1
|
Li Q, Li J, Yin L, Huang J, Liu X, Shi J, Geng Z, Song X, Wang L, Wang Y, Zhang X, Zuo L, Hu J. Sophoricoside improved Crohn's disease-like colitis by inhibiting intestinal epithelial cell apoptosis through PI3K/AKT signaling. Int Immunopharmacol 2024; 131:111886. [PMID: 38493691 DOI: 10.1016/j.intimp.2024.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIMS Increased apoptosis of intestinal epithelial cells (IECs) is a significant cause of intestinal barrier dysfunction in Crohn's disease (CD). Sophoricoside (SOP) is an isoflavone glycoside known for its anti-apoptotic properties. The aim of this study was to investigate the effects of SOP on mice with CD-like colitis and to understand the underlying mechanisms. METHODS Mice treated with 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to examine the therapeutic effect of SOP on CD-like colitis and intestinal barrier damage. To further explore SOP's impact on IECs apoptosis and intestinal barrier protection, an in vitro colonic organoid apoptosis model induced by TNF-α was utilized. Network pharmacology was employed to predict the relevant pathways and molecular processes associated with SOP in the treatment of CD. RESULTS Treatment with SOP significantly improved colitis symptoms in TNBS mice, as demonstrated by reductions in the Disease Activity Index (DAI), weight loss, colon shortening, macroscopic scores, colonic tissue inflammatory scores, and the expression of pro-inflammatory factors. Our experiments confirmed that SOP protects the intestinal barrier by counteracting IECs apoptosis. Additionally, this study established that SOP reduced IECs apoptosis by inhibiting the PI3K/AKT signaling pathway. CONCLUSIONS SOP can reduce IECs apoptosis through the inhibition of the PI3K/AKT signaling pathway, thereby protecting the intestinal barrier. This study is the first to illustrate how SOP ameliorates colitis and protects the intestinal barrier, suggesting SOP has potential clinical application in treating CD.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lixia Yin
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ju Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Xinyue Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Jinran Shi
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| |
Collapse
|
2
|
Al Nabhani Z, Berrebi D, Martinez-Vinson C, Montcuquet N, Madre C, Roy M, Ogier-Denis E, Dussaillant M, Cerf-Bensussan N, Zouali H, Daniel F, Barreau F, Hugot JP. Nod2 Protects the Gut From Experimental Colitis Spreading to Small Intestine. J Crohns Colitis 2020; 14:669-679. [PMID: 31784737 DOI: 10.1093/ecco-jcc/jjz196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Nucleotide oligomerization domain 2 [NOD2] mutations are key risk factors for Crohn's disease [CD]. NOD2 contributes to intestinal homeostasis by regulating innate and adaptive immunity together with intestinal epithelial function. However, the exact roles of NOD2 in CD and other NOD2-associated disorders remain poorly known. METHODS We initially observed that NOD2 expression was increased in epithelial cells away from inflamed areas in CD patients. To explore this finding, Nod2 mRNA expression, inflammation, and cytokines expression were examined in the small bowel of wild-type [WT], Nod2 knockout and Nod2 mutant mice after rectal instillation of 2,4,6-trinitrobenzene sulphonic acid [TNBS]. RESULTS In WT mice, Nod2 upregulation upstream to rectal injury was associated with pro-inflammatory cytokine expression but no overt histological inflammatory lesions. Conversely, in Nod2-deficient mice the inflammation spread from colitis to ileum and duodenum. CONCLUSIONS Nod2 protects the gut from colitis spreading to small intestine.
Collapse
Affiliation(s)
- Ziad Al Nabhani
- Centre de recherche sur l'inflammation, INSERM et Université de Paris, Paris, France
| | - Dominique Berrebi
- Centre de recherche sur l'inflammation, INSERM et Université de Paris, Paris, France.,Hopital Robert Debré, Asssitance Publique Hôpitaux de Paris, Paris, France
| | | | - Nicolas Montcuquet
- Laboratoire d'immunité intestinale, Paris, France.,Université Paris Descartes - Sorbonne Paris Cité, Institut IMAGINE, Paris, France
| | - Chrystele Madre
- Hopital Robert Debré, Asssitance Publique Hôpitaux de Paris, Paris, France
| | - Maryline Roy
- Centre de recherche sur l'inflammation, INSERM et Université de Paris, Paris, France
| | - Eric Ogier-Denis
- Centre de recherche sur l'inflammation, INSERM et Université de Paris, Paris, France
| | - Monique Dussaillant
- Centre de recherche sur l'inflammation, INSERM et Université de Paris, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratoire d'immunité intestinale, Paris, France.,Université Paris Descartes - Sorbonne Paris Cité, Institut IMAGINE, Paris, France
| | | | - Fanny Daniel
- Centre de recherche sur l'inflammation, INSERM et Université de Paris, Paris, France
| | - Frédérick Barreau
- Centre de recherche sur l'inflammation, INSERM et Université de Paris, Paris, France.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Jean-Pierre Hugot
- Centre de recherche sur l'inflammation, INSERM et Université de Paris, Paris, France.,Hopital Robert Debré, Asssitance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Mitochondrial bioenergetics, uncoupling protein-2 activity, and reactive oxygen species production in the small intestine of a TNBS-induced colitis rat model. Mol Cell Biochem 2020; 470:87-98. [PMID: 32394310 DOI: 10.1007/s11010-020-03749-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Inflammatory bowel disease (IBD) is often associated with a decrease in energy-dependent nutrient uptake across the jejunum that serves as the main site for absorption in the small intestine. This association has prompted us to investigate the bioenergetics underlying the alterations in jejunal absorption in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in rats. We have found that mitochondrial oxygen consumption did not change in state 2 and state 3 respirations but showed an increase in state 4 respiration indicating a decrease in the respiratory control ratio of jejunal mitochondria during the peak of inflammation. This decrease in the coupling state was found to be guanosine diphosphate-sensitive, hence, implicating the involvement of uncoupling protein-2 (UCP2). Furthermore, the study has reported that the production of reactive oxygen species (ROS), known to be activators of UCP2, correlated negatively with UCP2 activity. Thus, we suggest that ROS production in the jejunum might be activating UCP2 which has an antioxidant activity, and that uncoupling of the mitochondria decreases the efficiency of energy production, leading to a decrease in energy-dependent nutrient absorption. Hence, this study is the first to account for an involvement of energy production and a role for UCP2 in the absorptive abnormalities of the small intestine in animal models of colitis.
Collapse
|
4
|
Bistoletti M, Micheloni G, Baranzini N, Bosi A, Conti A, Filpa V, Pirrone C, Millefanti G, Moro E, Grimaldi A, Valli R, Baj A, Crema F, Giaroni C, Porta G. Homeoprotein OTX1 and OTX2 involvement in rat myenteric neuron adaptation after DNBS-induced colitis. PeerJ 2020; 8:e8442. [PMID: 32095330 PMCID: PMC7024580 DOI: 10.7717/peerj.8442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases are associated with remodeling of neuronal circuitries within the enteric nervous system, occurring also at sites distant from the acute site of inflammation and underlying disturbed intestinal functions. Homeoproteins orthodenticle OTX1 and OTX2 are neuronal transcription factors participating to adaptation during inflammation and underlying tumor growth both in the central nervous system and in the periphery. In this study, we evaluated OTX1 and OTX2 expression in the rat small intestine and distal colon myenteric plexus after intrarectal dinitro-benzene sulfonic (DNBS) acid-induced colitis. METHODS OTX1 and OTX2 distribution was immunohistochemically investigated in longitudinal muscle myenteric plexus (LMMP)-whole mount preparations. mRNAs and protein levels of both OTX1 and OTX2 were evaluated by qRT-PCR and Western blotting in LMMPs. RESULTS DNBS-treatment induced major gross morphology and histological alterations in the distal colon, while the number of myenteric neurons was significantly reduced both in the small intestine and colon. mRNA levels of the inflammatory markers, TNFα, pro-IL1β, IL6, HIF1α and VEGFα and myeloperoxidase activity raised in both regions. In both small intestine and colon, an anti-OTX1 antibody labeled a small percentage of myenteric neurons, and prevalently enteric glial cells, as evidenced by co-staining with the glial marker S100β. OTX2 immunoreactivity was present only in myenteric neurons and was highly co-localized with neuronal nitric oxide synthase. Both in the small intestine and distal colon, the number of OTX1- and OTX2-immunoreactive myenteric neurons significantly increased after DNBS treatment. In these conditions, OTX1 immunostaining was highly superimposable with inducible nitric oxide synthase in both regions. OTX1 and OTX2 mRNA and protein levels significantly enhanced in LMMP preparations of both regions after DNBS treatment. CONCLUSIONS These data suggest that colitis up-regulates OTX1 and OTX2 in myenteric plexus both on site and distantly from the injury, potentially participating to inflammatory-related myenteric ganglia remodeling processes involving nitrergic transmission.
Collapse
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Micheloni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andrea Conti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Viviana Filpa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Pirrone
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giorgia Millefanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Roberto Valli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Porta
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
5
|
Zheng X, Lv Y, Li S, Zhang Q, Zhang X, Hao Z. Adeno-associated virus-mediated colonic secretory expression of HMGB1 A box attenuates experimental colitis in mice. J Gene Med 2018; 18:261-272. [PMID: 27572454 DOI: 10.1002/jgm.2899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Extracellular high mobility group box 1 (HMGB1) is crucially implicated in the pathogenesis of inflammatory bowel diseases (IBDs). A box domain of HMGB1 has been identified as a specific antagonist of HMGB1. In the present study, we tested the effects of adeno-associated virus (AAV)-mediated colonic secretory expression of HMGB1 A box on murine experimental colitis. METHODS Self-complementary AAV-2 carrying mouse immunoglobin Gκ leader-human HMGB1 A box (AAV-HMGB1 A box) was constructed. The effects of intracolonically administered AAV-HMGB1 A box on dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were assessed by the disease activity index (DAI), colon length, macroscopic and histological scoring, myeloperoxidase (MPO) activity, and epithelial apoptosis and complementary proliferation. Colonic immune cell infiltrates, mucosal malondialdehyde content and superoxide dismutase activity, colonic tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10 levels, serum HMGB1 concentration, and colonic HMGB1 release were determined to investigate the underlying mechanisms. RESULTS Intracolonically administered AAV-HMGB1 A box efficiently mediated secretory expression of HMGB1 A box and led to significant decreases in DAI, macroscopic and histological scores and colonic epithelial apoptosis in both DSS- and TNBS-treated mice. Modulating inflammation-associated cytokines, such as inhibiting colonic TNF-α and IL-1β expression, decreasing HMGB1 release, and restoring colonic IL-10 levels, and thereby inhibiting inflammatory cell infiltration and alleviating oxidant damage, might be the underlying mechanism. CONCLUSIONS Intracolonic application of AAV-HMGB1 A box is effective in alleviating murine colitis and has therapeutic potential in human IBDs.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yifei Lv
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| | - Shuang Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Qiannan Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xueting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Zhiming Hao
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China. .,Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
6
|
Mourad FH, Barada KA, Saade NE. Impairment of Small Intestinal Function in Ulcerative Colitis: Role of Enteric Innervation. J Crohns Colitis 2017; 11:369-377. [PMID: 27655154 DOI: 10.1093/ecco-jcc/jjw162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
Abstract
Small intestinal dysfunction has been described in patients with ulcerative colitis and in experimental animal models of colitis. This is demonstrated by a decrease in fluid, electrolyte, amino acid, fat and carbohydrate absorption as well as by deranged intestinal motility. Histopathological changes in the small intestines in colitis have not been consistently demonstrated, but there is evidence of structural and biochemical alterations as shown by increased intestinal permeability and a decrease in the expression of multiple brush border membrane enzymes such as disaccharidases and aminopetidases, in both humans and experimental animals. The pathophysiology of this dysfunction has not been elucidated, but it is thought to include alterations in neural circuitry such as increased neuronal excitability, neuronal damage and changes of neuropeptidergic innervation and receptors as well as an increase in local production of pro-inflammatory cytokines and alterations in the production of some neurohumoral mediators. In the following, we provide an update on the advancement of clinical and scientific contributions to elucidate the underlying mechanisms of the alteration of the functions of apparently intact small intestinal segments, induced by ulcerative colitis.
Collapse
Affiliation(s)
- Fadi H Mourad
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut-Lebanon
- Department of Internal Medicine, American University of Beirut, Beirut-Lebanon
| | - Kassem A Barada
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut-Lebanon
- Department of Internal Medicine, American University of Beirut, Beirut-Lebanon
| | - Nayef E Saade
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut-Lebanon
| |
Collapse
|
7
|
Abstract
BACKGROUND Aside from cases of backwash ileitis, the ileal mucosa of patients with ulcerative colitis (UC), an idiotypic inflammatory bowel disease, has received little attention despite the fact that colitis is known to trigger alterations in morphology and/or functions of the small intestine remotely. METHODS The ileal mucosa was studied in patients with UC and in a spontaneous model of colitis (Il10/Nox1 mice) mimicking the histological and clinical features of UC and was also studied in acute and chronic murine models of chemically induced colitis. Proliferation and apoptosis were assessed using morphological and immunohistological methods and Western blot analysis. Peyer's patch immune cell subsets were analyzed. Cytokines levels were quantified using quantitative PCR and Luminex xMAP technology. Total RNA from isolated ileal crypts was used for whole genome transcriptome analysis. RESULTS The most striking features were an increased ileal crypt length associated with an enhanced cell proliferation of the transit-amplifying cells along with activation of the Wnt/β-catenin and MAPkinase pathways. These changes did not result from intestinal inflammation as assessed by histology and/or pro-inflammatory cytokine expression levels. The increased proliferation rate was dependent on the duration but not on the severity of colitis and was observed in different mouse models of colitis, including the Il10/Nox1 model and 2,4,6-trinitrobenzenesulfonic acid-treated mice. Interestingly, the ileal mucosa of patients with UC also displayed longer crypts and enhanced cell proliferation compared with control patients. CONCLUSIONS These data show that despite the absence of inflammation in the small intestine, alterations in the ileal mucosa homeostasis are present in UC.
Collapse
|
8
|
Simon K, Arts JAJ, de Vries Reilingh G, Kemp B, Lammers A. Effects of early life dextran sulfate sodium administration on pathology and immune response in broilers and layers. Poult Sci 2016; 95:1529-1542. [PMID: 26976905 DOI: 10.3382/ps/pew074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
Intestinal pathology early in life may affect immune development and therefore immune responses later in life. Dextran sulfate sodium (DSS) induces colitis in rodents and is a widely used model for inflammatory bowel diseases. The present study investigated DSS as a model for early life intestinal pathology and its consequences on intestinal pathology, ileal cytokine, and immunoglobulin mRNA expression levels as well as the antibody response towards an immunological challenge later in life in chickens. Broiler and layer chicks received 2.5% DSS in drinking water during d 11 through d 18 post hatch or plain drinking water as a control. As an immunological challenge all birds received a combination of Escherichia coli lipopolysaccharide (LPS) and human serum albumin (HuSA) intramuscularly (i.m.) at d 35, and antibody titers against LPS, HuSA, and keyhole limpet hemocyanin (KLH) were determined to investigate effects of intestinal inflammation early in life on humoral immunity later in life. DSS treated birds showed a decrease in BW from which broilers quickly recovered, but which persisted for several weeks in layers. Histological examination of intestinal samples showed symptoms similar to those in rodents, including shortening and loss of villi and crypts as well as damage of the epithelial cell layer of different parts of the intestine. Effects of DSS on intestinal morphology were less severe in broilers that also showed a lower mortality in response to DSS than layers. No effect of DSS on ileal cytokine expression levels could be observed, but ileal immunoglobulin expression levels were decreased in DSS treated broilers that also showed lower antibody titers against LPS in response to the challenge. In conclusion, DSS may serve as a model for intestinal pathology early in life, although more research on the appropriate dose is necessary and is likely to differ between breeds. Results from the present study could indicate that broilers are less susceptible to DSS compared with layers or have a better capacity to recover from intestinal pathology.
Collapse
Affiliation(s)
- K Simon
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands.
| | - J A J Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - G de Vries Reilingh
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - A Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
9
|
Barada K, Mourad FH, Noutsi B, Saadé NE. Electrocautery-induced localized colonic injury elicits increased levels of pro-inflammatory cytokines in small bowel and decreases jejunal alanine absorption. Cytokine 2015; 71:109-118. [PMID: 25277469 DOI: 10.1016/j.cyto.2014.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Colitis is associated with functional abnormalities in proximal non-inflamed gut areas, but animal models to study small bowel dysfunction in colitis have limitations. This study aims to determine small intestinal alanine absorption and cytokine expression in a novel model of colonic ulceration induced by electro-cautery. METHODS A descending colon ulcer was induced in rats by a bipolar electro-cautery probe. Ulcer score was determined using Satoh's criteria. Jejunal alanine absorption was measured immediately and at different time intervals post ulcer induction. Levels of interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) protein and m-RNA were determined in mucosal scrapings obtained from the colon, duodenum, jejunum and ileum at various time intervals after colonic ulcer induction. RESULTS The mean ulcer score was 3 up to 48h, followed by healing by 96h post ulcer induction. Small bowel histology was normal throughout. Jejunal alanine absorption was reduced by 12-34% immediately and up to 72h after cautery and returned to normal at 96h. IL-1 and TNF-α mRNA increased significantly in the colon, duodenum, jejunum and ileum 3h post electro-cautery and returned to normal at 48h, while that of IL-6 increased significantly at 48h post ulcer induction. Similarly, IL-1, IL-6 and TNF-α protein levels increased in the duodenum, jejunum, ileum and colon up to 48h post ulcer induction. CONCLUSIONS Electrically induced localized colonic injury increased production of pro-inflammatory cytokines in non-inflamed segments of the small intestine and was associated with derangements of jejunal absorptive function.
Collapse
Affiliation(s)
- Kassem Barada
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Fadi H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bakiza Noutsi
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nayef E Saadé
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Terán-Ventura E, Aguilera M, Vergara P, Martínez V. Specific changes of gut commensal microbiota and TLRs during indomethacin-induced acute intestinal inflammation in rats. J Crohns Colitis 2014; 8:1043-54. [PMID: 24566169 DOI: 10.1016/j.crohns.2014.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Gut microbiota is a contributing factor in the development and maintenance of intestinal inflammation, although precise cause-effect relationships have not been established. We assessed spontaneous changes of gut commensal microbiota and toll-like receptors (TLRs)-mediated host-bacterial interactions in a model of indomethacin-induced acute enteritis in rats. METHODS Male Spague-Dawley rats, maintained under conventional conditions, were used. Enteritis was induced by systemic indomethacin administration. During the acute phase of inflammation, animals were euthanized and ileal and ceco-colonic changes evaluated. Inflammation was assessed through disease activity parameters (clinical signs, macroscopic/microscopic scores and tissue levels of inflammatory markers). Microbiota (ileal and ceco-colonic) was characterized using fluorescent in situ hybridization (FISH) and analysis of 16s rDNA polymorphism. Host-bacterial interactions were assessed evaluating the ratio of bacterial adherence to the intestinal wall (FISH) and expression of TLRs 2 and 4 (RT-PCR). RESULTS After indomethacin, disease activity parameters increased, suggesting an active inflammation. Total bacterial counts were similar in vehicle- or indomethacin-treated animals. However, during inflammation the relative composition of the microbiota was altered. This dysbiotic state was characterized by an increase in the counts of Bacteroides spp., Enterobacteriaceae (in ileum and cecum-colon) and Clostridium spp. (in ileum). Bacterial wall adherence significantly increased during inflammation. In animals with enteritis, TLR-2 and -4 were up-regulated both in the ileum and the ceco-colonic region. CONCLUSIONS Gut inflammation implies qualitative changes in GCM, with simultaneous alterations in host-bacterial interactions. These observations further support a potential role for gut microbiota in the pathophysiology of intestinal inflammation.
Collapse
Affiliation(s)
- Evangelina Terán-Ventura
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mònica Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
11
|
Linden DR. Enhanced excitability of guinea pig ileum myenteric AH neurons during and following recovery from chemical colitis. Neurosci Lett 2013; 545:91-5. [PMID: 23628671 DOI: 10.1016/j.neulet.2013.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/02/2013] [Accepted: 04/06/2013] [Indexed: 11/26/2022]
Abstract
Inflammation of the colon changes motor function of more proximal regions of the gastrointestinal tract. Colitis alters the neurophysiology of enteric neurons within the region of inflammation, which may contribute to altered colonic motor and secretory function. This study seeks to test the hypothesis that colitis alters the neurophysiology of myenteric neurons in the non-inflamed ileum, and that altered neurophysiology coincides with altered small bowel motor function. Trinitrobenzene sulfonic acid (TNBS)-induced colitis was associated with hyperexcitability of AH neurons in the ileum myenteric plexus, demonstrated by depolarized neurons and increased numbers of action potentials, but without changes in the action potential duration or afterhyperpolarization typical of plasticity in these cells. There were no changes in synaptic transmission of either AH neurons or S neurons observed in the current study. The onset of AH neuron hyperexcitability occurred 24 h following administration of TNBS, and persisted to eight weeks, a time point following the resolution of colitis. Small bowel transit was reduced as early as 12 h after TNBS and resolved by 48 h after TNBS. While AH neurons play a central role in coordinating motor function of the ileum, changes in excitability of these neurons did not coincide with changes in small bowel transit.
Collapse
Affiliation(s)
- David R Linden
- Department of Physiology and Biomedical Engineering and Enteric NeuroScience Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
12
|
Linden DR. Enhanced excitability of guinea pig inferior mesenteric ganglion neurons during and following recovery from chemical colitis. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1067-75. [PMID: 22961805 PMCID: PMC3517667 DOI: 10.1152/ajpgi.00226.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Postganglionic sympathetic neurons in the prevertebral ganglia (PVG) provide ongoing inhibitory tone to the gastrointestinal tract and receive innervation from mechanosensory intestinofugal afferent neurons primarily located in the colon and rectum. This study tests the hypothesis that colitis alters the excitability of PVG neurons. Intracellular recording techniques were used to evaluate changes in the electrical properties of inferior mesenteric ganglion (IMG) neurons in the trinitrobenzene sulfonic acid (TNBS) and acetic acid models of guinea pig colitis. Visceromotor IMG neurons were hyperexcitable 12 and 24 h, but not 6 h, post-TNBS during "acute" inflammation. Hyperexcitability persisted at 6 days post-TNBS during "chronic" inflammation, as well as at 56 days post-TNBS when colitis had resolved. In contrast, there was only a modest decrease in the current required to elicit an action potential at 24 h after acetic acid administration. Vasomotor neurons from inflamed preparations exhibited normal excitability. The excitatory effects of XE-991, a blocker of the channel that contributes to the M-type potassium current, and heteropodatoxin-2, a blocker of the channel that contributes to the A-type potassium current, were unchanged in TNBS-inflamed preparations, suggesting that these currents did not contribute to hyperexcitability. Riluzole, an inhibitor of persistent sodium currents, caused tonic visceromotor neurons to accommodate to sustained current pulses, regardless of the inflammatory state of the preparation, and restored a normal rheobase in neurons from TNBS-inflamed preparations but did not alter the rheobase of control preparations, suggesting that enhanced activity of voltage-gated sodium channels may contribute to colitis-induced hyperexcitability. Collectively, these data indicate that enhanced sympathetic drive as a result of hyperexcitable visceromotor neurons may contribute to small bowel dysfunction during colitis.
Collapse
Affiliation(s)
- David R. Linden
- Department of Physiology and Biomedical Engineering and Enteric NeuroScience Program, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
13
|
Young D, Ibuki M, Nakamori T, Fan M, Mine Y. Soy-derived di- and tripeptides alleviate colon and ileum inflammation in pigs with dextran sodium sulfate-induced colitis. J Nutr 2012; 142:363-8. [PMID: 22190029 DOI: 10.3945/jn.111.149104] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We evaluated the antiinflammatory activity of soy-derived di- and tripeptides in a dextran sodium sulfate (DSS)-induced pig model of intestinal inflammation. In the DSS-positive control (POS) and DSS-positive with soy peptide treatment (SOY) groups (n = 6/group), DSS was administered to piglets via i.g. catheter for 5 d, followed by a 5-d administration of saline or soy-derived peptides, respectively. A negative control (NEG) group received saline in lieu of the DSS and soy peptides. The severity of inflammation was assessed by clinical signs, morphological and histological measurements, gut permeability, and neutrophil infiltration. Local production of TNF and IL6 were measured by ELISA, colonic and ileal inflammatory gene expression were assessed by real-time RT-PCR, and CD4+CD25+ lymphocyte populations were analyzed by flow cytometry. Crypt elongation and muscle thickness, d-mannitol gut permeation, colonic expression of the inflammatory mediators IFNG, IL1B, TNF, RORC, and IL17A as well as the FOXP3 T-regulatory transcription factor, and myeloperoxidase activity were lower (P < 0.05) in the SOY pigs than in POS pigs. Messenger RNA levels of ileal IFNG, TNF, IL12B, and IL17A were lower (P < 0.05) and FOXP3 expression was greater (P < 0.05) in SOY piglets than in the POS group. In the mesenteric lymph nodes, CD4+CD25+ T cells were higher (P < 0.05) in both the POS and SOY groups than in NEG controls. Soy-derived peptides exert antiinflammatory activity in vivo, suggesting their usefulness for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Denise Young
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
14
|
Stronati L, Negroni A, Pierdomenico M, D'Ottavio C, Tirindelli D, Di Nardo G, Oliva S, Viola F, Cucchiara S. Altered expression of innate immunity genes in different intestinal sites of children with ulcerative colitis. Dig Liver Dis 2010; 42:848-853. [PMID: 20452301 DOI: 10.1016/j.dld.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Innate immunity has been very rarely investigated in ulcerative colitis and never in paediatrics. The present study was aimed at describing expression of innate immunity genes (NOD2, RIP2, α-defensins HD5 and HD6) in inflamed colon and in ileum of children with ulcerative colitis. Expression of TNFα and IL-1β was also analyzed. METHODS 15 children with ulcerative colitis (9 pancolitis, 6 left-sided colitis) and 10 control children were enrolled. mRNA and protein expressions were detected by real time PCR and western blot assays. RESULTS NOD2, RIP2, IL-1β, TNFα expression levels were significantly increased in colonic mucosa of patients compared to controls (p<0.01). These genes were also upregulated (p<0.01) in the ileum of both pancolitis and left-sided colitis children. HD5 and HD6 were significantly upregulated (p<0.01) in the inflamed colon of patients as well as in the ileum of those with pancolitis. CONCLUSIONS An increased mucosal expression of innate immunity genes was found in the inflamed colon of children with ulcerative colitis, outlining the role of the innate immune response in disease pathogenesis. Involvement of the ileum in ulcerative colitis suggests that an immune activation can also be established in intestinal sites classically uninvolved by the inflammation, carrying implications for the treatment and course of the disease.
Collapse
Affiliation(s)
- Laura Stronati
- Section of Toxicology and Biomedical Sciences, Enea, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Engel DR, Koscielny A, Wehner S, Maurer J, Schiwon M, Franken L, Schumak B, Limmer A, Sparwasser T, Hirner A, Knolle PA, Kalff JC, Kurts C. T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nat Med 2010; 16:1407-13. [PMID: 21113155 DOI: 10.1038/nm.2255] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/06/2010] [Indexed: 01/01/2023]
Abstract
Localized abdominal surgery can lead to disruption of motility in the entire gastrointestinal tract (postoperative ileus). Intestinal macrophages produce mediators that paralyze myocytes, but it is unclear how the macrophages are activated, especially those in unmanipulated intestinal areas. Here we show that intestinal surgery activates intestinal CD103(+)CD11b(+) dendritic cells (DCs) to produce interleukin-12 (IL-12). This promotes interferon-γ (IFN-γ) secretion by CCR9(+) memory T helper type 1 (T(H)1) cells which activates the macrophages. IL-12 also caused some T(H)1 cells to migrate from surgically manipulated sites through the bloodstream to unmanipulated intestinal areas where they induced ileus. Preventing T cell migration with the drug FTY720 or inhibition of IL-12, T-bet (T(H)1-specific T box transcription factor) or IFN-γ prevented postoperative ileus. CCR9(+) T(H)1 memory cells were detected in the venous blood of subjects 1 h after abdominal surgery. These findings indicate that postoperative ileus is a T(H)1 immune-mediated disease and identify potential targets for disease monitoring and therapy.
Collapse
Affiliation(s)
- Daniel R Engel
- Institutes for Molecular Medicine and Experimental Immunology, University Clinic of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mourad FH, Barada KA, Noutsi B, Saade NE. Troubleshooting in animal models of colitis: The use of a novel electrocautery model. J Pharmacol Toxicol Methods 2010; 61:122-126. [PMID: 20114083 DOI: 10.1016/j.vascn.2010.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/16/2010] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Experimental colitis induced by chemical agents leads to upregulation of inflammatory cytokines in distant unaffected small intestine and to a decrease in nutrient absorption. To preclude any possible proximal diffusion of these chemicals, we designed a novel method for ulcer induction in the colon by electrocautery. METHODS Under light anesthesia, a colonic ulcer was induced in rats by a special electrocautery probe introduced in the descending colon through the rectum allowing the injection of a controlled electrolytic current. A direct current (3-7 mA) was delivered through the electrodes for 30s and then for another 30s after reversing the polarity of the electrodes. Then, the probe was moved for a distance of +/-0.5 cm and the current injection was repeated. Rats were sacrificed at various time intervals after ulcer induction (3-96 h). Samples from colon and jejunum were taken for histological assessment and determination, by ELISA, of the levels of interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha). In other groups of animals, jejunal amino acid absorption was determined in vivo at 24 and 48 h post electrocautery. RESULTS A colonic ulcer persisted for 72 h after cauterization. A significant upregulation of the levels of different cytokines was observed in the colon and jejunum post cauterization and persisted for at least 48 h. In the jejunum, IL-1beta increased from 81+/-9 to 652+/-110 (p<0.01) and 243+/-47 (p<0.05) pg/mg protein at 24 and 48 h, respectively. Similarly, jejunal TNF-alpha levels increased by approximately 2 folds at 24 and 48 h post ulcer induction (p<0.05). A similar but higher increase in cytokines was observed in the colon. Jejunal alanine absorption (0.2+/-0.02 micromol/20 min/cm) decreased significantly at 24 and 48 h after colitis induction (0.12+/-0.01 and 0.14+/-0.02, respectively; p<0.01). DISCUSSION This model may be used as an alternative or a complement to chemical models of colitis.
Collapse
Affiliation(s)
- F H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | | | | |
Collapse
|
17
|
Barada KA, Mourad FH, Sawah SI, Khoury C, Safieh-Garabedian B, Nassar CF, Tawil A, Jurjus A, Saadé NE. Up-regulation of nerve growth factor and interleukin-10 in inflamed and non-inflamed intestinal segments in rats with experimental colitis. Cytokine 2007; 37:236-245. [PMID: 17517520 DOI: 10.1016/j.cyto.2007.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/28/2007] [Accepted: 04/11/2007] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases are characterized by dysregulated immune response to the normal microflora and structural and functional changes of the enteric nervous system which occur in inflamed as well as non-inflamed areas of the bowel. This study describes the changes in the expression of nerve growth factor (NGF) and interleukin-10 (IL-10) in the colon and in various segments of the small intestine in two rat models of experimental colitis induced by iodoacetamide or 2,4,6-trinitrobenzene sulfonic acid (TNBS). Levels of NGF and IL-10 were measured by ELISA in tissue homogenate sampled from duodenum, jejunum, ileum and colon at different time intervals. NGF and IL-10 increased significantly in homogenates of strips isolated from all small intestinal segments, 3-6h after iodoacetamide or TNBS administration and remained elevated until the colonic inflammation subsided. Similar but more pronounced increase occurred in areas of the colon adjacent to the ulcer. Histologic examinations revealed inflammatory changes in the colon; however, examination of sections from the small intestines did not reveal significant differences between controls and rats with colitis. The marked up-regulation of nerve growth factor and interleukin-10 in colitis suggests that they play a role in limiting or resolving inflammation and in preventing it from becoming uncontrolled. It also suggests that experimental colitis may be associated with latent inflammation in the small bowel.
Collapse
Affiliation(s)
- Kassem A Barada
- Department of Internal Medicine, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut, Lebanon.
| | | | | | | | | | | | | | | | | |
Collapse
|