1
|
Jang MH, Kim DH, Han JH, Kim J, Kim JH. A Single Bout of Remote Ischemic Preconditioning Suppresses Ischemia-Reperfusion Injury in Asian Obese Young Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3915. [PMID: 36900926 PMCID: PMC10002219 DOI: 10.3390/ijerph20053915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Remote ischemic preconditioning (RIPC) has been shown to minimize subsequent ischemia-reperfusion injury (IRI), whereas obesity has been suggested to attenuate the efficacy of RIPC in animal models. The primary objective of this study was to investigate the effect of a single bout of RIPC on the vascular and autonomic response after IRI in young obese men. A total of 16 healthy young men (8 obese and 8 normal weight) underwent two experimental trials: RIPC (three cycles of 5 min ischemia at 180 mmHg + 5 min reperfusion on the left thigh) and SHAM (the same RIPC cycles at resting diastolic pressure) following IRI (20 min ischemia at 180 mmHg + 20 min reperfusion on the right thigh). Heart rate variability (HRV), blood pressure (SBP/DBP), and cutaneous blood flow (CBF) were measured between baseline, post-RIPC/SHAM, and post-IRI. The results showed that RIPC significantly improved the LF/HF ratio (p = 0.027), SBP (p = 0.047), MAP (p = 0.049), CBF (p = 0.001), cutaneous vascular conductance (p = 0.003), vascular resistance (p = 0.001), and sympathetic reactivity (SBP: p = 0.039; MAP: p = 0.084) after IRI. However, obesity neither exaggerated the degree of IRI nor attenuated the conditioning effects on the measured outcomes. In conclusion, a single bout of RIPC is an effective means of suppressing subsequent IRI and obesity, at least in Asian young adult men, does not significantly attenuate the efficacy of RIPC.
Collapse
Affiliation(s)
- Min-Hyeok Jang
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Dae-Hwan Kim
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Jean-Hee Han
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Jahyun Kim
- Department of Kinesiology, California State University Bakersfield, Bakersfield, CA 93311, USA
| | - Jung-Hyun Kim
- Department of Sports Medicine, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
2
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
3
|
Lee TK, Kim DW, Lee JC, Park CW, Sim H, Ahn JH, Park JH, Shin MC, Cho JH, Lee CH, Won MH, Choi SY. Changes in Cyclin D1, cdk4, and Their Associated Molecules in Ischemic Pyramidal Neurons in Gerbil Hippocampus after Transient Ischemia and Neuroprotective Effects of Ischemic Preconditioning by Keeping the Molecules in the Ischemic Neurons. BIOLOGY 2021; 10:biology10080719. [PMID: 34439951 PMCID: PMC8389197 DOI: 10.3390/biology10080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Cyclin D1 and cyclin-dependent kinase 4 (cdk4) is implicated in neuronal death induced by various pathological conditions. Ischemic preconditioning (IPC) confers neuroprotective effect, but underlying mechanisms have been poorly addressed. In this study, IPC protected pyramidal neurons (cells) in gerbil hippocampus after transient ischemia. Additionally, IPC controlled expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2 promoter binding factor 1 (E2F1). In particular, the expression of p16INK4a was not different by IPC. These findings indicate that cyclin D1/cdk4-related signals may play important roles in events in neurons related to damage/death following ischemic insults. Especially, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults. Abstract Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 25457, Korea;
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| |
Collapse
|
4
|
Oh CS, Sa M, Park HJ, Piao L, Oh KS, Kim SH. Effects of remote ischemic preconditioning on regional cerebral oxygen saturation in patients in the beach chair position during shoulder surgery: A double-blind randomized controlled trial. J Clin Anesth 2019; 61:109661. [PMID: 31818636 DOI: 10.1016/j.jclinane.2019.109661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/20/2019] [Accepted: 11/16/2019] [Indexed: 12/18/2022]
Abstract
STUDY OBJECTIVE The beach chair position for shoulder surgery induces cerebral hypoperfusion. We evaluated the effects of remote ischemic preconditioning (RIPC) prior to surgery to ameliorate cerebral desaturation in a double-blind randomized fashion. DESIGN Blinded, prospective, randomized study. SETTING Operating room & postoperative recovery room, tertiary university hospital. PATIENTS Seventy patients scheduled for shoulder surgery were recruited. After excluding 7 patients according to the exclusion criteria, 63 patients were randomized into two groups (control and RIPC). INTERVENTIONS Remote ischemic preconditioning was applied by briefly inflating a tourniquet on the thigh three times just after inducing anesthesia in the RIPC group. MEASUREMENTS The changes in regional cerebral oxygen saturation, hemodynamic values, laboratory values, and serum levels of cytokines including interleukin (IL)-1β, IL-6, IL-10 and transforming growth factor-β were measured. MAIN RESULTS The remote ischemic preconditioning group had higher regional cerebral oxygen saturation just after establishment of the beach chair position (P = 0.002) and lower cerebral desaturation (P = 0.007) during operation than the control group. Hemodynamic and laboratory values did not differ between the groups. There were no significant intergroup differences in cytokine levels. CONCLUSION Remote ischemic preconditioning before surgery ameliorates cerebral desaturation in patients in the beach chair position during shoulder surgery. Trial Registry Number: KCT0001384 (http://cris.nih.go.kr).
Collapse
Affiliation(s)
- Chung-Sik Oh
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Mijung Sa
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hyun Jun Park
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Liyun Piao
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Oh
- Department of Orthopedic Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seong-Hyop Kim
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea; Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 2019; 9:13032. [PMID: 31506563 PMCID: PMC6737192 DOI: 10.1038/s41598-019-49623-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
Abnormal activation of cyclin-dependent kinase 5 (Cdk5) is associated with pathophysiological conditions. Ischemic preconditioning (IPC) can provide neuroprotective effects against subsequent lethal ischemic insult. The objective of this study was to determine how Cdk5 and related molecules could affect neuroprotection in the hippocampus of gerbils after with IPC [a 2-min transient cerebral ischemia (TCI)] followed by 5-min subsequent TCI. Hippocampal CA1 pyramidal neurons were dead at 5 days post-TCI. However, treatment with roscovitine (a potent inhibitor of Cdk5) and IPC protected CA1 pyramidal neurons from TCI. Expression levels of Cdk5, p25, phospho (p)-Rb and p-p53 were increased in nuclei of CA1 pyramidal neurons at 1 and 2 days after TCI. However, these expressions were attenuated by roscovitine treatment and IPC. In particular, Cdk5, p-Rb and p-p53 immunoreactivities in their nuclei were decreased. Furthermore, TUNEL-positive CA1 pyramidal neurons were found at 5 days after TCI with increased expression levels of Bax, PUMA, and activated caspase-3. These TUNEL-positive cells and increased molecules were decreased by roscovitine treatment and IPC. Thus, roscovitine treatment and IPC could protect CA1 pyramidal neurons from TCI through down-regulating Cdk5, p25, and p-p53 in their nuclei. These findings indicate that down-regulating Cdk5 might be a key strategy to attenuate p53-dependent apoptosis of CA1 pyramidal neurons following TCI.
Collapse
|
6
|
Lee JC, Shin BN, Cho JH, Lee TK, Kim IH, Noh Y, Kim SS, Lee HA, Kim YM, Kim H, Cho JH, Park JH, Ahn JH, Kang IJ, Hwang IK, Won MH, Shin MC. Brain ischemic preconditioning protects against moderate, not severe, transient global cerebral ischemic injury. Metab Brain Dis 2018; 33:1193-1201. [PMID: 29644488 DOI: 10.1007/s11011-018-0231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Ischemic preconditioning (IPC) in the brain increases ischemic tolerance to subsequent ischemic insults. In this study, we examined whether IPC protects neurons and attenuates microgliosis or not in the hippocampus following severe transient global cerebral ischemia (TCI) in gerbils. Gerbils were assigned to 8 groups; 5- and 15-min sham operated groups, 5-min and 15-min TCI operated groups, IPC plus 5- and 15-min sham operated groups, and IPC plus 5- and 15-min TCI operated groups. IPC was induced by subjecting animals to 2-min transient ischemia 1 day before 5-min TCI for a typical transient ischemia and 15-min TCI for severe transient ischemia. Neuronal damage was examined by cresyl violet staining and Fluoro-Jade B histofluorescence staining. In addition, microglial activation was examined using immunohistochemistry for Iba-1 (a marker for microglia). Delayed neuronal death and microgliosis was found in the CA1 alone in the 5-min TCI operated group at 5 days post-ischemia, and, in the 15-min TCI operated group, neuronal death and microgliosis was shown in all CA areas (CA1-3) and the dentate gyrus. IPC displayed neuroprotection and attenuated microglial activation in the 5-min TCI operated group. However, in the 15-min TCI operated group, IPC did not show neuroprotection and not attenuate microglial activation. Our present findings indicate that IPC hardly protect against severe transient cerebral ischemic injury.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bich-Na Shin
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In Hye Kim
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - YooHun Noh
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - Sung-Su Kim
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeyoung Kim
- Department of Anesthesiology and Pain Medicine, Chungju Hospital, Konkuk University School of Medicine, Chungju, 27376, Republic of Korea
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Lee JC, Park CW, Shin MC, Cho JH, Lee HA, Kim YM, Park JH, Ahn JH, Cho JH, Tae HJ, Hwang IK, Lee TK, Won MH, Kang IJ. Tumor necrosis factor receptor 2 is required for ischemic preconditioning-mediated neuroprotection in the hippocampus following a subsequent longer transient cerebral ischemia. Neurochem Int 2018; 118:292-303. [PMID: 29777731 DOI: 10.1016/j.neuint.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Tumor Necrosis Factor-α (TNF-α) is a proinflammatory cytokine implicated in neuronal damage in response to cerebral ischemia. Ischemic preconditioning (IPC) provides neuroprotection against a subsequent severer or longer transient ischemia by ischemic tolerance. Here, we focused on the role of TNF-α in IPC-mediated neuroprotection against neuronal death following a subsequent longer transient cerebral ischemia (TCI). Gerbils used in this study were randomly assigned to eight groups; sham group, TCI operated group, IPC plus (+) sham group, IPC + TCI operated group, sham + etanercept (an inhibitor of TNF-a) group, TCI + etanercept group, IPC + sham + etanercept group, and IPC + TCI + etanercept group. IPC was induced by a 2-min sublethal transient ischemia, which was operated 1 day prior to a longer (5-min) TCI. A significant death of neurons was found in the stratum pyramidale (SP) in the CA1 area (CA1) of the hippocampus 5 days after TCI; however, IPC protected SP neurons from TCI. We found that TNF-α immunoreactivity was significantly increased in CA1 pyramidal neurons in the TCI and IPC + TCI groups compared to the sham group. TNF-R1 expression in CA1 pyramidal neurons of the TCI group was also increased 1 and 2 days after TCI; however, in the IPC + TCI group, TNF-R1 expression was significantly lower than that in the TCI group. On the other hand, we did not detect TNF-R2 immunoreactivity in CA1 pyramidal neurons 1 and 2 days after TCI; meanwhile, in the IPC + TCI group, TNF-R2 expression was significantly increased compared to TNF-R2 expression at 1 and 2 days after TCI. In addition, in this group, TNF-R2 was newly expressed in pericytes, which are important cells in the blood brain barrier, from 1 day after TCI. When we treated etanercept to the IPC + TCI group, IPC-induced neuroprotection was significantly weakened. In brief, this study indicates that IPC confers neuroprotection against TCI by TNF-α signaling through TNF-R2 and suggests that the enhancement of TNF-R2 expression by IPC may be a legitimate strategy for a therapeutic intervention of TCI.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252 Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252 Republic of Korea
| | - Jeong Hwi Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, 54596 Republic of Korea
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, 54596 Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea.
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon, 24252 Republic of Korea.
| |
Collapse
|
8
|
Lee JC, Kim YH, Lee TK, Kim IH, Cho JH, Cho GS, Shin BN, Park JH, Ahn JH, Shin MC, Cho JH, Kang IJ, Won MH, Seo JY. Effects of ischemic preconditioning on PDGF-BB expression in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 2017. [PMID: 28627606 PMCID: PMC5562056 DOI: 10.3892/mmr.2017.6799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic preconditioning (IPC) is induced by exposure to brief durations of transient ischemia, which results in ischemic tolerance to a subsequent longer or lethal period of ischemia. In the present study, the effects of IPC (2 min of transient cerebral ischemia) were examined on immunoreactivity of platelet‑derived growth factor (PDGF)‑BB and on neuroprotection in the gerbil hippocampal CA1 region following lethal transient cerebral ischemia (LTCI; 5 min of transient cerebral ischemia). IPC was subjected to a 2‑min sublethal ischemia and a LTCI was given 5‑min transient ischemia. The animals in all of the groups were given recovery times of 1, 2 and 5 days and change in PDGF‑BB immunoreactivity was examined as was the neuronal damage/death in the hippocampus induced by LTCI. LTCI induced a significant loss of pyramidal neurons in the hippocampal CA1 region 5 days after LTCI, and significantly decreased PDGF‑BB immunoreactivity in the CA1 pyramidal neurons from day 1 after LTCI. Conversely, IPC effectively protected the CA1 pyramidal neurons from LTCI and increased PDGF‑BB immunoreactivity in the CA1 pyramidal neurons post‑LTCI. In conclusion, the results demonstrated that LTCI significantly altered PDGF‑BB immunoreactivity in pyramidal neurons in the hippocampal CA1 region, whereas IPC increased the immunoreactivity. These findings indicated that PDGF‑BB may be associated with IPC‑mediated neuroprotection.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Geum-Sil Cho
- Pharmacology and Toxicology Department, Shinpoong Pharmaceutical Co., Ltd., Ansan, Gyeonggi 15610, Republic of Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jeong Yeol Seo
- Department of Emergency Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
9
|
Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia. Mol Neurobiol 2016; 54:6984-6998. [DOI: 10.1007/s12035-016-0219-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
10
|
Park SM, Park CW, Lee TK, Cho JH, Park JH, Lee JC, Chen BH, Shin BN, Ahn JH, Tae HJ, Shin MC, Ohk TG, Cho JH, Won MH, Choi SY, Kim IH. Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia. Neural Regen Res 2016; 11:1081-9. [PMID: 27630689 PMCID: PMC4994448 DOI: 10.4103/1673-5374.187039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ischemic preconditioning (IPC) is a condition of sublethal transient global ischemia and exhibits neuroprotective effects against subsequent lethal ischemic insult. We, in this study, examined the neuroprotective effects of IPC and its effects on immunoreactive changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Pyramidal neurons of the stratum pyramidale (SP) in the hippocampal CA1 region of animals died 5 days after lethal transient ischemia without IPC (8.6% (ratio of remanent neurons) of the sham-operated group); however, IPC prevented the pyramidal neurons from subsequent lethal ischemic injury (92.3% (ratio of remanent neurons) of the sham-operated group). SOD1, SOD2, CAT and GPX immunoreactivities in the sham-operated animals were easily detected in pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region, while all of these immunoreactivities were rarely detected in the stratum pyramidale at 5 days after lethal transient ischemia without IPC. Meanwhile, their immunoreactivities in the sham-operated animals with IPC were similar to (SOD1, SOD2 and CAT) or higher (GPX) than those in the sham-operated animals without IPC. Furthermore, their immunoreactivities in the stratum pyramidale of the ischemia-operated animals with IPC were steadily maintained after lethal ischemia/reperfusion. Results of western blot analysis for SOD1, SOD2, CAT and GPX were similar to immunohistochemical data. In conclusion, IPC maintained or increased the expression of antioxidant enzymes in the stratum pyramidale of the hippocampal CA1 region after subsequent lethal transient forebrain ischemia and IPC exhibited neuroprotective effects in the hippocampal CA1 region against transient forebrain ischemia.
Collapse
Affiliation(s)
- Seung Min Park
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
11
|
Lee JC, Park JH, Kim IH, Cho GS, Ahn JH, Tae HJ, Choi SY, Cho JH, Kim DW, Kwon YG, Kang IJ, Won MH, Kim YM. Neuroprotection of ischemic preconditioning is mediated by thioredoxin 2 in the hippocampal CA1 region following a subsequent transient cerebral ischemia. Brain Pathol 2016; 27:276-291. [PMID: 27117068 DOI: 10.1111/bpa.12389] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/20/2016] [Indexed: 12/26/2022] Open
Abstract
Preconditioning by brief ischemic episode induces tolerance to a subsequent lethal ischemic insult, and it has been suggested that reactive oxygen species are involved in this phenomenon. Thioredoxin 2 (Trx2), a small protein with redox-regulating function, shows cytoprotective roles against oxidative stress. Here, we had focused on the role of Trx2 in ischemic preconditioning (IPC)-mediated neuroprotection against oxidative stress followed by a subsequent lethal transient cerebral ischemia. Animals used in this study were randomly assigned to six groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group, IPC + ischemia-operated group, IPC + auranofin (a TrxR2 inhibitor) + sham-operated group and IPC + auranofin + ischemia-operated group. IPC was subjected to a 2 minutes of sublethal transient ischemia 1 day prior to a 5 minutes of lethal transient ischemia. A significant loss of neurons was found in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischemia-operated-group 5 days after ischemia-reperfusion; in the IPC + ischemia-operated-group, pyramidal neurons in the SP were well protected. In the IPC + ischemia-operated-group, Trx2 and TrxR2 immunoreactivities in the SP and its protein level in the CA1 were not significantly changed compared with those in the sham-operated-group after ischemia-reperfusion. In addition, superoxide dismutase 2 (SOD2) expression, superoxide anion radical ( O2-) production, denatured cytochrome c expression and TUNEL-positive cells in the IPC + ischemia-operated-group were similar to those in the sham-operated-group. Conversely, the treatment of auranofin to the IPC + ischemia-operated-group significantly increased cell damage/death and abolished the IPC-induced effect on Trx2 and TrxR2 expressions. Furthermore, the inhibition of Trx2R nearly cancelled the beneficial effects of IPC on SOD2 expression, O2- production, denatured cytochrome c expression and TUNEL-positive cells. In brief, this study shows that IPC conferred neuroprotection against ischemic injury by maintaining Trx2 and suggests that the maintenance or enhancement of Trx2 expression by IPC may be a legitimate strategy for therapeutic intervention of cerebral ischemia.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Geum-Sil Cho
- Pharmacology & Toxicology Department, Shinpoong Pharmaceutical Co., Ltd., Ansan, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
12
|
Hye Kim I, Lee JC, Ha Park J, Hyeon Ahn J, Cho JH, Hui Chen B, Na Shin B, Chun Yan B, Rueol Ryu D, Hong S, Hwi Cho J, Lyul Lee Y, Kim YM, Cho BR, Won MH. Time interval after ischaemic preconditioning affects neuroprotection and gliosis in the gerbil hippocampal CA1 region induced by transient cerebral ischaemia. Neurol Res 2016; 38:210-9. [DOI: 10.1179/1743132815y.0000000098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Hong S, Ahn JY, Cho GS, Kim IH, Cho JH, Ahn JH, Park JH, Won MH, Chen BH, Shin BN, Tae HJ, Park SM, Cho JH, Choi SY, Lee JC. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia. Neural Regen Res 2015; 10:1604-11. [PMID: 26692857 PMCID: PMC4660753 DOI: 10.4103/1673-5374.167757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia.
Collapse
Affiliation(s)
- Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Yun Ahn
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea ; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Seung Min Park
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea ; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
14
|
Yakovlev AA, Gulyaeva NV. Possible role of proteases in preconditioning of brain cells to pathological conditions. BIOCHEMISTRY (MOSCOW) 2015; 80:163-71. [PMID: 25756531 DOI: 10.1134/s0006297915020030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preconditioning (PC) is one of the most effective strategies to reduce the severity of cell damage, in particular of nervous tissue cells. Although PC mechanisms are studied insufficiently, it is clear that proteases are involved in them, but their role has yet been not studied in detail. In this work, some mechanisms of a potential recruiting of proteases in PC are considered. Our attention is mainly focused on the protease families of caspases and cathepsins and on protease receptors. We present evidence that just these proteins are involved in the PC of brain cells. A hypothesis is proposed that secreted cathepsin B is involved in the realization of PC through activation of PAR2 receptor.
Collapse
Affiliation(s)
- A A Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | | |
Collapse
|
15
|
Kitabatake TT, Marini LDC, Gonçalves RB, Bertolino G, de Souza HCD, de Araujo JE. Behavioral effects and neural changes induced by continuous and not continuous treadmill training, post bilateral cerebral ischemia in gerbils. Behav Brain Res 2015; 291:20-25. [DOI: 10.1016/j.bbr.2015.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 02/04/2023]
|
16
|
Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia. Neurochem Res 2015; 40:1984-95. [PMID: 26290267 DOI: 10.1007/s11064-015-1694-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 12/31/2022]
Abstract
Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia.
Collapse
|
17
|
Nikkola E, Laiwalla A, Ko A, Alvarez M, Connolly M, Ooi YC, Hsu W, Bui A, Pajukanta P, Gonzalez NR. Remote Ischemic Conditioning Alters Methylation and Expression of Cell Cycle Genes in Aneurysmal Subarachnoid Hemorrhage. Stroke 2015; 46:2445-51. [PMID: 26251247 DOI: 10.1161/strokeaha.115.009618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Remote ischemic conditioning (RIC) is a phenomenon in which short periods of nonfatal ischemia in 1 tissue confers protection to distant tissues. Here we performed a longitudinal human pilot study in patients with aneurysmal subarachnoid hemorrhage undergoing RIC by limb ischemia to compare changes in DNA methylation and transcriptome profiles before and after RIC. METHODS Thirteen patients underwent 4 RIC sessions over 2 to 12 days after rupture of an intracranial aneurysm. We analyzed whole blood transcriptomes using RNA sequencing and genome-wide DNA methylomes using reduced representation bisulfite sequencing, both before and after RIC. We tested differential expression and differential methylation using an intraindividual paired study design and then overlapped the differential expression and differential methylation results for analyses of functional categories and protein-protein interactions. RESULTS We observed 164 differential expression genes and 3493 differential methylation CpG sites after RIC, of which 204 CpG sites overlapped with 103 genes, enriched for pathways of cell cycle (P<3.8×10(-4)) and inflammatory responses (P<1.4×10(-4)). The cell cycle pathway genes form a significant protein-protein interaction network of tightly coexpressed genes (P<0.00001). CONCLUSIONS Gene expression and DNA methylation changes in aneurysmal subarachnoid hemorrhage patients undergoing RIC are involved in coordinated cell cycle and inflammatory responses.
Collapse
Affiliation(s)
- Elina Nikkola
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Azim Laiwalla
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Arthur Ko
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Marcus Alvarez
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Mark Connolly
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Yinn Cher Ooi
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - William Hsu
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Alex Bui
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Päivi Pajukanta
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Nestor R Gonzalez
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.).
| |
Collapse
|
18
|
Gonzalez NR, Connolly M, Dusick JR, Bhakta H, Vespa P. Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery 2015; 75:590-8; discussion 598. [PMID: 25072112 DOI: 10.1227/neu.0000000000000514] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Remote ischemic conditioning (RIC) is a powerful endogenous mechanism whereby a sublethal ischemic stimulus confers a protective benefit against a subsequent severe ischemic insult. RIC has significant potential clinical implications for the prevention of delayed ischemic neurological deficit after aneurysmal subarachnoid hemorrhage (aSAH). Although RIC has been extensively investigated in animal models, it has not been fully evaluated in humans. OBJECTIVE To assess the feasibility and safety of RIC for aSAH in a phase I clinical trial. METHODS Consecutive patients hospitalized for treatment of an aSAH who met the inclusion/exclusion criteria were approached for consent. Enrolled patients received up to 4 RIC sessions on nonconsecutive days. Primary end points were the development of a symptomatic deep venous thrombosis, bruising, or injury to the limb and request to stop by the patient or surrogate. The secondary end points were the development of new neurological deficits or cerebral infarct, demonstrated by brain imaging after enrollment, and neurological deficit and condition at follow-up. RESULTS Twenty patients were enrolled and underwent 76 RIC sessions, 75 of which were completed successfully. One session was discontinued when the patient became confused. No patient developed a deep venous thrombosis or injury to the preconditioned limb. No patient developed delayed ischemic neurological deficit during enrollment. At follow-up, median modified Rankin Scale score was 1 and Glasgow Outcome Scale score was 5. CONCLUSION The RIC procedure was well tolerated and did not cause any injury. RIC for aSAH warrants investigation in a subsequent pivotal clinical trial.
Collapse
Affiliation(s)
- Nestor R Gonzalez
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, California
| | | | | | | | | |
Collapse
|
19
|
Cho YS, Cho JH, Shin BN, Cho GS, Kim IH, Park JH, Ahn JH, Ohk TG, Cho BR, Kim YM, Hong S, Won MH, Lee JC. Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 2015; 12:4939-46. [PMID: 26134272 PMCID: PMC4581829 DOI: 10.3892/mmr.2015.4021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/15/2015] [Indexed: 01/06/2023] Open
Abstract
Glucokinase (GK) is involved in the control of blood glucose homeostasis. In the present study, the effect of ischemic preconditioning (IPC) on the immunoreactivities of GK and its regulatory protein (GKRP) following 5 min of transient cerebral ischemia was investigated in gerbils. The gerbils were randomly assigned to four groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia, followed by 1 day of recovery. In the ischemia-operated group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) at 5 days post-ischemia; however, in the IPC+ischemia-operated group, the neurons in the SP were well protected. Following immunohistochemical investigation, the immunoreactivities of GK and GKRP in the neurons of the SP were markedly decreased in the CA1, but not the CA2/3, from 2 days post-ischemia, and were almost undetectable in the SP 5 days post-ischemia. In the IPC + ischemia-operated group, the immunoreactivities of GK and GKRP in the SP of the CA1 were similar to those in the sham-group. In brief, the findings of the present study demonstrated that IPC notably maintained the immunoreactivities of GK and GKRP in the neurons of the SP of CA1 following ischemia-reperfusion. This indicated that GK and GKRP may be necessary for neuron survival against transient cerebral ischemia.
Collapse
Affiliation(s)
- Young Shin Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136‑705, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Byung-Ryul Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
20
|
Wang Y, Reis C, Applegate R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 2015; 272:26-40. [PMID: 25900056 DOI: 10.1016/j.expneurol.2015.04.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, China
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA; Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
21
|
Lee JC, Tae HJ, Cho GS, Kim IH, Ahn JH, Park JH, Chen BH, Cho JH, Shin BN, Cho JH, Bae EJ, Park J, Kim YM, Choi SY, Won MH. Ischemic preconditioning protects neurons from damage and maintains the immunoreactivity of kynurenic acid in the gerbil hippocampal CA1 region following transient cerebral ischemia. Int J Mol Med 2015; 35:1537-44. [PMID: 25872573 PMCID: PMC4432926 DOI: 10.3892/ijmm.2015.2171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/03/2015] [Indexed: 12/25/2022] Open
Abstract
Pyramidal neurons in region I of hippocampus proper (CA1) are particularly vulnerable to excitotoxic processes following transient forebrain ischemia. Kynurenic acid (KYNA) is a small molecule derived from tryptophan when this amino acid is metabolized through the kynurenine pathway. In the present study, we examined the effects of ischemic preconditioning (IPC) on the immunoreactivity and protein levels of KYNA following 5 min of transient forebrain ischemia in gerbils. The animals were randomly assigned to 4 groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated group, we observed a significant loss of pyramidal neurons in the CA1 stratum pyramidale (SP) at 5 days post-ischemia; however, in the IPC + ischemia-operated group, the pyramidal neurons were well protected. KYNA immunoreactivity in the SP of the ischemia-operated group was significantly altered following ischemia-reperfusion and was very low 5 days following ischemia-reperfusion. In the IPC + ischemia-operated group, however, KYNA immunoreactivity was constitutively detected in the SP of the CA1 region after the ischemic insult. We also found that the alteration pattern of the KYNA protein level in the CA1 region following ischemia was generally similar to the immunohistochemical changes observed. In brief, our findings demonstrated that IPC maintained and even increased KYNA immunoreactivity in the SP of the CA1 region following ischemia-reperfusion. The data from the present study thus indicate that the enhancement of KYNA expression by IPC may be necessary for neuronal survival following transient ischemic injury.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Joo Bae
- Department of Pediatrics, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 200-701, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
22
|
Lee JC, Cho JH, Kim IH, Ahn JH, Park JH, Cho GS, Chen BH, Shin BN, Tae HJ, Park SM, Ahn JY, Kim DW, Cho JH, Bae EJ, Yong JH, Kim YM, Won MH, Lee YL. Ischemic preconditioning inhibits expression of Na + /H + exchanger 1 (NHE1) in the gerbil hippocampal CA1 region after transient forebrain ischemia. J Neurol Sci 2015; 351:146-153. [DOI: 10.1016/j.jns.2015.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022]
|
23
|
p63 Expression in the Gerbil Hippocampus Following Transient Ischemia and Effect of Ischemic Preconditioning on p63 Expression in the Ischemic Hippocampus. Neurochem Res 2015; 40:1013-22. [PMID: 25777256 DOI: 10.1007/s11064-015-1556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 01/17/2023]
Abstract
p63 is a transcription factor of p53 gene family, which are involved in development, differentiation and cell response to stress; however, its roles in ischemic preconditioning (IPC) in the brain are not clear. In the present study, we investigated the effect of IPC on p63 immunoreactivity caused by 5 min of transient cerebral ischemia in gerbils. IPC was induced by subjecting the gerbils to 2 min of transie ischemia 1 day prior to 5 min of transient ischemia. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+)-sham-operated-group and IPC + ischemia-operated-group). The number of viable neurons in the stratum pyramidale of the hippocampal CA1 region (CA1) was significantly increased by IPC + ischemia-operated-group compared with that in the ischemia-operated-group 5 days after ischemic insult. We found that strong p63 immunoreactivity was detected in the CA1 pyramidal neurons in the sham-operated-group, and the immunoreactivity was decreased with time after ischemia-reperfusion. In addition, strong p63 immunoreactivity was newly expressed in microglial cells of the CA1 region from 2 days after ischemia-reperfusion. In all the IPC + sham-operated-groups, p63 immunoreactivity in the CA1 pyramidal neurons was similar to that in the sham-operated-group, and the immunoreactivity was well maintained in the IPC + ischemia-operated-groups after cerebral ischemia. In brief, our present findings show that IPC dramatically protected the reduction of p63 immunoreactivity in the pyramidal neurons of the CA1 region after ischemia-reperfusion, and this result suggests that the expression of p63 may be necessary for neurons to survive after transient cerebral ischemia.
Collapse
|
24
|
Lee JC, Kim IH, Park JH, Ahn JH, Cho JH, Cho GS, Tae HJ, Chen BH, Yan BC, Yoo KY, Choi JH, Lee CH, Hwang IK, Cho JH, Kwon YG, Kim YM, Won MH. Ischemic preconditioning protects hippocampal pyramidal neurons from transient ischemic injury via the attenuation of oxidative damage through upregulating heme oxygenase-1. Free Radic Biol Med 2015; 79:78-90. [PMID: 25483558 DOI: 10.1016/j.freeradbiomed.2014.11.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 01/17/2023]
Abstract
Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic injury by activating specific mechanisms. In this study, we tested the hypothesis that IPC attenuates postischemic neuronal death via heme oxygenase-1 (HO-1). Animals used in this study were randomly assigned to 4 groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group and IPC+ischemia-operated group. IPC was induced by subjecting gerbils to 2min of ischemia followed by 1 day of recovery. A significant loss of neurons was observed in pyramidal neurons of the hippocampal CA1 region (CA1) in the ischemia-operated groups at 5 days postischemia. In the IPC+ischemia-operated groups, CA1 pyramidal neurons were well protected. The level of HO-1 protein and its activity increased significantly in the CA1 of the IPC+sham-operated group, and the level and activity was maintained in all the time after ischemia-reperfusion compared with the ischemia-operated groups. HO-1 immunoreactivity was induced in the CA1 pyramidal neurons in both IPC+sham-operated- and IPC+ischemia-operated groups. We also found that levels or immunoreactivities of superoxide anion, 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal were significantly decreased in the CA1 of both IPC+sham-operated- and IPC+ischemia-operated groups. Whereas, treatment with zinc protoporphyrin IX (a HO-1 inhibitor) into the IPC+ischemia-operated groups did not preserve the IPC-mediated increase of HO-1 and lost beneficial effects of IPC by inhibiting ischemia-induced DNA damage and lipid peroxidation. In brief, IPC protects CA1 pyramidal neurons from ischemic injury by upregulating HO-1, and we suggest that the enhancement of HO-1 expression by IPC may be a legitimate strategy for a therapeutic intervention of cerebral ischemic damage.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional & Western Medicine & Medical College, Yangzhou University, Yangzhou 225-001, China
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung 210-702, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
25
|
Park YS, Cho JH, Kim IH, Cho GS, Cho JH, Park JH, Ahn JH, Chen BH, Shin BN, Shin MC, Tae HJ, Cho YS, Lee YL, Kim YM, Won MH, Lee JC. Effects of ischemic preconditioning on VEGF and pFlk-1 immunoreactivities in the gerbil ischemic hippocampus after transient cerebral ischemia. J Neurol Sci 2014; 347:179-87. [PMID: 25300771 DOI: 10.1016/j.jns.2014.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/01/2014] [Accepted: 09/23/2014] [Indexed: 01/19/2023]
Abstract
Ischemia preconditioning (IPC) displays an important adaptation of the CNS to sub-lethal ischemia. In the present study, we examined the effect of IPC on immunoreactivities of VEGF-, and phospho-Flk-1 (pFlk-1) following transient cerebral ischemia in gerbils. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+) sham-operated-group, and IPC+ischemia-operated-group). IPC was induced by subjecting gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated-group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) alone 5 days after ischemia-reperfusion, however, in all the IPC+ischemia-operated-groups, pyramidal neurons in the SP were well protected. In immunohistochemical study, VEGF immunoreactivity in the ischemia-operated-group was increased in the SP at 1 day post-ischemia and decreased with time. Five days after ischemia-reperfusion, strong VEGF immunoreactivity was found in non-pyramidal cells, which were identified as pericytes, in the stratum oriens (SO) and radiatum (SR). In the IPC+sham-operated- and IPC+ischemia-operated-groups, VEGF immunoreactivity was significantly increased in the SP. pFlk-1 immunoreactivity in the sham-operated- and ischemia-operated-groups was hardly found in the SP, and, from 2 days post-ischemia, pFlk-1 immunoreactivity was strongly increased in non-pyramidal cells, which were identified as pericytes. In the IPC+sham-operated-group, pFlk-1 immunoreactivity was significantly increased in both pyramidal and non-pyramidal cells; in the IPC+ischemia-operated-groups, the similar pattern of VEGF immunoreactivity was found in the ischemic CA1, although the VEGF immunoreactivity was strong in non-pyramidal cells at 5 days post-ischemia. In brief, our findings show that IPC dramatically augmented the induction of VEGF and pFlk-1 immunoreactivity in the pyramidal cells of the CA1 after ischemia-reperfusion, and these findings suggest that the increases of VEGF and Flk-1 expressions may be necessary for neurons to survive from transient ischemic damage.
Collapse
Affiliation(s)
- Yoo Seok Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Geum-Sil Cho
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Young Shin Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 140-743, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
26
|
Biomarkers for ischemic preconditioning: finding the responders. J Cereb Blood Flow Metab 2014; 34:933-41. [PMID: 24643082 PMCID: PMC4050240 DOI: 10.1038/jcbfm.2014.42] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022]
Abstract
Ischemic preconditioning is emerging as an innovative and novel cytoprotective strategy to counter ischemic vascular disease. At the root of the preconditioning response is the upregulation of endogenous defense systems to achieve ischemic tolerance. Identifying suitable biomarkers to show that a preconditioning response has been induced remains a translational research priority. Preconditioning leads to a widespread genomic and proteonomic response with important effects on hemostatic, endothelial, and inflammatory systems. The present article summarizes the relevant preclinical studies defining the mechanisms of preconditioning, reviews how the human preconditioning response has been investigated, and which of these bioresponses could serve as a suitable biomarker. Human preconditioning studies have investigated the effects of preconditioning on coagulation, endothelial factors, and inflammatory mediators as well as on genetic expression and tissue blood flow imaging. A biomarker for preconditioning would significantly contribute to define the optimal preconditioning stimulus and the extent to which such a response can be elicited in humans and greatly aid in dose selection in the design of phase II trials. Given the manifold biologic effects of preconditioning a panel of multiple serum biomarkers or genomic assessments of upstream regulators may most accurately reflect the full spectrum of a preconditioning response.
Collapse
|
27
|
Ischemic preconditioning-induced neuroprotection against transient cerebral ischemic damage via attenuating ubiquitin aggregation. J Neurol Sci 2014; 336:74-82. [DOI: 10.1016/j.jns.2013.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/16/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022]
|
28
|
Affiliation(s)
- Sebastian Koch
- From the Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL (S.K.); and Departments of Neurosurgery and Radiology, University of California, Los Angeles, CA (N.G.)
| | - Nestor Gonzalez
- From the Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL (S.K.); and Departments of Neurosurgery and Radiology, University of California, Los Angeles, CA (N.G.)
| |
Collapse
|
29
|
Shmonin AA, Baisa AE, Melnikova EV, Vavilov VN, Vlasov TD. Protective Effects of Early Ischemic Preconditioning in Focal Cerebral Ischemia in Rats: The Role of Collateral Blood Circulation. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11055-012-9615-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Liang CL, Lu K, Liliang PC, Chen TB, Chan SHH, Chen HJ. Ischemic preconditioning ameliorates spinal cord ischemia-reperfusion injury by triggering autoregulation. J Vasc Surg 2011; 55:1116-23. [PMID: 22133453 DOI: 10.1016/j.jvs.2011.09.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The mechanism underlying ischemic preconditioning (IPC) protection against spinal cord ischemia-reperfusion (I/R) injury is unclear. We investigated the role of spinal cord autoregulation in tolerance to spinal cord I/R injury induced by IPC in a rat model. METHODS Sprague-Dawley rats were randomly assigned to four groups. IPC (P) group animals received IPC by temporary thoracic aortic occlusion (AO) with a 2F Fogarty arterial embolectomy catheter (Baxter Healthcare, Irvine, Calif) for 3 minutes. The I/R injury (I/R) group animals were treated with blood withdrawal and temporary AO for 12 minutes, and shed blood reinfusion at the end of the procedures. The P+I/R animals received IPC, followed by 5 minutes reperfusion, and then I/R procedures for 12 minutes. Sham (S) group animals received anesthesia and underwent surgical preparation, but without preconditioning or I/R injury. Neurologic function on postprocedure days 1, 3, 5, and 7 was evaluated by Tarlov scoring. Lumbar segments were harvested for histopathologic examination on day 7. To evaluate the role of autoregulation in IPC, spinal cord blood flow and tissue oxygenation were continuously monitored throughout the procedure duration. RESULTS The Tarlov scores in the I/R group were significantly lower than those in the S, P, and P+I/R groups on days 1, 3, 5, and 7 (P < .001). No significant differences were noted between the S, P, and P+I/R groups. The numbers of surviving motor neurons in the S, P, and P+I/R groups were significantly higher than those in the I/R group (P < .001); however, the number of surviving motor neurons did not differ between the S, P, and P+I/R groups. The P group exhibited higher spinal cord blood flow (P = .001-.043) and tissue oxygenation (P = .032-.043) within the first 60 minutes after reperfusion than the S group. The P+I/R group exhibited higher spinal cord blood flow (P = .016-.045) and tissue oxygenation (P = .001-.038) within the first 60 minutes after reperfusion than the I/R group. CONCLUSIONS IPC ameliorates spinal cord I/R injury in rats, probably mediated by triggering spinal cord autoregulation and improving local spinal cord blood flow and tissue oxygenation. This concept may be the new therapeutic targets in patients requiring aortic surgery.
Collapse
Affiliation(s)
- Cheng-Loong Liang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM, Han BH, Zipfel GJ. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 2011; 42:776-82. [PMID: 21317271 PMCID: PMC3042520 DOI: 10.1161/strokeaha.110.607200] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/28/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Vasospasm-induced delayed cerebral ischemia remains a major source of morbidity in patients with aneurysmal subarachnoid hemorrhage (SAH). We hypothesized that activating innate neurovascular protective mechanisms by preconditioning (PC) may represent a novel therapeutic approach against SAH-induced vasospasm and neurological deficits and, secondarily, that the neurovascular protection it provides is mediated by endothelial nitric oxide synthase (eNOS). METHODS Wild-type mice were subjected to hypoxic PC or normoxia followed 24 hours later by SAH. Neurological function was analyzed daily; vasospasm was assessed on post-surgery Day 2. Nitric oxide availability, eNOS expression, and eNOS activity were also assessed. In a separate experiment, wild-type and eNOS-null mice were subjected to hypoxic PC or normoxia followed by SAH and assessed for vasospasm and neurological deficits. RESULTS PC nearly completely prevented SAH-induced vasospasm and neurological deficits. It also prevented SAH-induced reduction in nitric oxide availability and increased eNOS activity in mice with and without SAH. PC-induced protection against vasospasm and neurological deficits was lost in wild-type mice treated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester and in eNOS-null mice. CONCLUSIONS Endogenous protective mechanisms against vasospasm exist, are powerful, and can be induced by PC. eNOS-derived nitric oxide is a critical mediator of PC-induced neurovascular protection. These data provide strong "proof-of-principle" evidence that PC represents a promising new strategy to reduce vasospasm and delayed cerebral ischemia after SAH.
Collapse
Affiliation(s)
- Ananth K. Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Eric Milner
- Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Tej D. Azad
- Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Michael D. Harries
- Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Meng-Liang Zhou
- Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey M. Gidday
- Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Byung Hee Han
- Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Gregory J. Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
32
|
The Effects of Isoflurane Pretreatment on Cerebral Blood Flow, Capillary Permeability, and Oxygen Consumption in Focal Cerebral Ischemia in Rats. Anesth Analg 2010; 110:1412-8. [DOI: 10.1213/ane.0b013e3181d6c0ae] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
STETLER RANNE, ZHANG FENG, LIU COLLIN, CHEN JUN. Ischemic tolerance as an active and intrinsic neuroprotective mechanism. HANDBOOK OF CLINICAL NEUROLOGY 2009; 92:171-95. [PMID: 18790275 PMCID: PMC2710312 DOI: 10.1016/s0072-9752(08)01909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - FENG ZHANG
- University of Pittsburgh, Pittsburgh, PA, USA
| | - COLLIN LIU
- University of Pittsburgh, Pittsburgh, PA, USA
| | - JUN CHEN
- University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008; 88:211-47. [PMID: 18195087 DOI: 10.1152/physrev.00039.2006] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic tolerance describes the adaptive biological response of cells and organs that is initiated by preconditioning (i.e., exposure to stressor of mild severity) and the associated period during which their resistance to ischemia is markedly increased. This topic is attracting much attention because preconditioning-induced ischemic tolerance is an effective experimental probe to understand how the brain protects itself. This review is focused on the molecular and related functional changes that are associated with, and may contribute to, brain ischemic tolerance. When the tolerant brain is subjected to ischemia, the resulting insult severity (i.e., residual blood flow, disruption of cellular transmembrane gradients) appears to be the same as in the naive brain, but the ensuing lesion is substantially reduced. This suggests that the adaptive changes in the tolerant brain may be primarily directed against postischemic and delayed processes that contribute to ischemic damage, but adaptive changes that are beneficial during the subsequent test insult cannot be ruled out. It has become clear that multiple effectors contribute to ischemic tolerance, including: 1) activation of fundamental cellular defense mechanisms such as antioxidant systems, heat shock proteins, and cell death/survival determinants; 2) responses at tissue level, especially reduced inflammatory responsiveness; and 3) a shift of the neuronal excitatory/inhibitory balance toward inhibition. Accordingly, an improved knowledge of preconditioning/ischemic tolerance should help us to identify neuroprotective strategies that are similar in nature to combination therapy, hence potentially capable of suppressing the multiple, parallel pathophysiological events that cause ischemic brain damage.
Collapse
Affiliation(s)
- Tihomir Paul Obrenovitch
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
35
|
Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 2007; 27:7083-93. [PMID: 17611261 PMCID: PMC6794575 DOI: 10.1523/jneurosci.1645-07.2007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral ischemic preconditioning or tolerance is a powerful neuroprotective phenomenon by which a sublethal injurious stimulus renders the brain resistant to a subsequent damaging ischemic insult. We used lipopolysaccharide (LPS) as a preconditioning stimulus in a mouse model of middle cerebral artery occlusion (MCAO) to examine whether improvements in cerebrovascular function contribute to the protective effect. Administration of LPS 24 h before MCAO reduced the infarct by 68% and improved ischemic cerebral blood flow (CBF) by 114% in brain areas spared from infarction. In addition, LPS prevented the dysfunction in cerebrovascular regulation induced by MCAO, as demonstrated by normalization of the increase in CBF produced by neural activity, hypercapnia, or by the endothelium-dependent vasodilator acetylcholine. These beneficial effects of LPS were not observed in mice lacking inducible nitric oxide synthase (iNOS) or the nox2 subunit of the superoxide-producing enzyme NADPH oxidase. LPS increased reactive oxygen species and the peroxynitrite marker 3-nitrotyrosine in wild-type mice but not in nox2 nulls. The peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) attenuated LPS-induced nitration and counteracted the beneficial effects of LPS on infarct volume, ischemic CBF, and vascular reactivity. Thus, LPS preserves neurovascular function and ameliorates CBF in regions of the ischemic territory at risk for infarction. This effect is mediated by peroxynitrite formed from iNOS-derived NO and nox2-derived superoxide. The data indicate that preservation of cerebrovascular function is an essential component of ischemic tolerance and suggest that combining neuroprotection and vasoprotection may be a valuable strategy for treating ischemic brain injury.
Collapse
Affiliation(s)
- Alexander Kunz
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Laibaik Park
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Takato Abe
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Eduardo F. Gallo
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Josef Anrather
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Ping Zhou
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Costantino Iadecola
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| |
Collapse
|
36
|
Tajima G, Shiozaki T, Seiyama A, Mohri T, Kajino K, Nakae H, Tasaki O, Ogura H, Kuwagata Y, Tanaka H, Shimazu T, Sugimoto H. Mismatch recovery of regional cerebral blood flow and brain temperature during reperfusion after prolonged brain ischemia in gerbils. ACTA ACUST UNITED AC 2007; 62:36-43; discussion 43. [PMID: 17215731 DOI: 10.1097/ta.0b013e31802dd73c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recovery of cerebral reperfusion after stroke or cardiac arrest can take a long time. We aimed to identify differences in the postischemic recovery of physiologic parameters between short and prolonged brain ischemia. METHODS Eighteen Mongolian gerbils were assigned to one of three groups: 5-minute (G5), 15-minute (G15), or 30-minute (G30) ischemia. With the use of our original microspectroscopy system, global ischemic reperfusion was performed. We measured changes in regional cerebral blood flow (r-CBF), microvessel diameter, and brain temperature (BrT) simultaneously. We also monitored somatosensory evoked potentials (SEPs) to evaluate electrophysiologic response. RESULTS Both G5 and G15 showed concurrent recovery of r-CBF and BrT with hyperemia and hyperthermia, respectively, 10 to 15 minutes after reperfusion. The increase in BrT was <1 degree C and recovered to baseline within 60 minutes after reperfusion. In G30, recovery of r-CBF was significantly delayed relative to that of BrT. The increase in BrT was >2 degrees C, peaking approximately 15 minutes after reperfusion, and then maintained increases of >1 degree C for 120 minutes. SEPs in G5 and G15 showed concomitant recovery with that of r-CBF, whereas SEP recovery in G30 was delayed relative to that of r-CBF, eventually disappearing. All except one of the G30 gerbils died within 24 hours, but all in G5 and G15 survived. CONCLUSIONS These results suggest that mismatch recovery of r-CBF and BrT after prolonged ischemia initiates metabolic derangement in brain tissue, leading to the electrochemical dysfunction and mortality.
Collapse
Affiliation(s)
- Goro Tajima
- Departments of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Adaptation is one of physiology's fundamental tenets, operating not only at the level of species, as Darwin proposed, but also at the level of tissues, cells, molecules and, perhaps, genes. During recent years, stroke neurobiologists have advanced a considerable body of evidence supporting the hypothesis that, with experimental coaxing, the mammalian brain can adapt to injurious insults such as cerebral ischaemia to promote cell survival in the face of subsequent injury. Establishing this protective phenotype in response to stress depends on a coordinated response at the genomic, molecular, cellular and tissue levels. Here, I summarize our current understanding of how 'preconditioning' stimuli trigger a cerebroprotective state known as cerebral 'ischaemic tolerance'.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|