Genetics and Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, Department of Chemical Engineering, Henry Samueli School of Engineering and Applied Science, and Mattel Children’s Hospital, University of California–Los Angeles, Los Angeles
| | - Edward R. B. McCabe
- Department of Human Genetics and Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, Department of Chemical Engineering, Henry Samueli School of Engineering and Applied Science, and Mattel Children’s Hospital, University of California–Los Angeles, Los Angeles
| | - James C. Liao
- Department of Human Genetics and Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, Department of Chemical Engineering, Henry Samueli School of Engineering and Applied Science, and Mattel Children’s Hospital, University of California–Los Angeles, Los Angeles
| | - Katrina M. Dipple
- Department of Human Genetics and Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, Department of Chemical Engineering, Henry Samueli School of Engineering and Applied Science, and Mattel Children’s Hospital, University of California–Los Angeles, Los Angeles
| |
Collapse
|
32
|
Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2005; 45:269-90. [PMID: 15822178 DOI: 10.1146/annurev.pharmtox.45.120403.095902] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence supports the notion that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with multiple functions, including its surprising role in apoptosis. GAPDH is overexpressed and accumulates in the nucleus during apoptosis induced by a variety of insults in diverse cell types. Knockdown of GAPDH using an antisense strategy demonstrates its involvement in the apoptotic cascade in which GAPDH nuclear translocation appears essential. Knowledge concerning the mechanisms underlying GAPDH nuclear translocation and subsequent cell death is growing. Additional evidence suggests that GAPDH may be an intracellular sensor of oxidative stress during early apoptosis. Abnormal expression, nuclear accumulation, changes in physical properties, and loss of glycolytic activity of GAPDH have been found in cellular and transgenic models as well as postmortem tissues of several neurodegenerative diseases. The interaction of GAPDH with disease-related proteins as well as drugs used to treat these diseases suggests that it is a potential molecular target for drug development.
Collapse
Affiliation(s)
- De-Maw Chuang
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1363, USA.
| | | | | |
Collapse
|
33
|
Tsuchiya K, Tajima H, Kuwae T, Takeshima T, Nakano T, Tanaka M, Sunaga K, Fukuhara Y, Nakashima K, Ohama E, Mochizuki H, Mizuno Y, Katsube N, Ishitani R. Pro-apoptotic protein glyceraldehyde-3-phosphate dehydrogenase promotes the formation of Lewy body-like inclusions. Eur J Neurosci 2005; 21:317-26. [PMID: 15673432 DOI: 10.1111/j.1460-9568.2005.03870.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as a classical glycolytic protein; however, previous studies by our group and others have demonstrated that GAPDH is a general mediator initiating one or more apoptotic cascades. Our most recent findings have elucidated that an expression of a pro-apoptotic protein GAPDH is critically regulated at the promoter region of the gene. Apoptotic signals for its subsequent aggregate formation and nuclear translocation are controlled by the respective functional domains harboured within its cDNA component. In this study, coexpression of GAPDH with either wild-type or mutant (A53T) alpha-synuclein and less likely with beta-synuclein in transfected COS-7 cells was found to induce Lewy body-like cytoplasmic inclusions. Unlike its full-length construct, the deleted mutant GAPDH construct (C66) abolished these apoptotic signals, disfavouring the formation of inclusions. The generated inclusions were ubiquitin- and thioflavin S-positive appearing fibrils. Furthermore, GAPDH coimmunoprecipitated with wild-type alpha-synuclein in this paradigm. Importantly, immunohistochemical examinations of post mortem materials from patients with sporadic Parkinson's disease revealed the colocalized profiles immunoreactive against these two proteins in the peripheral zone of Lewy bodies from the affected brain regions (i.e. locus coeruleus). Moreover, a quantitative assessment showed that about 20% of Lewy bodies displayed both antigenicities. These results suggest that pro-apoptotic protein GAPDH may be involved in the Lewy body formation in vivo, probably associated with the apoptotic death pathway.
Collapse
Affiliation(s)
- Katsumi Tsuchiya
- Group on Cellular Neurobiology, Josai University, Sakado, Saitama 350-0248, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li Y, Nowotny P, Holmans P, Smemo S, Kauwe JSK, Hinrichs AL, Tacey K, Doil L, van Luchene R, Garcia V, Rowland C, Schrodi S, Leong D, Gogic G, Chan J, Cravchik A, Ross D, Lau K, Kwok S, Chang SY, Catanese J, Sninsky J, White TJ, Hardy J, Powell J, Lovestone S, Morris JC, Thal L, Owen M, Williams J, Goate A, Grupe A. Association of late-onset Alzheimer's disease with genetic variation in multiple members of the GAPD gene family. Proc Natl Acad Sci U S A 2004; 101:15688-93. [PMID: 15507493 PMCID: PMC524264 DOI: 10.1073/pnas.0403535101] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although several genes have been implicated in the development of the early-onset autosomal dominant form of Alzheimer's disease (AD), the genetics of late-onset AD (LOAD) is complex. Loci on several chromosomes have been linked to the disease, but so far only the apolipoprotein E gene has been consistently shown to be a risk factor. We have performed a large-scale single-nucleotide polymorphism (SNP)-based association study, across the region of linkage on chromosome 12, in multiple case-control series totaling 1,089 LOAD patients and 1,196 control subjects and report association with SNPs in the glyceraldehyde-3-phosphate dehydrogenase (GAPD) gene. Subsequent analysis of GAPD paralogs on other chromosomes demonstrated association with two other paralogs. A significant association between LOAD and a compound genotype of the three GAPD genes was observed in all three sample sets. Individually, these SNPs make differential contributions to disease risk in each of the casecontrol series, suggesting that variants in functionally similar genes may account for series-to-series heterogeneity of disease risk. Our observations raise the possibility that GAPD genes are AD risk factors, a hypothesis that is consistent with the role of GAPD in neuronal apoptosis.
Collapse
|