1
|
Tiwary SK, Hayashi T, Kovacs A, Mann DL. Recurrent Myocardial Injury Leads to Disease Tolerance in a Murine Model of Stress-Induced Cardiomyopathy. JACC Basic Transl Sci 2023; 8:783-797. [PMID: 37547073 PMCID: PMC10401155 DOI: 10.1016/j.jacbts.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 08/08/2023]
Abstract
Whereas the innate immune response to an initial episode of cardiac injury has been studied extensively, the response of the immune system to recurrent cardiac tissue injury is not well understood. Specifically, it is not known whether the immune system adapts to the initial episode of cardiac injury and whether any adaptations that occur lead to immune cell hypo-responsiveness or, alternatively, immune cell hyper-responsiveness. Here, we studied the role of adrenergic-mediated stress using a simple model of reversible stress-induced cardiomyopathy, and show that isoproterenol-induced tissue injury and inflammation are sufficient to protect the heart from the myopathic effects of a subsequent exposure to isoproterenol. Remarkably, pharmacological depletion of macrophages partially attenuated the isoproterenol-induced cytoprotective response, suggesting that immune-mediated tissue repair mechanisms confer tolerance to subsequent tissue damage.
Collapse
Affiliation(s)
| | | | - Attila Kovacs
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine and Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas L. Mann
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine and Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Alsahly MB, Zakari MO, Koch LG, Britton S, Katwa LC, Lust RM. Influence of Intrinsic Aerobic Exercise Capacity and Sex on Cardiac Injury Following Acute Myocardial Ischemia and Reperfusion. Front Cardiovasc Med 2021; 8:751864. [PMID: 34901212 PMCID: PMC8661003 DOI: 10.3389/fcvm.2021.751864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Previous reports have suggested that active exercise aside, intrinsic aerobic running capacity (Low = LCR, high = HCR) in otherwise sedentary animals may influence several cardiovascular health-related indicators. Relative to the HCR phenotype, the LCR phenotype is characterized by decreased endothelial reactivity, increased susceptibility to reperfusion-induced arrhythmias following short, non-infarction ischemia, and increased diet-induced insulin resistance. More broadly, the LCR phenotype has come to be characterized as a "disease prone" model, with the HCRs as "disease resistant." Whether these effects extend to injury outcomes in an overt infarction or whether the effects are gender specific is not known. This study was designed to determine whether HCR/LCR phenotypic differences would be evident in injury responses to acute myocardial ischemia-reperfusion injury (AIR), measured as infarct size and to determine whether sex differences in infarction size were preserved with phenotypic selection. Methods: Regional myocardial AIR was induced in vivo by either 15 or 30 min ligation of the left anterior descending coronary artery, followed by 2 h of reperfusion. Global ischemia was induced in isolated hearts ex vivo using a Langendorff perfusion system and cessation of perfusion for either 15 or 30 min followed by 2 h of reperfusion. Infarct size was determined using 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, and normalized to area at risk in the regional model, or whole heart in the global model. Portions of the tissue were paraffin embedded for H&E staining and histology analysis. Results: Phenotype dependent differences in infarct size were seen with 15 min occlusion/2 h reperfusion (LCR > HCR, p < 0.05) in both regional and global models. In both models, longer occlusion times (30 min/2 h) produced significantly larger infarctions in both phenotypes, but phenotypic differences were no longer present (LCR vs. HCR, p = n.s.). Sex differences in infarct size were present in each phenotype (LCR male > LCR female, p < 0.05; HCR male > HCR female, p < 0.05 regardless of length of occlusion, or ischemia model. Conclusions: There is cardioprotection afforded by high intrinsic aerobic capacity, but it is not infinite/continuous, and may be overcome with sufficient injury burden. Phenotypic selection based on endurance running capacity preserved sex differences in response to both short and longer term coronary occlusive challenges. Outcomes could not be associated with differences in system characteristics such as circulating inflammatory mediators or autonomic nervous system influences, as similar phenotypic injury patterns were seen in vivo, and in isolated crystalloid perfused heart ex vivo.
Collapse
Affiliation(s)
- Musaad B Alsahly
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Madaniah O Zakari
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Department of Physiology, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Steven Britton
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Laxmansa C Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Robert M Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC, United States
| |
Collapse
|
3
|
Comità S, Femmino S, Thairi C, Alloatti G, Boengler K, Pagliaro P, Penna C. Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol 2021; 116:56. [PMID: 34642818 PMCID: PMC8510947 DOI: 10.1007/s00395-021-00898-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Ischemia–reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.
Collapse
Affiliation(s)
- Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | - Saveria Femmino
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | | | - Kerstin Boengler
- Institute of Physiology, University of Giessen, Giessen, Germany
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| |
Collapse
|
4
|
Abstract
The advent of biologic therapy has enhanced our ability to augment disease in an increasingly targeted manner. The use of biologics in cardiovascular disease (CVD) has steadily increased over the past several decades. Much of the early data on biologics and CVD were derived from their use in rheumatologic populations. Atherosclerosis, myocardial infarction, and heart failure have been closely linked to the inflammatory response. Accordingly, cytokines such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 have been targeted. Noninflammatory mediators, such as proprotein convertase subtilisin kexin type 9 (PCSK9), have been selected for therapeutic intervention as well. Furthermore, RNA interference (RNAi) therapy has emerged and may serve as another targeted therapeutic mechanism. Herein, we will review the history, obstacles, and advances in using biologic therapy for CVD.
Collapse
|
5
|
Evans S, Tzeng HP, Veis DJ, Matkovich S, Weinheimer C, Kovacs A, Barger PM, Mann DL. TNF receptor-activated factor 2 mediates cardiac protection through noncanonical NF-κB signaling. JCI Insight 2018; 3:98278. [PMID: 29415884 DOI: 10.1172/jci.insight.98278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/05/2018] [Indexed: 12/29/2022] Open
Abstract
To elucidate the mechanisms responsible for cytoprotective effects of TNF receptor-activated factor 2 (TRAF2) in the heart, we employed genetic gain- and loss-of-function studies ex vivo and in vivo in mice with cardiac-restricted overexpression of TRAF2 (Myh6-TRAF2LC). Crossing Myh6-TRAF2LC mice with mice lacking canonical signaling (Myh6-TRAF2LC/Myh6-IκBαΔN) abrogated the cytoprotective effects of TRAF2 ex vivo. In contrast, inhibiting the JAK/STAT pathway did not abrogate the cytoprotective effects of TRAF2. Transcriptional profiling of WT, Myh6-TRAF2LC, and Myh6-TRAF2LC/Myh6-IκBαΔN mouse hearts suggested that the noncanonical NF-κB signaling pathway was upregulated in the Myh6-TRAF2LC mouse hearts. Western blotting and ELISA for the NF-κB family proteins p50, p65, p52, and RelB on nuclear and cytoplasmic extracts from naive 12-week-old WT, Myh6-TRAF2LC, and Myh6-TRAF2LC/Myh6-IκBαΔN mouse hearts showed increased expression levels and increased DNA binding of p52 and RelB, whereas there was no increase in expression or DNA binding of the p50 and p65 subunits. Crossing Myh6-TRAF2LC mice with RelB-/+ mice (Myh6-TRAF2LC/RelB-/+) attenuated the cytoprotective effects of TRAF2 ex vivo and in vivo. Viewed together, these results suggest that crosstalk between the canonical and noncanonical NF-κB signaling pathways is required for mediating the cytoprotective effects of TRAF2.
Collapse
Affiliation(s)
- Sarah Evans
- Center for Cardiovascular Research, Cardiovascular Division and
| | - Huei-Ping Tzeng
- Center for Cardiovascular Research, Cardiovascular Division and
| | - Deborah J Veis
- Division of Bone and Mineral Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scot Matkovich
- Center for Cardiovascular Research, Cardiovascular Division and
| | | | - Attila Kovacs
- Center for Cardiovascular Research, Cardiovascular Division and
| | - Philip M Barger
- Center for Cardiovascular Research, Cardiovascular Division and
| | - Douglas L Mann
- Center for Cardiovascular Research, Cardiovascular Division and
| |
Collapse
|
6
|
The SAFE pathway for cardioprotection: is this a promising target? Basic Res Cardiol 2018; 113:9. [DOI: 10.1007/s00395-018-0670-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
|
7
|
Nan J, Hu H, Sun Y, Zhu L, Wang Y, Zhong Z, Zhao J, Zhang N, Wang Y, Wang Y, Ye J, Zhang L, Hu X, Zhu W, Wang J. TNFR2 Stimulation Promotes Mitochondrial Fusion via Stat3- and NF-kB-Dependent Activation of OPA1 Expression. Circ Res 2017. [PMID: 28637784 PMCID: PMC5542782 DOI: 10.1161/circresaha.117.311143] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Mitochondria are important cellular organelles and play essential roles in maintaining cell structure and function. Emerging evidence indicates that in addition to having proinflammatory and proapoptotic effects, TNFα (tumor necrosis factor α) can, under certain circumstances, promote improvements in mitochondrial integrity and function, phenomena that can be ascribed to the existence of TNFR2 (TNFα receptor 2). Objective: The present study aimed to investigate whether and how TNFR2 activation mediates the effects of TNFα on mitochondria. Methods and Results: Freshly isolated neonatal mouse cardiac myocytes treated with shRNA targeting TNFR1 were used to study the effects of TNFR2 activation on mitochondrial function. Neonatal mouse cardiac myocytes exhibited increases in mitochondrial fusion, a change that was associated with increases in mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption capacity. Importantly, TNFR2 activation–induced increases in OPA1 (optic atrophy 1) protein expression were responsible for the above enhancements, and these changes could be attenuated using siRNA targeting OPA1. Moreover, both Stat3 and RelA bound to the promoter region of OPA1 and their interactions synergistically upregulated OPA1 expression at the transcriptional level. Stat3 acetylation at lysine 370 or lysine 383 played a key role in the ability of Stat3 to form a supercomplex with RelA. Meanwhile, p300 modulated Stat3 acetylation in HEK293T (human embryonic kidney 293T) cells, and p300-mediated Stat3/RelA interactions played an indispensable role in OPA1 upregulation. Finally, TNFR2 activation exerted beneficial effects on OPA1 expression in an in vivo transverse aortic constriction model, whereby TNFR1-knockout mice exhibited better outcomes than in mice with both TNFR1 and TNFR2 knocked out. Conclusions: TNFR2 activation protects cardiac myocytes against stress by upregulating OPA1 expression. This process was facilitated by p300-mediated Stat3 acetylation and Stat3/RelA interactions, leading to improvements in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Jinliang Nan
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hengxun Hu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Sun
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lianlian Zhu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchao Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Zhong
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Zhang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ye
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian'an Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
White CR, Giordano S, Anantharamaiah GM. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms. Chem Phys Lipids 2016; 199:161-169. [PMID: 27150975 DOI: 10.1016/j.chemphyslip.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 01/08/2023]
Abstract
Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Samantha Giordano
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G M Anantharamaiah
- The Division of Gerontology, Geriatric Medicine and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, USA; Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Al-Maghrebi M, Renno WM, Al-Somali HF, Botras MS, Qadhi IN. Lutein modulates transcription dysregulation of adhesion molecules and spermatogenesis transcription factors induced by testicular ischemia reperfusion injury: it could be SAFE. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:539-51. [DOI: 10.1007/s00210-016-1223-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
|
10
|
Tumor necrosis factor-α confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med 2015; 21:1076-84. [PMID: 26280121 DOI: 10.1038/nm.3925] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/15/2015] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor-α (TNF-α), one of the major stress-induced proinflammatory cytokines, is upregulated in the heart after tissue injury, and its sustained expression can contribute to the development of heart failure. Whether TNF-α also exerts cytoprotective effects in heart failure is not known. Here we provide evidence for a cardioprotective function of TNF-α in a genetic heart failure model, desmin-deficient mice. The cardioprotective effects of TNF-α are a consequence of nuclear factor-κB (NF-κB)-mediated ectopic expression in cardiomyocytes of keratin 8 (K8) and keratin 18 (K18), two epithelial-specific intermediate filament proteins. In cardiomyocytes, K8 and K18 (K8/K18) formed an alternative cytoskeletal network that localized mainly at intercalated discs (IDs) and conferred cardioprotection by maintaining normal ID structure and mitochondrial integrity and function. Ectopic induction of K8/K18 expression in cardiomyocytes also occurred in other genetic and experimental models of heart failure. Loss of the K8/K18 network resulted in a maladaptive cardiac phenotype following transverse aortic constriction. In human failing myocardium, where TNF-α expression is upregulated, K8/K18 were also ectopically expressed and localized primarily at IDs, which did not contain detectable amounts of desmin. Thus, TNF-α- and NF-κB-mediated formation of an alternative, stress-induced intermediate filament cytoskeleton has cardioprotective function in mice and potentially in humans.
Collapse
|
11
|
Liepinsh E, Makrecka-Kuka M, Kuka J, Vilskersts R, Makarova E, Cirule H, Loza E, Lola D, Grinberga S, Pugovics O, Kalvins I, Dambrova M. Inhibition of L-carnitine biosynthesis and transport by methyl-γ-butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction. Br J Pharmacol 2015; 172:1319-32. [PMID: 25363063 DOI: 10.1111/bph.13004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The important pathological consequences of ischaemic heart disease arise from the detrimental effects of the accumulation of long-chain acylcarnitines in the case of acute ischaemia-reperfusion. The aim of this study is to test whether decreasing the L-carnitine content represents an effective strategy to decrease accumulation of long-chain acylcarnitines and to reduce fatty acid oxidation in order to protect the heart against acute ischaemia-reperfusion injury. KEY RESULTS In this study, we used a novel compound, 4-[ethyl(dimethyl)ammonio]butanoate (Methyl-GBB), which inhibits γ-butyrobetaine dioxygenase (IC₅₀ 3 μM) and organic cation transporter 2 (OCTN2, IC₅₀ 3 μM), and, in turn, decreases levels of L-carnitine and acylcarnitines in heart tissue. Methyl-GBB reduced both mitochondrial and peroxisomal palmitate oxidation rates by 44 and 53% respectively. In isolated hearts treated with Methyl-GBB, uptake and oxidation rates of labelled palmitate were decreased by 40%, while glucose oxidation was increased twofold. Methyl-GBB (5 or 20 mg·kg(-1)) decreased the infarct size by 45-48%. In vivo pretreatment with Methyl-GBB (20 mg·kg(-1)) attenuated the infarct size by 45% and improved 24 h survival of rats by 20-30%. CONCLUSIONS AND IMPLICATIONS Reduction of L-carnitine and long-chain acylcarnitine content by the inhibition of OCTN2 represents an effective strategy to protect the heart against ischaemia-reperfusion-induced damage. Methyl-GBB treatment exerted cardioprotective effects and increased survival by limiting long-chain fatty acid oxidation and facilitating glucose metabolism.
Collapse
Affiliation(s)
- E Liepinsh
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 2014; 78:23-34. [PMID: 25446182 DOI: 10.1016/j.yjmcc.2014.11.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide. For patients presenting with an acute myocardial infarction, the most effective treatment for limiting myocardial infarct (MI) size is timely reperfusion. However, in addition to the injury incurred during acute myocardial ischemia, the process of reperfusion can itself induce myocardial injury and cardiomyocyte death, termed 'myocardial reperfusion injury', the combination of which can be referred to as acute ischemia-reperfusion injury (IRI). Crucially, there is currently no effective therapy for preventing this form of injury, and novel cardioprotective therapies are therefore required to protect the heart against acute IRI in order to limit MI size and preserve cardiac function. The opening of the mitochondrial permeability transition pore (MPTP) in the first few minutes of reperfusion is known to be a critical determinant of IRI, contributing up to 50% of the final MI size. Importantly, preventing its opening at this time using MPTP inhibitors, such as cyclosporin-A, has been reported in experimental and clinical studies to reduce MI size and preserve cardiac function. However, more specific and novel MPTP inhibitors are required to translate MPTP inhibition as a cardioprotective strategy into clinical practice. In this article, we review the role of the MPTP as a mediator of acute myocardial IRI and as a therapeutic target for cardioprotection. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Sang-Bing Ong
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Parisa Samangouei
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Siavash Beikoghli Kalkhoran
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek J Hausenloy
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
13
|
Frias MA, Lecour S, James RW, Pedretti S. High density lipoprotein/sphingosine-1-phosphate-induced cardioprotection: Role of STAT3 as part of the SAFE pathway. JAKSTAT 2014; 1:92-100. [PMID: 24058758 PMCID: PMC3670301 DOI: 10.4161/jkst.19754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High density lipoprotein (HDL) cholesterol has beneficial effects beyond its atheroprotective function in reverse cholesterol transport, including cardioprotection against ischemia reperfusion (IR) injuries. Two major constituents of HDL, namely the structural protein apolipoprotein AI (apoAI) and the sphingolipid sphingosine-1-phosphate (S1P) appear to contribute to this cardioprotective effect via the activation of intrinsic prosurvival signaling pathways that still remain to be clarified.
Recently, a powerful prosurvival signaling pathway, termed the survivor activating factor enhancement (SAFE) pathway, which involves the activation of signal transducer and activator of transcription 3 (STAT3) and tumor necrosis factor α (TNF), has been shown to protect against ischemia-reperfusion injuries.
The present review summarizes the evidence for the roles of HDL and S1P in cardioprotection and discusses the signaling pathways that have been implicated. It thus provides support for our contention that S1P should be considered in potential formulations of reconstituted HDL (reHDL) that may be tested for cardioprotection against coronary artery disease via the activation of the SAFE pathway.
Collapse
Affiliation(s)
- Miguel A Frias
- Department of Internal Medicine; Clinical Diabetes Unit; Medical Faculty; University of Geneva; Geneva, Switzerland
| | | | | | | |
Collapse
|
14
|
Tzeng HP, Evans S, Gao F, Chambers K, Topkara VK, Sivasubramanian N, Barger PM, Mann DL. Dysferlin mediates the cytoprotective effects of TRAF2 following myocardial ischemia reperfusion injury. J Am Heart Assoc 2014; 3:e000662. [PMID: 24572254 PMCID: PMC3959693 DOI: 10.1161/jaha.113.000662] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background We have demonstrated that tumor necrosis factor (TNF) receptor‐associated factor 2 (TRAF2), a scaffolding protein common to TNF receptors 1 and 2, confers cytoprotection in the heart. However, the mechanisms for the cytoprotective effects of TRAF2 are not known. Methods/Results Mice with cardiac‐restricted overexpression of low levels of TRAF2 (MHC‐TRAF2LC) and a dominant negative TRAF2 (MHC‐TRAF2DN) were subjected to ischemia (30‐minute) reperfusion (60‐minute) injury (I/R), using a Langendorff apparatus. MHC‐TRAF2LC mice were protected against I/R injury as shown by a significant ≈27% greater left ventricular (LV) developed pressure after I/R, whereas mice with impaired TRAF2 signaling had a significantly ≈38% lower LV developed pressure, a ≈41% greater creatine kinase (CK) release, and ≈52% greater Evans blue dye uptake after I/R, compared to LM. Transcriptional profiling of MHC‐TRAF2LC and MHC‐TRAF2DN mice identified a calcium‐triggered exocytotic membrane repair protein, dysferlin, as a potential cytoprotective gene responsible for the cytoprotective effects of TRAF2. Mice lacking dysferlin had a significant ≈39% lower LV developed pressure, a ≈20% greater CK release, and ≈29% greater Evans blue dye uptake after I/R, compared to wild‐type mice, thus phenocopying the response to tissue injury in the MHC‐TRAF2DN mice. Moreover, breeding MHC‐TRAF2LC onto a dysferlin‐null background significantly attenuated the cytoprotective effects of TRAF2 after I/R injury. Conclusion The study shows that dysferlin, a calcium‐triggered exocytotic membrane repair protein, is required for the cytoprotective effects of TRAF2‐mediated signaling after I/R injury.
Collapse
Affiliation(s)
- Huei-Ping Tzeng
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Høydal MA, Kaurstad G, Rolim NP, Johnsen AB, Alves M, Koch LG, Britton SL, Stølen TO, Smith GL, Wisløff U. High inborn aerobic capacity does not protect the heart following myocardial infarction. J Appl Physiol (1985) 2013; 115:1788-95. [PMID: 24177693 DOI: 10.1152/japplphysiol.00312.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maximal oxygen uptake (Vo2max) is a strong prognostic marker for morbidity and mortality, but the cardio-protective effect of high inborn Vo2max remains unresolved. We aimed to investigate whether rats with high inborn Vo2max yield cardio-protection after myocardial infarction (MI) compared with rats with low inborn Vo2max. Rats breed for high capacity of running (HCR) or low capacity of running (LCR) were randomized into HCR-SH (sham), HCR-MI, LCR-SH, and LCR-MI. Vo2max was lower in HCR-MI and LCR-MI compared with respective sham (P < 0.01), supported by a loss in global cardiac function, assessed by echocardiography. Fura 2-AM loaded cardiomyocyte experiments revealed that HCR-MI and LCR-MI decreased cardiomyocyte shortening (39%, and 34% reduction, respectively, both P < 0.01), lowered Ca(2+) transient amplitude (37%, P < 0.01, and 20% reduction, respectively), and reduced sarcoplasmic reticulum (SR) Ca(2+) content (both; 20%, P < 0.01) compared with respective sham. Diastolic Ca(2+) cycling was impaired in HCR-MI and LCR-MI evidenced by prolonged time to 50% Ca(2+) decay that was partly explained by the 47% (P < 0.01) and 44% (P < 0.05) decrease in SR Ca(2+)-ATPase Ca(2+) removal, respectively. SR Ca(2+) leak increased by 177% in HCR-MI (P < 0.01) and 67% in LCR-MI (P < 0.01), which was abolished by inhibition of Ca(2+)/calmodulin-dependent protein kinase II. This study demonstrates that the effect of MI in HCR rats was similar or even more pronounced on cardiac- and cardiomyocyte contractile function, as well as on Ca(2+) handling properties compared with observations in LCR. Thus our data do not support a cardio-protective effect of higher inborn aerobic capacity.
Collapse
Affiliation(s)
- M A Høydal
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mapanga RF, Rajamani U, Dlamini N, Zungu-Edmondson M, Kelly-Laubscher R, Shafiullah M, Wahab A, Hasan MY, Fahim MA, Rondeau P, Bourdon E, Essop MF. Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction. PLoS One 2012; 7:e47322. [PMID: 23091615 PMCID: PMC3473042 DOI: 10.1371/journal.pone.0047322] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/14/2012] [Indexed: 01/08/2023] Open
Abstract
Diabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP) and a dysfunctional ubiquitin-proteasome system (UPS) as potential mediators of this process. Since oleanolic acid (OA; a clove extract) possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS) and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1) H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose); and subsequently treated with two OA doses (20 and 50 µM) for 6 and 24 hr, respectively; 2) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min, followed by 20 min global ischemia and 60 min reperfusion ± OA treatment; 3) In vivo coronary ligations were performed on streptozotocin treated rats ± OA administration during reperfusion; and 4) Effects of long-term OA treatment (2 weeks) on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These findings are promising since it may eventually result in novel therapeutic interventions to treat acute hyperglycemia (in non-diabetic patients) and diabetic patients with associated cardiovascular complications.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Uthra Rajamani
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nonkululeko Dlamini
- Discipline of Physiology, School of Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Roisin Kelly-Laubscher
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Mohammed Shafiullah
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Athiq Wahab
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohamed Y. Hasan
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohamed A. Fahim
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Philippe Rondeau
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité (GEICO), Université de La Réunion, Saint Denis de La Réunion, France
| | - Emmanuel Bourdon
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité (GEICO), Université de La Réunion, Saint Denis de La Réunion, France
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
Montecucco F, Braunersreuther V, Viviani GL, Lenglet S, Mach F. Update on the Pathophysiological Role of Intracellular Signaling Pathways in Atherosclerotic Plaques and Ischemic Myocardium. CURRENT SIGNAL TRANSDUCTION THERAPY 2012; 7:104-110. [PMID: 22754427 PMCID: PMC3382259 DOI: 10.2174/157436212800376663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 01/02/2023]
Abstract
Acute atherosclerotic complications, such as myocardial infarction, are often provoked by the rupture of an atherosclerotic plaque and the subsequent thrombotic occlusion of the arterial lumen, which interrupts the blood flow and renders ischemic the downstream peripheral tissue. Several inflammatory mediators (including cytokines, chemokines and matrix metalloproteases) have been shown to orchestrate common pathophysiological mechanisms regulating both plaque vulnerability and myocardial injury. In particular, the selective activation of certain protective intracellular signaling pathways might represent a promising target to reduce the dramatic consequences of an ischemic cardiac event. In the present review we will update evidence on the active role of intracellular kinase cascades (such as mitogen-activated protein kinases [MAPKs], Akt, Janus kinase [JAK]-signal transducer and activator of transcription [STAT]) to reduce the global patient vulnerability for acute myocardial infarction.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | - Vincent Braunersreuther
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | | | - Sébastien Lenglet
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Zu L, Zheng X, Wang B, Parajuli N, Steenbergen C, Becker LC, Cai ZP. Ischemic preconditioning attenuates mitochondrial localization of PTEN induced by ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2011; 300:H2177-86. [PMID: 21421815 DOI: 10.1152/ajpheart.01138.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the induction of myocyte apoptosis by ischemia-reperfusion (I/R) is attenuated by ischemic preconditioning (IPC), the underlying mechanism is not fully understood. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) promotes apoptosis through Akt-dependent and -independent mechanisms. We tested the hypothesis that IPC attenuates the mitochondrial localization of PTEN in the myocardium induced by I/R. Isolated hearts from wild-type mice were exposed to IPC or normal perfusion followed by 30 min of ischemia and reperfusion. IPC attenuated myocardial infarct size and apoptosis after I/R. Heart fractionation showed that mitochondrial PTEN and Bax protein levels and the physical association between them were increased by 30 min of I/R and that IPC attenuated all of these effects of I/R. Muscle-specific PTEN knockout decreased mitochondrial Bax protein levels in the reperfused myocardium and increased cell survival. To determine whether PTEN relocalization to mitochondria was influenced by I/R-induced production of ROS, hearts were perfused with N-acetylcysteine (NAC) to scavenge ROS or H(2)O(2) to mimic I/R-induced ROS. Mitochondrial PTEN protein levels were decreased by NAC and increased by H(2)O(2). PTEN protein overexpression was generated in mouse hearts by adenoviral gene transfer. PTEN overexpression increased mitochondrial PTEN and Bax protein levels and ROS production, whereas muscle-specific PTEN knockout produced the opposite effects. In conclusion, myocardial I/R causes PTEN localization to the mitochondria, related to the generation of ROS; IPC attenuates the mitochondrial localization of PTEN after I/R, potentially inhibiting the translocation of Bax to the mitochondria and resulting in improved cell viability.
Collapse
Affiliation(s)
- Lingyun Zu
- 720 Rutland Ave., Ross 333, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hausenloy DJ, Lecour S, Yellon DM. Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 2011; 14:893-907. [PMID: 20615076 DOI: 10.1089/ars.2010.3360] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The discovery of ischemic postconditioning (IPost) has rejuvenated the field of cardioprotection. As an interventional strategy to be applied at the onset of myocardial reperfusion, the transition of IPost from a bench-side curiosity to potential clinical therapy has been impressively rapid. Its existence also confirms the existence of lethal myocardial reperfusion injury in man, suggesting that 40%-50% of the final reperfused myocardial infarct may actually be due to myocardial reperfusion injury. Intensive analysis of the signal transduction pathways underlying IPost has identified similarities with the signaling pathways underlying its preischemic counterpart, ischemic preconditioning. In this article, the reperfusion injury salvage kinase pathway and the more recently described survivor activating factor enhancement pathway, two apparently distinct signaling pathways that actually interact to convey the IPost stimulus from the cell surface to the mitochondria, where many of the prosurvival and death signals appear to converge. The elucidation of the reperfusion signaling pathways underlying IPost may result in the identification of novel pharmacological targets for cardioprotection.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, United Kingdom.
| | | | | |
Collapse
|
20
|
Abstract
The cytokine hypothesis presently suggests that an excessive production of pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNF) and interleukin 6 (IL6), contributes to the pathogenesis of heart failure. The concept, successfully proved in genetically modified animal models, failed to translate to humans. Recently, accumulation of apparently paradoxical experimental data demonstrates that, under certain conditions, production of pro-inflammatory cytokines can initiate the activation of a pro-survival cardioprotective signalling pathway. This novel path that involves the activation of a transcription factor, signal transducer and activator of transcription 3 (STAT3), has been termed the survival activating factor enhancement (SAFE) pathway. In this review, we will discuss whether targeting the SAFE pathway may be considered as a preventive and/or therapeutic measure for the treatment of heart failure.
Collapse
Affiliation(s)
- Sandrine Lecour
- Hatter Cardiovascular Research Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | |
Collapse
|
21
|
Kelly RF, Lamont KT, Somers S, Hacking D, Lacerda L, Thomas P, Opie LH, Lecour S. Ethanolamine is a novel STAT-3 dependent cardioprotective agent. Basic Res Cardiol 2010; 105:763-70. [PMID: 20938668 DOI: 10.1007/s00395-010-0125-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 01/09/2023]
Abstract
Ethanolamine is a biogenic amine found naturally in the body as part of membrane lipids and as a metabolite of the cardioprotective substances, sphingosine-1-phosphate (S1P) and anandamide. In the brain, ethanolamine, formed from the breakdown of anandamide protects against ischaemic apoptosis. However, the effects of ethanolamine in the heart are unknown. Signal transducer and activator of transcription 3 (STAT-3) is a critical prosurvival factor in ischaemia/reperfusion (I/R) injury. Therefore, we investigated whether ethanolamine protects the heart via activation of STAT-3. Isolated hearts from wildtype or cardiomyocyte specific STAT-3 knockout (K/O) mice were pre-treated with ethanolamine (Etn) (0.3 mmol/L) before I/R insult. In vivo rat hearts were subjected to 30 min ischaemia/2 h reperfusion in the presence or absence of 5 mg/kg S1P and/or the FAAH inhibitor, URB597. Infarct size was measured at the end of each protocol by triphenyltetrazolium chloride staining. Pre-treatment with ethanolamine decreased infarct size in isolated mouse or rat hearts subjected to I/R but this infarct sparing effect was lost in cardiomyocyte specific STAT-3 deficient mice. Pre-treatment with ethanolamine increased nuclear phosphorylated STAT-3 [control 0.75 ± 0.08 vs. Etn 1.50 ± 0.09 arbitrary units; P < 0.05]. Our findings suggest a novel cardioprotective role for ethanolamine against I/R injury via activation of STAT-3.
Collapse
Affiliation(s)
- Roisin F Kelly
- Hatter Cardiovascular Research Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Burchfield JS, Dong JW, Sakata Y, Gao F, Tzeng HP, Topkara VK, Entman ML, Sivasubramanian N, Mann DL. The cytoprotective effects of tumor necrosis factor are conveyed through tumor necrosis factor receptor-associated factor 2 in the heart. Circ Heart Fail 2009; 3:157-64. [PMID: 19880804 DOI: 10.1161/circheartfailure.109.899732] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Activation of both type 1 and type 2 tumor necrosis factor (TNF) receptors (TNFR1 and TNFR2) confers cytoprotection in cardiac myocytes. Noting that the scaffolding protein TNF receptor-associated factor 2 (TRAF2) is common to both TNF receptors, we hypothesized that the cytoprotective responses of TNF were mediated through TRAF2. METHODS AND RESULTS Mice with cardiac-restricted overexpression of low levels of TNF (MHCsTNF(3)) and TRAF2 (MHC-TRAF2(LC)) and mice lacking TNFR1, TNFR2, and TNFR1/TNFR2 were subjected to ischemia (30 minutes) reperfusion (30 minutes) injury ex vivo using a Langendorff apparatus. MHCsTNF(3) mice were protected against ischemia-reperfusion injury as shown by a significant approximately 30% greater left ventricular developed pressure, approximately 80% lower creatine kinase release, and Evans blue dye uptake compared with littermates. The extent of ischemia-reperfusion induced injury was similar in wild-type, TNFR1, and TNFR2 deficient mice; however, mice lacking TNFR1/TNFR2 had a significant approximately 40% lower left ventricular developed pressure, a approximately 65% greater creatine kinase release, and approximately 40% greater Evans blue dye uptake compared with littermates. Interestingly, MHC-TRAF2(LC) mice had a significant approximately 50% lower left ventricular developed pressure, a approximately 70% lower creatine kinase release, and approximately 80% lower Evans blue dye uptake compared with littermate controls after ischemia-reperfusion injury. Biochemical analysis of the MHC-TRAF2(LC) hearts showed that there was activation of nuclear factor-kappaB but not c-Jun N-terminal kinase activation. CONCLUSIONS Taken together, these results suggest that TNF confers cytoprotection in the heart through TRAF2-mediated activation of nuclear factor-kappaB.
Collapse
Affiliation(s)
- Jana S Burchfield
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaloustian S, Bah TM, Rondeau I, Mathieu S, Lada-Moldovan L, Ryvlin P, Godbout R, Rousseau G. Tumor necrosis factor-alpha participates in apoptosis in the limbic system after myocardial infarction. Apoptosis 2009; 14:1308-16. [DOI: 10.1007/s10495-009-0395-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 2009; 84:201-8. [DOI: 10.1093/cvr/cvp274] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model. Br J Nutr 2009; 102:1420-5. [DOI: 10.1017/s0007114509990766] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myocardial infarction (MI) stimulates the release of pro-inflammatory substances that induce apoptosis in the limbic system. Pro-inflammatory cytokines are considered as the root cause of apoptosis, although the mechanism is not fully explained and/or understood at this time. In addition, depression may induce gastrointestinal perturbations that maintain the elevated levels of pro-inflammatory cytokines. It has been shown that some specific probiotic formulations may reduce gastrointestinal problems induced by stress and the pro/anti-inflammatory cytokine ratio. Therefore, we hypothesised that probiotics, when given prophylactically, may diminish the apoptosis propensity in the limbic system following a MI. Male adult Sprague–Dawley rats were given probiotics (Lactobacillus helveticus and Bifidobacterium longum in combination) or placebo in their drinking-water for four consecutive weeks. A MI was then induced in the rats by occluding the left anterior coronary artery for 40 min. Rats were killed following a 72 h reperfusion period. Infarct size was not different in the two groups. Bax/Bcl-2 (pro-apoptotic/anti-apoptotic) ratio and caspase-3 (pro-apoptotic) activity were reduced in the amygdala (lateral and medial), as well as in the dentate gyrus in the probiotics group when compared with the placebo. Akt activity (anti-apoptotic) was increased in these same three regions. No significant difference was observed in Ca1 and Ca3 for the different markers measured. In conclusion, the probiotics L. helveticus and B. longum, given in combination as preventive therapy, reduced the predisposition of apoptosis found in different cerebral regions following a MI.
Collapse
|
26
|
Lecour S. Multiple protective pathways against reperfusion injury: A SAFE path without Aktion? J Mol Cell Cardiol 2009; 46:607-9. [DOI: 10.1016/j.yjmcc.2009.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 11/30/2022]
|
27
|
Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol 2009; 47:32-40. [PMID: 19344728 DOI: 10.1016/j.yjmcc.2009.03.019] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 12/11/2022]
Abstract
Lethal reperfusion injury is now recognized as a major limitation of current reperfusion therapy by primary percutaneous coronary intervention for acute myocardial infarction. Interestingly, the heart itself is capable of activating an intrinsic protective signaling programme to limit cell death during reperfusion. Tumor necrosis factor alpha (TNFalpha) is a cytokine generally thought to contribute to myocardial dysfunction in ischemia/reperfusion or heart failure. We review evidence that TNFalpha can paradoxically initiate the activation of a novel protective pathway against reperfusion injuries that we have named the Survivor Activating Factor Enhancement (SAFE) pathway. This path requires the activation of the signal transducer and activator of transcription 3 (STAT-3) and it can successfully lessen cardiomyocyte death at the time of reperfusion, independently of the activation of the already well-described Reperfusion Injury Salvage Kinase (RISK) pathway (which includes activation of Akt and Erk 1/2). Emerging knowledge on this novel protective path is presented here with the aim of unravelling its interaction with the RISK pathway and its potential human application to protect against lethal reperfusion injury.
Collapse
Affiliation(s)
- Sandrine Lecour
- Cardioprotection Group, Hatter Cardiovascular Research Institute, Department of Medicine, Chris Barnard Building, Faculty of Health Sciences, University of Cape Town, 7925 Observatory, South Africa
| |
Collapse
|
28
|
Schober P, Oprea G, Mersmann J, Nebert A, Zacharowski K, Zacharowski PA. Lipoteichoic acid induces delayed myocardial protection in isolated rat hearts: A comparison with endotoxin. Resuscitation 2008; 79:311-5. [DOI: 10.1016/j.resuscitation.2008.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
|
29
|
Valeur HS, Valen G. Innate immunity and myocardial adaptation to ischemia. Basic Res Cardiol 2008; 104:22-32. [DOI: 10.1007/s00395-008-0756-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/19/2008] [Indexed: 12/27/2022]
|
30
|
Suleman N, Somers S, Smith R, Opie LH, Lecour SC. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res 2008; 79:127-33. [DOI: 10.1093/cvr/cvn067] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|