1
|
Aihemaiti A, Yamamoto N, Piao J, Oyaizu T, Ochi H, Sato S, Okawa A, Miyata T, Tsuji K, Ezura Y, Asou Y. A novel PAI-1 inhibitor prevents ageing-related muscle fiber atrophy. Biochem Biophys Res Commun 2020; 534:849-856. [PMID: 33213843 DOI: 10.1016/j.bbrc.2020.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
Sarcopenia is among the most common medical problems of the aging population worldwide and a major social concern. Here, we explored the therapeutic potential of TM5484, a novel orally available PAI-1 inhibitor, to prevent sarcopenia. The sarcopenic phenotypes of the calf muscle of 12- and 6-month-old middle-aged mice were compared. Although significant decline of isometric gastrocnemius muscle force was detected in the older untreated mice, those administered TM5484 had significantly greater calf muscle force, as determined using isometric measurements by electrical stimulation. Histological analysis indicated that cross-sectional gastrocnemius muscle fibers in untreated older mice were thinner than those in younger mice; however, TM5484-treated group showed thicker fibers than younger mice. Treatment with TM5484 for 6 months enhanced Igf1, Atrogin-1, Mt-Co1, and Chrna1 mRNA expression in the mice gastrocnemius muscle, with increased serum IGF-1 concentration. TM5484 induced dose-dependent Igf1, Atrogin-1, and Chrna1 expression in C2C12 myoblastic cells, confirming cell autonomous effect. Further, the presence of plasmin for 72 h caused significantly increased Igf1 expression in C2C12 cells. These findings suggest that oral PAI-1 inhibitors represent a promising therapeutic candidate for preventing sarcopenia progression in humans.
Collapse
Affiliation(s)
- Aidehamu Aihemaiti
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Naoki Yamamoto
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Jinying Piao
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Takuya Oyaizu
- Hyperbaric Medical Center, Tokyo Medical and Dental University, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons with Disabilities, Japan
| | - Shingo Sato
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Atsushi Okawa
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Japan
| | - Yoichi Ezura
- Department of Orthopaedics Surgery, Tokyo Medical and Dental University, Japan
| | - Yoshinori Asou
- Department of Nano-Bioscience, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
2
|
Miller RA, Harrison DE, Astle CM, Bogue MA, Brind J, Fernandez E, Flurkey K, Javors M, Ladiges W, Leeuwenburgh C, Macchiarini F, Nelson J, Ryazanov AG, Snyder J, Stearns TM, Vaughan DE, Strong R. Glycine supplementation extends lifespan of male and female mice. Aging Cell 2019; 18:e12953. [PMID: 30916479 PMCID: PMC6516426 DOI: 10.1111/acel.12953] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/01/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022] Open
Abstract
Diets low in methionine extend lifespan of rodents, though through unknown mechanisms. Glycine can mitigate methionine toxicity, and a small prior study has suggested that supplemental glycine could extend lifespan of Fischer 344 rats. We therefore evaluated the effects of an 8% glycine diet on lifespan and pathology of genetically heterogeneous mice in the context of the Interventions Testing Program. Elevated glycine led to a small (4%-6%) but statistically significant lifespan increase, as well as an increase in maximum lifespan, in both males (p = 0.002) and females (p < 0.001). Pooling across sex, glycine increased lifespan at each of the three independent sites, with significance at p = 0.01, 0.053, and 0.03, respectively. Glycine-supplemented females were lighter than controls, but there was no effect on weight in males. End-of-life necropsies suggested that glycine-treated mice were less likely than controls to die of pulmonary adenocarcinoma (p = 0.03). Of the 40 varieties of incidental pathology evaluated in these mice, none were increased to a significant degree by the glycine-supplemented diet. In parallel analyses of the same cohort, we found no benefits from TM5441 (an inhibitor of PAI-1, the primary inhibitor of tissue and urokinase plasminogen activators), inulin (a source of soluble fiber), or aspirin at either of two doses. Our glycine results strengthen the idea that modulation of dietary amino acid levels can increase healthy lifespan in mice, and provide a foundation for further investigation of dietary effects on aging and late-life diseases.
Collapse
Affiliation(s)
- Richard A. Miller
- Department of Pathology, Paul F. Glenn Center for Biology of Aging ResearchUniversity of MichiganAnn ArborMichigan
| | | | | | | | - Joel Brind
- Department of Natural Sciences, Baruch CollegeCUNYNew YorkNew York
- Natural Food Science, LLCNew HamburgNew York
| | - Elizabeth Fernandez
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care SystemThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | | | - Martin Javors
- Department of PsychiatryUniversity of Texas Health Science CenterSan AntonioTexas
| | - Warren Ladiges
- Department of Comparative Medicine, School of MedicineUniversity of WashingtonSeattleWashington
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Division of Biology of Aging, Institute on Aging, College of MedicineUniversity of FloridaGainesvilleFlorida
| | | | - James Nelson
- Department of Cellular and Integrative Physiology, Barshop Center for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Alexey G. Ryazanov
- Department of PharmacologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew Jersey
- Princeton Institute of Life SciencesPrincetonNew Jersey
| | - Jessica Snyder
- Department of Comparative Medicine, School of MedicineUniversity of WashingtonSeattleWashington
| | | | - Douglas E. Vaughan
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Randy Strong
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care SystemThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| |
Collapse
|
3
|
Eren M, Boe AE, Klyachko EA, Vaughan DE. Role of plasminogen activator inhibitor-1 in senescence and aging. Semin Thromb Hemost 2014; 40:645-51. [PMID: 25173500 DOI: 10.1055/s-0034-1387883] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The average age of the US population continues to increase. Age is the most important determinant of disease and disability in humans, but the fundamental mechanisms of aging remain largely unknown. Many age-related diseases are associated with an impaired fibrinolytic system. Elevated plasminogen activator inhibitor-1 (PAI-1) levels are reported in age-associated clinical conditions including cardiovascular diseases, type 2 diabetes, obesity and inflammation. PAI-1 levels are also elevated in animal models of aging. While the association of PAI-1 with physiological aging is well documented, it is only recently that its critical role in the regulation of aging and senescence has become evident. PAI-1 is synthesized and secreted in senescent cells and contributes directly to the development of senescence by acting downstream of p53 and upstream of insulin-like growth factor binding protein-3. Pharmacologic inhibition or genetic deficiency of PAI-1 was shown to be protective against senescence and the aging-like phenotypes in kl/kl and N(ω)-nitro-l-arginine methyl ester-treated wild-type mice. Further investigation into PAI-1's role in senescence and aging will likely contribute to the prevention and treatment of aging-related pathologies.
Collapse
Affiliation(s)
- Mesut Eren
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amanda E Boe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ekaterina A Klyachko
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Douglas E Vaughan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
4
|
Jeong JI, Kim J, Kim KM, Choi I, Pratley RE, Lee YH. Altered gene expression of amyloid precursor protein in the adipose tissue and brain of obese mice fed with long-term high-fat diet and streptozotocin-induced diabetic mice. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.940383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Ferreira CN, Carvalho MG, Gomes KB, Reis HJ, Fernandes AP, Palotás A, Sousa MO. Apolipoprotein polymorphism is associated with pro-thrombotic profile in non-demented dyslipidemic subjects. Exp Biol Med (Maywood) 2014; 240:79-86. [PMID: 25073959 DOI: 10.1177/1535370214543065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein gene polymorphism has an important role in lipid metabolism and in the development of cerebro- and cardio-vascular disease (CCVD), including dementia. Dyslipidemia and hemostatic abnormalities are key risk factors associated with athero-sclerotic events preceding CCVD. The aim of this study was to evaluate the possible relationships of various apolipoprotein-species with hemostatic parameters and cognitive function. Lipid profile, gene polymorphism, coagulation markers, and mini-mental state examination (MMSE) scores were assessed in 109 dys-lipidemic subjects and in 107 healthy control volunteers. Thrombin-activatable fibrinolysis inhibitor (TAFI) plasma levels were significantly higher in apolipoprotein-E2 (apoE2) patients when compared to other apoE forms. The apoA5 -1131T>C polymorphism was associated with elevated D-dimer concentration in dyslipidemic TT homozygous individuals. MMSE did not correlate with lipid or coagulation profile. These data suggest that apoE and apoA5 variants have an effect on hemostatic parameters, but they neither influence nor predict cognitive performance in non-demented individuals.
Collapse
Affiliation(s)
| | - Maria G Carvalho
- Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Karina B Gomes
- Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Helton J Reis
- Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - András Palotás
- Asklepios-Med (private medical practice and research center), Szeged, H-6722, Hungary
| | - Marinez O Sousa
- Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
6
|
Kim J, Jeong JI, Kim KM, Choi I, Pratley RE, Lee YH. Improved glucose tolerance with restored expression of glucose transporter 4 in C57BL/6 mice after a long period of high-fat diet feeding. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.924995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Ploplis VA. Effects of altered plasminogen activator inhibitor-1 expression on cardiovascular disease. Curr Drug Targets 2012; 12:1782-9. [PMID: 21707474 DOI: 10.2174/138945011797635803] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 12/21/2022]
Abstract
Plasminogen Activator Inhibitor-1 (PAI-1) is a multifunctional protein with the ability to not only regulate fibrinolysis through inhibition of plasminogen activation, but also cell signaling events which have direct downstream effects on cell function. Elevated plasma levels of this protein have been shown to have profound effects on the development and progression of cardiovascular diseases. However, results from a number of studies, especially those using PAI-1 deficient mouse models, have demonstrated that its function is ambiguous, with evidence of both preventing and enhancing various disease states. A number of lifestyle changes and pharmacological reagents have been identified that can regulate PAI-1 levels or function. Those reagents that target function are focused on its ability to regulate plasmin formation, and have been studied in in vivo models of thrombosis. Further investigations involving regulation of cell function could potentially resolve paradoxical issues associated with the function of this protein in regulating cardiovascular disease.
Collapse
Affiliation(s)
- Victoria A Ploplis
- W M Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
8
|
Lu D, Soleymani S, Madakshire R, Insel PA. ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. FASEB J 2012; 26:2580-91. [PMID: 22415310 DOI: 10.1096/fj.12-204677] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cardiac fibroblasts (CFs) play an essential role in remodeling of the cardiac extracellular matrix. Extracellular nucleotide signaling may provoke a profibrotic response in CFs. We tested the hypothesis that physical perturbations release ATP from CFs and that ATP participates in profibrotic signaling. ATP release was abolished by the channel inhibitor carbenoxolone and inhibited by knockdown of either connexin (Cx)43 or Cx45 (47 and 35%, respectively), implying that hypotonic stimulation induces ATP release via Cx43 and Cx45 hemichannels, although pannexin 1 may also play a role. ATP released by hypotonic stimulation rapidly (<10 min) increased phosphorylated ERK by 5-8 fold, an effect largely eliminated by P2Y(2) receptor knockdown or ATP hydrolysis with apyrase. ATP stimulation of P2Y(2) receptors increased α-smooth muscle actin (α-SMA) production, and in an ERK-dependent manner, ATP increased collagen accumulation by 60% and mRNA expression of profibrotic markers: plasminogen activator inhibitor-1 and monocyte chemotactic protein-1 by 4.5- and 4.0-fold, respectively. Apyrase treatment substantially reduced the basal profibrotic phenotype, decreasing collagen and α-SMA content and increasing matrix metalloproteinase expression. Thus, ATP release activates P2Y(2) receptors to mediate profibrotic responses in CFs, implying that nucleotide release under both basal and activated states is likely an important mechanism for fibroblast homeostasis.
Collapse
Affiliation(s)
- David Lu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
9
|
Iwaki T, Urano T, Umemura K. PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol 2012; 157:291-8. [PMID: 22360729 DOI: 10.1111/j.1365-2141.2012.09074.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/24/2012] [Indexed: 01/07/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1, also known as SERPINE1) is a member of the serine protease inhibitor (SERPIN) superfamily and is the primary physiological regulator of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) activity. Although the principal function of PAI-1 is the inhibition of fibrinolysis, PAI-1 possesses pleiotropic functions besides haemostasis. In the quarter century since its discovery, a number of studies have focused on improving our understanding of PAI-1 functions in vivo and in vitro. The use of Serpine1-deficient mice has particularly enhanced our understanding of the functions of PAI-1 in various physiological and pathophysiological conditions. In this review, the results of recent studies on PAI-1 and its role in clinical conditions are discussed.
Collapse
Affiliation(s)
- Takayuki Iwaki
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | |
Collapse
|
10
|
Braun OÖ, Lu D, Aroonsakool N, Insel PA. Uridine triphosphate (UTP) induces profibrotic responses in cardiac fibroblasts by activation of P2Y2 receptors. J Mol Cell Cardiol 2010; 49:362-9. [PMID: 20471392 PMCID: PMC2917486 DOI: 10.1016/j.yjmcc.2010.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 04/29/2010] [Accepted: 05/01/2010] [Indexed: 01/29/2023]
Abstract
Cardiac fibroblasts (CFs) play a key role in response to injury and remodeling of the heart. Nucleotide (P2) receptors regulate the heart but limited information is available regarding such receptors in CFs. We thus sought to determine if extracellular nucleotides regulate fibrotic responses (e.g., proliferation, migration and expression of profibrotic markers) of CFs in primary culture. UTP increased rat CF migration 3-fold (p<0.001), proliferation by 30% (p<0.05) and mRNA expression of profibrotic markers: alpha smooth muscle actin (alpha-SMA), plasminogen activator inhibitor-1 (PAI-1), transforming growth factor beta, soluble ST2, interleukin-6 and monocyte chemoattractant protein-1 (MCP-1) by 3.0-, 15-, 2.0-, 7.6-, 11-, and 6.1-fold, respectively (p<0.05). PAI-1 protein expression induced by UTP was dependent on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK), based on blockade by the PKC inhibitor Ro-31-8220 and the ERK inhibitor U0126, respectively. The rank order for enhanced expression of PAI-1 and alpha-SMA by nucleotides (UTPgammaS>>UDPbetaS>>ATPgammaS), the expression of P2Y2 receptors as the most abundantly expressed P2Y receptor in rat CFs and a blunted response to UTP in P2Y2(-/-) mice all implicate P2Y2 as the predominant P2Y receptor that mediates nucleotide-promoted profibrotic responses. Additional results indicate that P2Y2 receptor-promoted profibrotic responses in CFs are transient, perhaps as a consequence of receptor desensitization. We conclude that P2Y2 receptor activation is profibrotic in CFs; thus inhibition of P2Y2 receptors may provide a novel means to diminish fibrotic remodeling and turnover of extracellular matrix in the heart.
Collapse
Affiliation(s)
- Oscar Ö. Braun
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - David Lu
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Nakon Aroonsakool
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Paul A. Insel
- Department of Pharmacology, University of California San Diego, La Jolla, California
- Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
11
|
Oishi K, Miyazaki K, Uchida D, Ohkura N, Wakabayashi M, Doi R, Matsuda J, Ishida N. PERIOD2 is a circadian negative regulator of PAI-1 gene expression in mice. J Mol Cell Cardiol 2009; 46:545-52. [PMID: 19168071 DOI: 10.1016/j.yjmcc.2009.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 12/31/2022]
Abstract
An increased level of obesity-induced plasma plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular disease. To determine whether the circadian clock component PERIOD2 (PER2) is involved in the regulation of PAI-1 gene expression, we performed transient transfection assays in vitro, and generated transgenic (Tg) mice overexpressing PER2. We then compared PAI-1 expression in Tg and wild-type (WT) mice with or without obesity induced by a high-fat/high-sucrose diet. PER2 suppressed CLOCK:BMAL1- and CLOCK:BMAL2-dependent transactivation of the PAI-1 promoter in vitro. Furthermore, nuclear translocation is dispensable for PER2 to suppress CLOCK:BMAL1-dependent transactivation of the PAI-1 promoter, because functional loss of the nuclear localization domain did not affect either the interaction with BMAL1 or the suppressive role of PER2. The diurnal expression of clock and clock-controlled genes was disrupted in a gene-specific manner, whereas that of PAI-1 mRNA was significantly damped in the hearts of PER2 Tg mice fed with a normal diet. Obesity-induced plasma PAI-1 increase was significantly suppressed in Tg mice in accordance with cardiac PAI-1 mRNA levels, whereas body weight gain and changes in metabolic parameters were identical between WT and Tg mice. Endogenous PAI-1 gene expression induced by transforming growth factor-beta1 was significantly attenuated in embryonic fibroblasts derived from Tg mice compared with those from WT mice. Our results demonstrated that PER2 represses PAI-1 gene transcription in a BMAL1/2-dependent manner. The present findings also suggest that PER2 attenuates obesity-induced hypofibrinolysis by downregulating PAI-1 expression independently of metabolic disorders.
Collapse
Affiliation(s)
- Katsutaka Oishi
- Clock Cell Biology Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Baumann PQ, Sobel BE, Tarikuz Zaman A, Schneider DJ. Gender-Dependent Differences in Echocardiographic Characteristics of Murine Hearts. Echocardiography 2008; 25:739-48. [DOI: 10.1111/j.1540-8175.2008.00680.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Impact of statins on modulation by insulin of expression of plasminogen activator inhibitor type-1. Coron Artery Dis 2008; 19:355-61. [DOI: 10.1097/mca.0b013e328300dbe3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Zaman AKMT, Fujii S, Schneider DJ, Taatjes DJ, Lijnen HR, Sobel BE. Deleterious effects of lack of cardiac PAI-1 after coronary occlusion in mice and their pathophysiologic determinants. Histochem Cell Biol 2007; 128:135-45. [PMID: 17576591 DOI: 10.1007/s00418-007-0300-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2007] [Indexed: 11/25/2022]
Abstract
We sought to delineate mechanisms through which the lack of plasminogen activator inhibitor (PAI)-1 in the heart affects remodeling of the heart early after myocardial infarction (MI). MI was induced by coronary occlusion in 10-weeks old PAI-1 knockout (KO) and control mice. Three days after MI, systolic and diastolic function was assessed with high-resolution echocardiography, infarct size was determined biochemically and histologically and accumulation of acute inflammatory cells in zones of infarction was characterized by immunocytochemistry. PAI-1 KO mice exhibited markedly thickened diastolic left ventricular anterior walls (1.38 +/- 0.38 mm vs. 0.77 +/- 0.13 SD), more profound depression of global and regional cardiac function (19 vs. 22% fractional shortening), and greater evidence of diastolic dysfunction (average E wave amplitude = 568 vs. 675 mm/s) all of which were significant. Markedly greater extent of infarction was demonstrated biochemically and histologically in knockout mice compared with controls (76 vs. 29% of the left ventricle, P < 0.05) associated with striking hemorrhage and intense inflammation. Fibrosis normalized for infarct size was markedly reduced (0.006 vs. 0.022 microg hydroxyproline/mg dry weight). Thus, lack of PAI-1 in the heart exerted deleterious effects mediated, at least in part by increased inflammation and hemorrhage and attenuating of fibrosis.
Collapse
Affiliation(s)
- A K M Tarikuz Zaman
- Cardiovascular Research Institute, University of Vermont, Colchester Research Facility, 208 South Park Drive, Colchester, VT 05446, USA
| | | | | | | | | | | |
Collapse
|