1
|
Zhou HM, Yang XY, Yue SJ, Wang WX, Zhang Q, Xu DQ, Li JJ, Tang YP. The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:145-155. [PMID: 38412071 DOI: 10.1080/21691401.2024.2319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.
Collapse
Affiliation(s)
- Hao-Ming Zhou
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xin-Yu Yang
- Department of Pharmacy, Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wen-Xiao Wang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
2
|
Kaida H, Tahara N, Tahara A, Honda A, Nitta Y, Igata S, Ishibashi M, Yamagishi SI, Fukumoto Y. Positive correlation between malondialdehyde-modified low-density lipoprotein cholesterol and vascular inflammation evaluated by 18F-FDG PET/CT. Atherosclerosis 2014; 237:404-9. [DOI: 10.1016/j.atherosclerosis.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
|
3
|
Cole JE, Mitra AT, Monaco C. Treating atherosclerosis: the potential of Toll-like receptors as therapeutic targets. Expert Rev Cardiovasc Ther 2014; 8:1619-35. [DOI: 10.1586/erc.10.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Pedicino D, Giglio AF, Galiffa VA, Cialdella P, Trotta F, Graziani F, Liuzzo G. Infections, immunity and atherosclerosis: Pathogenic mechanisms and unsolved questions. Int J Cardiol 2013; 166:572-83. [DOI: 10.1016/j.ijcard.2012.05.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/02/2012] [Accepted: 05/27/2012] [Indexed: 01/19/2023]
|
5
|
Tapp LD, Shantsila E, Wrigley BJ, Montoro-Garcia S, Lip GYH. TLR4 expression on monocyte subsets in myocardial infarction. J Intern Med 2013; 273:294-305. [PMID: 23121518 DOI: 10.1111/joim.12011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Monocyte toll-like receptor 4 (TLR4) has been implicated in the pathogenesis of atherosclerosis with increased levels in myocardial infarction. The aim of this study was to assess the numbers of TLR4(+) monocytes in each monocyte subset in MI, the expression of TLR4 and association with markers of monocyte activation, inflammation, myocardial damage and postmyocardial infarction (MI) cardiac contractility. METHODS Surface expression of TLR4 and numbers of TLR4-expressing monocytes were quantified by flow cytometry of venous blood in 50 patients with ST-elevation MI (STEMI), 48 with non-STEMI (NSTEMI) and 40 with stable coronary artery disease (CAD). These parameters were measured on days 1, 3, 7 and 30 post-MI in STEMI patients. Three monocyte subsets were defined as CD14(++) CD16(-) CCR2(+) (Mon1), CD14(++) CD16(+) CCR2(+) (Mon2) and CD14(+) CD16(++) CCR2(-) (Mon3). Plasma inflammatory cytokines were assessed using cytometric bead arrays. RESULTS There was a significant increase in counts of TLR4(+) Mon1 and Mon2 in STEMI patients and TLR4(+) Mon2 in NSTEMI patients compared with controls with CAD. Monocyte TLR4(+) expression was similar between the groups, and was not changed during follow-up in STEMI patients. Plasma interleukin-6 (IL6) levels correlated positively with TLR4(+) Mon2 count (r = 0.54, P < 0.001), but negatively with TLR4 expression on Mon2 (r = -0.33, P = 0.021). CONCLUSION Following treatment of acute MI, TLR4 expression by individual monocyte subsets is unchanged. An increase in TLR4(+) Mon1 and Mon2 count in patients with STEMI and TLR(+) Mon2 count in those with NSTEMI is due to an increase in monocyte subset count and not to changes in TLR4 expression. Monocyte counts but not TLR4 expression correlate positively with plasma IL6 levels. We suggest that TLR4 expression may not be a reliable marker of monocyte activation in MI.
Collapse
Affiliation(s)
- L D Tapp
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, B18 7QH, UK
| | | | | | | | | |
Collapse
|
6
|
Avlas O, Fallach R, Shainberg A, Porat E, Hochhauser E. Toll-like receptor 4 stimulation initiates an inflammatory response that decreases cardiomyocyte contractility. Antioxid Redox Signal 2011; 15:1895-909. [PMID: 21126202 DOI: 10.1089/ars.2010.3728] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) have been identified as primary innate immune receptors for the recognition of pathogen-associated molecular patterns by immune cells, initiating a primary response toward invading pathogens and recruitment of the adaptive immune response. TLRs, especially Toll-like receptor 4 (TLR4), can also be stimulated by host-derived molecules and are expressed in the cardiovascular system, thus acting as a possible key link between cardiovascular diseases and the immune system. TLR4 is involved in the acute myocardial dysfunction caused by septic shock and myocardial ischemia. We used wild-type (WT) mice, TLR4-deficient (TLR4-knockout [ko]) mice, and chimeras that underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the heart (TLR4-ko/WT) and the immunohematopoietic system (WT/TLR4-ko). Following lipopolysaccharide (LPS) challenge (septic shock model) or coronary artery ligation, myocardial ischemia (MI) model, we found WT/TLR4-ko mice challenged with LPS or MI displayed reduced cardiac function, increased myocardial levels of interleukin-1β and tumor necrosis factor-α, and upregulation of mRNA encoding TLR4 prior to myocardial leukocyte infiltration. The cardiac function of TLR4-ko or WT/TLR4-ko mice was less affected by LPS and demonstrated reduced suppression by MI compared with WT. These results suggest that TLR4 expressed in the cardiomyocytes plays a key role in this acute phenomenon.
Collapse
Affiliation(s)
- Orna Avlas
- Gonda (Goldschmied) Medical Diagnostic Research Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
7
|
Shalhoub J, Falck-Hansen MA, Davies AH, Monaco C. Innate immunity and monocyte-macrophage activation in atherosclerosis. J Inflamm (Lond) 2011; 8:9. [PMID: 21526997 PMCID: PMC3094203 DOI: 10.1186/1476-9255-8-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 04/28/2011] [Indexed: 12/25/2022] Open
Abstract
Innate inflammation is a hallmark of both experimental and human atherosclerosis. The predominant innate immune cell in the atherosclerotic plaque is the monocyte-macrophage. The behaviour of this cell type within the plaque is heterogeneous and depends on the recruitment of diverse monocyte subsets. Furthermore, the plaque microenvironment offers polarisation and activation signals which impact on phenotype. Microenvironmental signals are sensed through pattern recognition receptors, including toll-like and NOD-like receptors - the latter of which are components of the inflammasome - thus dictating macrophage behaviour and outcome in atherosclerosis. Recently cholesterol crystals and modified lipoproteins have been recognised as able to directly engage these pattern recognition receptors. The convergent role of such pathways in terms of macrophage activation is discussed in this review.
Collapse
Affiliation(s)
- Joseph Shalhoub
- Cytokine Biology of Atherosclerosis, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, UK
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Mika A Falck-Hansen
- Cytokine Biology of Atherosclerosis, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, UK
| | - Alun H Davies
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Claudia Monaco
- Cytokine Biology of Atherosclerosis, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
8
|
Lee YW, Lin JA, Chang CC, Chen YH, Liu PL, Lee AW, Tsai JC, Li CY, Tsai CS, Chen TL, Lin FY. Ginkgo biloba extract suppresses endotoxin-mediated monocyte activation by inhibiting nitric oxide- and tristetraprolin-mediated toll-like receptor 4 expression. J Nutr Biochem 2011; 22:351-9. [DOI: 10.1016/j.jnutbio.2010.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/19/2010] [Accepted: 03/02/2010] [Indexed: 02/03/2023]
|
9
|
Monaco C, Terrando N, Midwood KS. Toll-like receptor signaling: common pathways that drive cardiovascular disease and rheumatoid arthritis. Arthritis Care Res (Hoboken) 2011; 63:500-11. [PMID: 21452263 DOI: 10.1002/acr.20382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Claudia Monaco
- Kennedy Institute of Rheumatology, Imperial College, London, UK.
| | | | | |
Collapse
|
10
|
Huang W, Glass CK. Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arterioscler Thromb Vasc Biol 2010; 30:1542-9. [PMID: 20631355 PMCID: PMC2911147 DOI: 10.1161/atvbaha.109.191189] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tissue inflammation is a tightly regulated process that normally serves to recruit the immune system to sites of infection and injury and to facilitate tissue repair processes. When an inflammatory state is excessive or prolonged, local and systemic damage to host tissues can result in loss of normal physiological functions. Here, we briefly review recent studies that advance our understanding of signaling pathways involved in initiation of inflammatory responses at the level of transcription and counterregulation of these pathways by selected members of the nuclear receptor superfamily. Studies of the intersection of nuclear receptors and inflammation have revealed mechanisms of positive and negative transcriptional control that may provide new targets for pharmacological intervention in chronic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Wendy Huang
- Department of Cellular and Molecular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
11
|
The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm 2010; 2010:393946. [PMID: 20652007 PMCID: PMC2905957 DOI: 10.1155/2010/393946] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/07/2010] [Indexed: 12/16/2022] Open
Abstract
Inflammation drives atherosclerosis. Both immune and resident vascular cell types are involved in the development of atherosclerotic lesions. The phenotype and function of these cells are key in determining the development of lesions. Toll-like receptors are the most characterised innate immune receptors and are responsible for the recognition of exogenous conserved motifs on pathogens, and, potentially, some endogenous molecules. Both endogenous and exogenous TLR agonists may be present in atherosclerotic plaques. Engagement of toll-like receptors on immune and resident vascular cells can affect atherogenesis as signalling downstream of these receptors can elicit proinflammatory cytokine release, lipid uptake, and foam cell formation and activate cells of the adaptive immune system. In this paper, we will describe the expression of TLRs on immune and resident vascular cells, highlight the TLR ligands that may act through TLRs on these cells, and discuss the consequences of TLR activation in atherosclerosis.
Collapse
|
12
|
Katsargyris A, Theocharis SE, Tsiodras S, Giaginis K, Bastounis E, Klonaris C. Enhanced TLR4 endothelial cell immunohistochemical expression in symptomatic carotid atherosclerotic plaques. Expert Opin Ther Targets 2010; 14:1-10. [PMID: 20001205 DOI: 10.1517/14728220903401294] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptor-4 (TLR4) has been linked to the pathogenesis of atherosclerosis. Carotid atheroma endothelial cells (ECs) express TLR4, nevertheless correlations with cerebrovascular symptomatology, epidemiological and clinical variables remain unresolved. METHODS Carotid atherosclerotic plaques were obtained by standard carotid endarterectomy from 157 patients with carotid artery disease (84 asymptomatic - Group A, 73 symptomatic - Group B). TLR4 expression was detected by immunohistochemistry and TLR4 positivity, overexpression and intensity of immunostaining in ECs were correlated with cerebrovascular symptomatology, epidemiological and clinical variables. RESULTS A significant association was found between TLR4 positivity in ECs and the occurrence of any cerebrovascular event (overall response (OR): 2.85, 95% CI 1.33 - 6.11, p = 0.009). TLR4 overexpression and staining intensity in ECs were both significantly enhanced in symptomatic patients (p < 0.0001 and p = 0.003, respectively). These associations were stronger for the occurrence of a major cerebrovascular accident (CVA) compared with a transient ischemic attack (TIA) or amaurosis fugax. TLR4 expression in ECs was less prominent in statin users (OR: 0.25, 95%CI 0.1 - 0.58, p = 0.001], while it was enhanced in restenotic plaques compared with primary atherosclerotic lesions (p = 0.012). CONCLUSIONS TLR4 expression in ECs of carotid atheroma was enhanced in symptomatic patients with most commonly 'unstable' - 'more prone to rupture' carotid plaques.
Collapse
Affiliation(s)
- Athanasios Katsargyris
- National and Kapodistrian University of Athens, School of Medicine, LAIKON Hospital, Vascular Division, 1st Department of Surgery, Goudi, GR11527, Athens, Greece
| | | | | | | | | | | |
Collapse
|
13
|
Innate immune signals in atherosclerosis. Clin Immunol 2009; 134:5-24. [PMID: 19740706 DOI: 10.1016/j.clim.2009.07.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic disease characterised by lipid retention and inflammation in the arterial intima. Innate immune mechanisms are central to atherogenesis, involving activation of pattern-recognition receptors (PRRs) and induction of inflammatory processes. In a complex tissue, such as the atherosclerotic lesion, innate signals can originate from several sources and promote atherogenesis through ligation of PRRs. The receptors recognise conserved molecular patterns on pathogens and endogenous products of tissue injury and inflammation. Activation of PRRs might affect several aspects of atherosclerosis by acting on lesion resident cells. Scavenger receptors mediate antigen uptake and clearance of lipoproteins, thereby promoting foam cell formation. Signalling receptors, such as Toll-like receptors (TLRs), lead to induction of pro-inflammatory cytokines and antigen-specific immune responses. In this review we describe the innate mechanisms present in the plaque. We focus on TLRs, their cross-talk with other PRRs, and how their signalling cascades influence inflammation within the atherosclerotic lesion.
Collapse
|
14
|
Huang W, Ghisletti S, Perissi V, Rosenfeld MG, Glass CK. Transcriptional integration of TLR2 and TLR4 signaling at the NCoR derepression checkpoint. Mol Cell 2009; 35:48-57. [PMID: 19595715 PMCID: PMC2759189 DOI: 10.1016/j.molcel.2009.05.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/16/2009] [Accepted: 05/20/2009] [Indexed: 12/17/2022]
Abstract
Activation of toll-like receptors (TLRs) leads to derepression and subsequent activation of inflammatory response genes that play essential roles in innate and acquired immunity. Derepression requires signal-dependent turnover of the nuclear receptor corepressor NCoR from target promoters, but the mechanisms remain poorly understood. Here, we report that TLR4 uses NFkappaB to deliver IKKepsilon to target promoters that contain "integrated circuits" of kappaB and AP-1 sites, resulting in local phosphorylation of c-Jun and subsequent NCoR clearance. In contrast, TLR2 signaling leads to rapid activation of CaMKII and phosphorylation of the TBLR1 component of NCoR complexes, bypassing the requirement for c-Jun phosphorylation and enabling NCoR clearance from promoters lacking integrated kappaB elements. Intriguingly, the IKKvarepsilon-dependent clearance pathway is sensitive to transrepression by liver X receptors, while the CaMKII-dependent pathway is not. These findings reveal mechanisms for integration of TLR, calcium, and nuclear receptor signaling pathways that underlie pathogen-specific responses and disease-specific programs of inflammation.
Collapse
Affiliation(s)
- Wendy Huang
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0651
- Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0651
| | - Serena Ghisletti
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0651
| | - Valentina Perissi
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0651
| | - Michael G. Rosenfeld
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0651
- Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0651
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0651
- Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0651
| |
Collapse
|
15
|
Katsargyris A, Klonaris C, Bastounis E, Theocharis S. Toll-like receptor modulation: a novel therapeutic strategy in cardiovascular disease? Expert Opin Ther Targets 2009; 12:1329-46. [PMID: 18851691 DOI: 10.1517/14728222.12.11.1329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Toll-like receptors (TLRs) have been recently recognised as primary receptors in the innate immune system. Apart from initiating a prompt immune response against invading pathogens, TLRs are also considered to be an important link between innate immunity, inflammation and a variety of clinical disorders, including cardiovascular diseases. TLR signalling manipulation with novel drugs could offer important opportunities for cardiovascular disease modification. OBJECTIVE To present the latest knowledge supporting the involvement of TLRs in the pathogenesis and progress of cardiovascular diseases and explore the role of TLRs as potential targets for therapeutic intervention in cardiovascular territory. METHODS A review of the literature documenting implication of TLR signalling in cardiovascular disorders. Current progress in TLR-targeting drug development and the potential role of such a treatment strategy in cardiovascular disorders are discussed. CONCLUSIONS A growing body of evidence supports a role for TLRs in cardiovascular disease initiation and progression. Altering TLR signalling with novel drugs could be a beneficial therapeutic strategy for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Athanasios Katsargyris
- National and Kapodistrian University of Athens, School of Medicine, LAIKON Hospital, Vascular Division, 1st Department of Surgery, 75, Mikras Asias street, Goudi, 11527 Athens, Greece
| | | | | | | |
Collapse
|
16
|
Klebsiella pneumoniae increases the levels of Toll-like receptors 2 and 4 in human airway epithelial cells. Infect Immun 2008; 77:714-24. [PMID: 19015258 DOI: 10.1128/iai.00852-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Airway epithelial cells act as the first barrier against pathogens. These cells recognize conserved structural motifs expressed by microbial pathogens via Toll-like receptors (TLRs) expressed on the surface. In contrast to the level of expression in lymphoid cells, the level of expression of TLR2 and TLR4 in airway epithelial cells is low under physiological conditions. Here we explored whether Klebsiella pneumoniae upregulates the expression of TLRs in human airway epithelial cells. We found that the expression of TLR2 and TLR4 by A549 cells and human primary airway cells was upregulated upon infection with K. pneumoniae. The increased expression of TLRs resulted in enhancement of the cellular response upon stimulation with Pam3CSK4 and lipopolysaccharide, which are TLR2 and TLR4 agonists, respectively. Klebsiella-dependent upregulation of TLR expression occurred via a positive IkappaBalpha-dependent NF-kappaBeta pathway and via negative p38 and p44/42 mitogen-activated protein kinase-dependent pathways. We showed that Klebsiella-induced TLR2 and TLR4 upregulation was dependent on TLR activation. An isogenic capsule polysaccharide (CPS) mutant did not increase TLR2 and TLR4 expression. Purified CPS upregulated TLR2 and TLR4 expression, and polymyxin B did not abrogate CPS-induced TLR upregulation. Although no proteins were detected in the CPS preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and colloidal gold staining, we could not rule out the possibility that traces of protein in our CPS preparation could have been responsible, at least in part, for the TLR upregulation.
Collapse
|