1
|
Pan Y, Xiao F, Pan C, Song H, Zhao P, Chen M, Huang L, Yang J, Hao X. Nootkatone Derivative Nootkatone-(E)-2-iodobenzoyl hydrazone Promotes Megakaryocytic Differentiation in Erythroleukemia by Targeting JAK2 and Enhancing JAK2/STAT3 and PKCδ/MAPK Crosstalk. Cells 2024; 14:10. [PMID: 39791711 PMCID: PMC11720125 DOI: 10.3390/cells14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Erythroleukemia, a complex myeloproliferative disorder presenting as acute or chronic, is characterized by aberrant proliferation and differentiation of erythroid cells. Although nootkatone, a sesquiterpene derived from grapefruit peel and Alaska yellow cedar, has shown anticancer activity predominantly in solid tumors, its effects in erythroleukemia remain unexplored. This study aimed to investigate the impact of nootkatone and its derivatives on erythroleukemia. Our results demonstrate that the nootkatone derivative nootkatone-(E)-2-iodobenzoyl hydrazone (N2) significantly inhibited erythroleukemia cell proliferation in a concentration- and time-dependent manner. More importantly, N2 induced megakaryocytic differentiation, as evidenced by significant morphological changes, and upregulation of megakaryocytic markers CD41 and CD61. In vivo, N2 treatment led to a marked increase in platelet counts and megakaryocytic cell counts. Mechanistically, N2 activated a crosstalk between the JAK2/STAT3 and PKCδ/MAPK signaling pathways, enhancing transcriptional regulation of key factors like GATA1 and FOS. Network pharmacology and experimental validation confirmed that N2 targeted JAK2, and knockdown of JAK2 abolished N2-induced megakaryocytic differentiation, underscoring JAK2's critical role in erythroleukemia differentiation. In conclusion, N2 shows great promise as a differentiation therapy for erythroleukemia, offering a novel approach by targeting JAK2-mediated signaling pathways to induce megakaryocytic differentiation.
Collapse
Affiliation(s)
- Yang Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Feng Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550044, China;
| | - Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.P.); (F.X.); (C.P.); (P.Z.); (M.C.); (L.H.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
2
|
Ha SH, Kwak CH, Park JY, Abekura F, Lee YC, Kim JS, Chung TW, Kim CH. 3'-sialyllactose targets cell surface protein, SIGLEC-3, and induces megakaryocyte differentiation and apoptosis by lipid raft-dependent endocytosis. Glycoconj J 2020; 37:187-200. [PMID: 31900723 DOI: 10.1007/s10719-019-09902-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
3'-sialyllactose is one of the abundant components in human milk oligosaccharides (HMOs) that protect infants from various viral infections in early stages of immune system development. 3SL is a combination of lactose and sialic acid. Most sialic acids are widely expressed in animal cells and they bind to siglec proteins. In this study, we demonstrate that 3SL specifically binds to CD33. It induces megakaryocyte differentiation and subsequent apoptosis by targeting cell surface protein siglec-3 (CD33) in human chronic myeloid leukemia K562 cells. The 3SL-bound CD33 was internalized to the cytosol via caveolae-dependent endocytosis. At the molecular level, 3SL-bound CD33 recruits the suppressor of cytokine signaling 3 (SOCS3) and SH2 domain-containing protein tyrosine phosphatase 1 (SHP1). SOCS3 is degraded with CD33 by proteasome degradation, while SHP-1 activates extracellular signal-regulated kinase (ERK) to induce megakaryocytic differentiation and subsequent apoptosis. The present study, therefore, suggests that 3SL is a potential anti-leukemia agent affecting differentiation and apoptosis.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Choong-Hwan Kwak
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, South Korea
| | - Tae-Wook Chung
- School of Korean Medicine, Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, 300 Chunchun-Dong, Jangan-Gu, Suwon City, Kyunggi-Do, 440-746, South Korea.
| |
Collapse
|
3
|
A natural small molecule induces megakaryocytic differentiation and suppresses leukemogenesis through activation of PKCδ/ERK1/2 signaling pathway in erythroleukemia cells. Biomed Pharmacother 2019; 118:109265. [DOI: 10.1016/j.biopha.2019.109265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
|
4
|
Pfister JA, D'Mello SR. Insights into the regulation of neuronal viability by nucleophosmin/B23. Exp Biol Med (Maywood) 2015; 240:774-86. [PMID: 25908633 DOI: 10.1177/1535370215579168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The vastness of the neuronal network that constitutes the human brain proves challenging when trying to understand its complexity. Furthermore, due to the senescent state they enter into upon maturation, neurons lack the ability to regenerate in the face of insult, injury or death. Consequently, their excessive death can be detrimental to the proper functioning of the brain. Therefore, elucidating the mechanisms regulating neuronal survival is, while challenging, of great importance as the incidence of neurological disease is becoming more prevalent in today's society. Nucleophosmin/B23 (NPM) is an abundant and ubiquitously expressed protein that regulates vital cellular processes such as ribosome biogenesis, cell proliferation and genomic stability. As a result, it is necessary for proper embryonic development, but has also been implicated in many cancers. While highly studied in the context of proliferative cells, there is a lack of understanding NPM's role in post-mitotic neurons. By exploring its role in healthy neurons as well as its function in the regulation of cell death and neurodegeneration, there can be a better understanding of how these diseases initiate and progress. Owing to what is thus far known about its function in the cell, NPM could be an attractive therapeutic target in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jason A Pfister
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
5
|
Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30:2595-609. [PMID: 21278791 DOI: 10.1038/onc.2010.646] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleophosmin (NPM, also known as B23, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. NPM is mainly localized in the nucleolus where it exerts many of its functions, but a proportion of the protein continuously shuttles between the nucleus and the cytoplasm. A growing number of cellular proteins have been described as physical interactors of NPM, and consequently, NPM is thought to have a relevant role in diverse cellular functions, including ribosome biogenesis, centrosome duplication, DNA repair and response to stress. NPM has been implicated in the pathogenesis of several human malignancies and intriguingly, it has been described both as an activating oncogene and a tumor suppressor, depending on cell type and protein levels. In fact, increased NPM expression is associated with different types of solid tumors whereas an impairment of NPM function is characteristic of a subgroup of hematolologic malignancies. A large body of experimental evidence links the deregulation of specific NPM functions to cellular transformation, yet the molecular mechanisms through which NPM contributes to tumorigenesis remain elusive. In this review, we have summarized current knowledge concerning NPM functions, and attempted to interpret its multifaceted and sometimes apparently contradictory activities in the context of both normal cellular homeostasis and neoplastic transformation.
Collapse
Affiliation(s)
- E Colombo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
| | | | | |
Collapse
|
6
|
He D, Chen T, Yang M, Zhu X, Wang C, Cao X, Cai Z. Small Rab GTPase Rab7b promotes megakaryocytic differentiation by enhancing IL-6 production and STAT3-GATA-1 association. J Mol Med (Berl) 2010; 89:137-50. [PMID: 20953574 DOI: 10.1007/s00109-010-0689-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
Induction of the differentiation of human leukemia cells is a useful strategy in treatment of human leukemia. However, the molecular mechanisms involved in leukemia cell differentiation have not been fully elucidated. Interleukin 6 (IL-6) is a pleiotropic cytokine acting on a variety of cell types, and plays important roles in hematopoiesis. GATA binding protein 1 (GATA-1) is an important transcription factor involved in either megakaryocytic or erythrocytic differentiation. Herein we report that Rab7b, a late endosome/lysosome-localized myeloid small GTPase, promotes phorbol-12-myristate-13-acetate (PMA)-induced megakaryocytic differentiation by increasing nuclear factor κB (NF-κB)-dependent IL-6 production and subsequently enhancing the association of activated signal transducer and activator of transcription 3 (STAT3) with GATA-1. By using PMA-induced megakaryocytic differentiation of leukemia cells as a model, we investigated the roles of Rab7b in megakaryocytic differentiation. We find that Rab7b can potentiate PMA-induced upregulation of megakaryocytic markers, production of IL-6, and activation of NF-κB. Inhibitor of NF-κB and neutralizing antibodies for IL-6 or the IL-6 signaling receptor gp130 can block the effects of Rab7b in megakaryocytic differentiation. In Rab7b-silenced cells, PMA-induced activation of NF-κB, IL-6 production, and megakaryocytic differentiation are impaired. Furthermore, we demonstrate that IL-6-induced activation of STAT3 and the subsequent association of STAT3 with GATA-1 may contribute to PMA-induced and Rab7b-mediated transcriptional upregulation of megakaryocytic differentiation markers. Therefore, our data suggest that Rab7b may play important roles in megakaryopoiesis by activating NF-κB and promoting IL-6 production. Our study also indicates that the IL-6-induced association of STAT3 with GATA-1 may regulate megakaryocytic differentiation.
Collapse
Affiliation(s)
- Donghua He
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, 38 Zheda Road, Hangzhou, 310027, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Jin L, Liu G, Zhang CH, Lu CH, Xiong S, Zhang MY, Liu QY, Ge F, He QY, Kitazato K, Kobayashi N, Wang YF. Nm23-H1 regulates the proliferation and differentiation of the human chronic myeloid leukemia K562 cell line: a functional proteomics study. Life Sci 2009; 84:458-67. [PMID: 19302816 DOI: 10.1016/j.lfs.2009.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/05/2009] [Accepted: 01/23/2009] [Indexed: 11/18/2022]
Abstract
AIMS Nm23-H1 is a suppressor of metastasis that has been implicated in the regulation of proliferation and differentiation of hematopoietic cells, although specific mechanisms for Nm23-H1 have not been well-characterized. Our study is designed to further elucidate the role of Nm23-H1 in the human chronic myeloid leukemia K562 cell line. MAIN METHODS In this study we generated and selected two cell clone pools of human chronic myeloid leukemia K562 cells with up-regulated and down-regulated Nm23-H1 expression. KEY FINDINGS Our data show that knockdown of Nm23-H1 decreased proliferation and increased the percentage of cells arrested in the G0/G1 phase of the cell cycle. Correspondingly, K562 cells overexpressing Nm23-H1 were more proliferative. After treatment of these two cell types with phorbol 12-myristate 13-acetate (PMA) for 48 h, cells with reduced Nm23-H1 expression had a higher percentage of 8N ploidy and higher expression of CD41 than K562 cells overexpressing Nm23-H1. A functional proteomics analysis identified ten proteins, including ANP32A, Cdc42GAP, and the isoform 2 of SET, whose expression levels were significantly altered by down-regulation of Nm23-H1. In addition, cells with decreased levels of Nm23-H1 had significantly reduced expression of Cdc42 independent of treatment with PMA. The interaction of the endogenous Nm23-H1 and Cdc42 proteins has been further validated by reciprocal immunoprecipitations. SIGNIFICANCE We provide data that complement functional studies of Nm23-H1 in regulating hematopoietic cells, and address action mechanisms of Nm23-H1 that have not previously been reported.
Collapse
Affiliation(s)
- Lin Jin
- The Institute of Pharmacology Science, Jinan University, Guangzhou, 510632 China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chou CC, Hsu CY. Involvement of PKC in TPA-potentiated apoptosis induction during hemin-mediated erythroid differentiation in K562 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2009; 379:1-9. [PMID: 18758751 DOI: 10.1007/s00210-008-0347-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 08/11/2008] [Indexed: 11/28/2022]
Abstract
Triggering differentiation has been employed as a strategy to inhibit cell proliferation and accelerate apoptosis in malignant cells. To better understand the mechanisms underlying differentiation-mediated regulation of apoptosis, we have studied the effects of PKC pathway with an activator of the protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), during hemin-induced erythroid differentiation of K562 erythroleukemia cells. K562 cell line has been used as a model of common progenitor of erythroblasts and magakaryocytes and can be differentiated into erythroid and megakaryocytic lineages by hemin and TPA, respectively. TPA induced almost complete loss of proliferation during megakaryocytic differentiation in K562 cells. However, upon hemin-mediated erythroid differentiation, the growth rate was slightly decreased at the subtoxic concentrations. Cotreatment with TPA at the hemin-treated K562 cells produced a concentration-dependent increase in cell injuries with apoptotic changes and significantly diminished the erythroid phenotype. To better understand the events implicated, we have used the PKC inhibitors such as bisindolylmaleimide II, RO318220, and the PKCbeta inhibitor. Our data showed that TPA-potentiated apoptosis in hemin-treated K562 cells was rescued by the application of the PKC inhibitors. Taken together, our results suggested the involvement of PKC in TPA-potentiated apoptosis induction during hemin-mediated erythroid differentiation in K562 cells.
Collapse
Affiliation(s)
- Chih Chung Chou
- Department and Graduate School of Biotechnology, Fooyin University, 151 Chin-Hsueh, Rd., Ta-Liao Hsiang, Kaohsiung Hsien, 831, Taiwan, Republic of China
| | | |
Collapse
|
9
|
Abstract
The protein kinase C (PKC) family of proteins includes several kinases that share structural homology, but at the same time exhibit substantial functional diversity. There is a significant amount of evidence establishing distinct patterns of expression and function for different PKC isoforms and groups in different leukemias. Although most members of this family promote leukemic cell survival and growth, others exhibit opposing effects and participate in the generation of antileukemic responses. This review summarizes work in this field on the relevance of distinct members of the PKC family in the pathophysiology of myeloid and lymphoid leukemias. The clinical-therapeutic potential of such ongoing work for the treatment of future development of novel approaches for the treatment of different types of leukemias is discussed.
Collapse
Affiliation(s)
- Amanda J Redig
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School and Lakeside VA Medical Center, Chicago, IL 60611, USA
| | | |
Collapse
|