1
|
`Risk of cardiovascular disease associated with febuxostat versus allopurinol use in patients with gout: a retrospective cohort study in Korea. Rheumatol Int 2023; 43:265-281. [PMID: 36346443 PMCID: PMC9898368 DOI: 10.1007/s00296-022-05222-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022]
Abstract
Febuxostat is the drug used to treat hyperuricemia in patients with gout. Recently, the usage of Febuxostat has been controversial over the side effects in cardiovascular. The study aimed to comparatively analyze the risk of cardiovascular disease associated with febuxostat and allopurinol use in Korean patients with gout. A cohort study was conducted using national insurance claim data from the Health Insurance Review and Assessment Service (HIRA). Adult patients who were diagnosed with gout and prescribed febuxostat or allopurinol more than once from July 1, 2015, to June 30, 2018 were studied. The outcome was cardiovascular disease. Analysis was performed using Cox's proportional hazard model following 1:1 propensity score matching to estimate the hazard ratio with a 95% confidence interval. In total, 90,590 patients were defined as the final study cohort who had an average follow-up of 467 days, including 28,732 and 61,858 patients in the febuxostat and allopurinol groups, respectively. After the 1:1 propensity score matching, the risk of cardiovascular disease in the febuxostat group was significantly higher than in the allopurinol group (HR: 1.17; 95% CI: 1.10-1.24). In the sensitivity analysis, the risk of cardiovascular disease in the febuxostat group was significantly higher than in the allopurinol group (HR: 1.09; 95% CI: 1.04-1.15). However, further sensitivity analysis showed no statistically significant difference between the febuxostat group and allopurinol group after adjusting for cardiovascular disease history before the index date. Similarly, no statistically significant difference was found between the two drugs in the subgroup analysis. Febuxostat was not associated with a significantly increased risk of cardiovascular disease.
Collapse
|
2
|
Xu D, Murakoshi N, Tajiri K, Duo F, Okabe Y, Murakata Y, Yuan Z, Li S, Aonuma K, Song Z, Shimoda Y, Mori H, Sato A, Nogami A, Aonuma K, Ieda M. Xanthine oxidase inhibitor febuxostat reduces atrial fibrillation susceptibility by inhibition of oxidized CaMKII in Dahl salt-sensitive rats. Clin Sci (Lond) 2021; 135:2409-2422. [PMID: 34386810 DOI: 10.1042/cs20210405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Oxidative stress could be a possible mechanism and a therapeutic target of atrial fibrillation (AF). However, the effects of the xanthine oxidase (XO) inhibition for AF remain to be fully elucidated. We investigated the effects of a novel XO inhibitor febuxostat on AF compared with allopurinol in hypertension rat model. Five-week-old Dahl salt-sensitive rats were fed either low-salt (LS) (0.3% NaCl) or high-salt (HS) (8% NaCl) diet. After 4 weeks of diet, HS diet rats were divided into three groups: orally administered to vehicle (HS-C), febuxostat (5 mg/kg/day) (HS-F), or allopurinol (50 mg/kg/day) (HS-A). After 4 weeks of treatment, systolic blood pressure (SBP) was significantly higher in HS-C than LS, and it was slightly but significantly decreased by treatment with each XO inhibitor. AF duration was significantly prolonged in HS-C compared with LS, and significantly suppressed in both HS-F and HS-A (LS; 5.8 ± 3.5 s, HS-C; 33.9 ± 23.7 s, HS-F; 15.0 ± 14.1 s, HS-A; 20.1 ± 11.9 s: P<0.05). Ca2+ spark frequency was obviously increased in HS-C rats and reduced in the XO inhibitor-treated rats, especially in HS-F group. Western blotting revealed that the atrial expression levels of Met281/282-oxidized Ca2+/Calmodulin-dependent kinase II (CaMKII) and Ser2814-phosphorylated ryanodine receptor 2 were significantly increased in HS-C, and those were suppressed in HS-F and HS-A. Decreased expression of gap junction protein connexin 40 in HS-C was partially restored by treatment with each XO inhibitor. In conclusion, XO inhibitor febuxostat, as well as allopurinol, could reduce hypertension-related increase in AF perpetuation by restoring Ca2+ handling and gap junction.
Collapse
Affiliation(s)
- DongZhu Xu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Feng Duo
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuta Okabe
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiko Murakata
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zixun Yuan
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Siqi Li
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zonghu Song
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuzuno Shimoda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruka Mori
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Xanthine oxidase inhibitors are associated with reduced risk of cardiovascular disease. Sci Rep 2021; 11:1380. [PMID: 33446757 PMCID: PMC7809289 DOI: 10.1038/s41598-020-80835-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
As previous studies have reported finding an association between hyperuricemia and the development of cardiovascular and chronic kidney disease, hyperuricemia is thought to be an independent risk factor for hypertension and diabetic mellitus. However, we have not been able to determine whether the use of xanthine oxidase inhibitors can reduce cardiovascular disease. The present study used the longitudinal data of the Fukushima Cohort Study to investigate the relationship between the use of xanthine oxidase inhibitors and cardiovascular events in patients with cardiovascular risks. During the 3-year period between 2012 and 2014, a total of 2724 subjects were enrolled in the study and followed. A total of 2501 subjects had hypertension, diabetic mellitus, dyslipidemia, or chronic kidney disease, and were identified as having cardiovascular risks. The effects of xanthine oxidase inhibitor use on the development of cardiovascular events was evaluated in these patients using a time to event analysis. During the observational periods (median 2.7 years), the incidence of cardiovascular events was 20.7 in subjects with xanthine oxidase inhibitor and 11.2 (/1000 person-years, respectively) in those without. Although a univariate Cox regression analysis showed that the risk of cardiovascular events was significantly higher in subjects administered xanthine oxidase inhibitors (HR = 1.87, 95% CI 1.19–2.94, p = 0.007), the risk was significantly lower in subjects administered a xanthine oxidase inhibitor after adjustment for covariates (HR = 0.48, 95% CI 0.26–0.91; p = 0.024) compared to those without. Xanthine oxidase inhibitor use was associated with reduced risk of cardiovascular disease in patients with cardiovascular risk factors.
Collapse
|
4
|
Packer M. Uric Acid Is a Biomarker of Oxidative Stress in the Failing Heart: Lessons Learned from Trials With Allopurinol and SGLT2 Inhibitors. J Card Fail 2020; 26:977-984. [PMID: 32890737 DOI: 10.1016/j.cardfail.2020.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Hyperuricemia increases the risk of heart failure, and higher levels of serum uric acid are seen in patients who have worse ventricular function, functional capacity, and prognosis. Heart failure is also accompanied by an upregulation of xanthine oxidase, the enzyme that catalyzes the formation of uric acid and a purported source of reactive oxygen species. However, the available evidence does not support the premise that either uric acid or the activation of xanthine oxidase has direct injurious effects on the heart in the clinical setting. Xanthine oxidase inhibitors (allopurinol and oxypurinol) have had little benefit and may exert detrimental effects in patients with chronic heart failure in randomized controlled trials, and the more selective and potent inhibitor febuxostat increases the risk of cardiovascular death more than allopurinol. Instead, the available evidence indicates that changes in xanthine oxidase and uric acid are biomarkers of oxidative stress (particularly in heart failure) and that xanthine oxidase may provide an important source of nitric oxide that quenches the injurious effects of reactive oxygen species. A primary determinant of the cellular redox state is nicotinamide adenine dinucleotide, whose levels drive an inverse relationship between xanthine oxidase and sirtuin-1, a nutrient deprivation sensor that exerts important antioxidant and cardioprotective effects. Interestingly, sodium-glucose cotransporter 2 inhibitors induce a state of nutrient deprivation that includes activation of sirtuin-1, suppression of xanthine oxidase, and lowering of serum uric acid. The intermediary role of sirtuin-1 in both uric acid-lowering and cardioprotection may explain why, in mediation analyses of large-scale cardiovascular trials, the effect of sodium-glucose cotransporter 2 inhibitors to decrease serum uric acid is a major predictor of the ability of these drugs to decrease serious heart failure events.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas and Imperial College, London, UK.
| |
Collapse
|
5
|
Al-Abdouh A, Khan SU, Barbarawi M, Upadhrasta S, Munira S, Bizanti A, Elias H, Jat A, Zhao D, Michos ED. Effects of Febuxostat on Mortality and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. MAYO CLINIC PROCEEDINGS: INNOVATIONS, QUALITY & OUTCOMES 2020; 4:434-442. [PMID: 32793871 PMCID: PMC7411164 DOI: 10.1016/j.mayocpiqo.2020.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective To investigate the association between using febuxostat and cardiovascular events. Methods Systematic search of randomized controlled trials was performed using PubMed/MEDLINE, Cochrane review, and EMBASE databases through April 17, 2019. Meta-analysis was performed using random effect model and estimates were reported as risk difference (RD) with 95% CIs. The certainty of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. The main outcomes of interest were cardiovascular mortality and all-cause mortality. Results A total of 15 randomized controlled trials (16,070 participants) were included. The mean ± SD age was 58.1±11.7 years. At the median follow-up of 6.4 months, use of febuxostat was not associated with statistically significant risk of cardiovascular mortality (RD, 0.12%; 95% CI, -0.25% to 0.49%; I2=48%; low certainty evidence), all-cause mortality (RD, 0.20%; 95% CI, -0.28% to 0.68%; I2 =60%; very low certainty evidence), major adverse cardiovascular events (RD, 0.40%; 95% CI, -0.34% to 1.13%; I2=26%; low certainty evidence), myocardial infarction (RD, -0.06%; 95% CI, -0.29% to 0.17%; I2 =0%; moderate certainty evidence), stroke (RD, 0.10%; 95% CI, -0.15% to 0.35%; I2=0%; moderate certainty evidence), or new-onset hypertension (RD, 1.58%; 95% CI, -0.63% to 3.78%; I2=58%; very low certainty evidence). These findings were consistent in patients with existing cardiovascular disease. Conclusion This meta-analysis suggested that use of febuxostat was not associated with higher risk of mortality or adverse cardiovascular outcomes in patients with gout and hyperuricemia. The results were limited by low to moderate certainty of evidence.
Collapse
Affiliation(s)
| | - Safi U Khan
- Department of Medicine, West Virginia University, Morgantown, WV
| | | | | | - Srajum Munira
- Department of Medicine, Saint Agnes Hospital, Baltimore, MD
| | - Anas Bizanti
- Department of Medicine, Saint Agnes Hospital, Baltimore, MD
| | - Hadi Elias
- Department of Medicine, Saint Agnes Hospital, Baltimore, MD
| | - Asadulla Jat
- Department of Medicine, Saint Agnes Hospital, Baltimore, MD
| | - Di Zhao
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Erin D Michos
- The Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
6
|
Effects of febuxostat on atrial remodeling in a rabbit model of atrial fibrillation induced by rapid atrial pacing. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2019; 16:540-551. [PMID: 31447893 PMCID: PMC6689522 DOI: 10.11909/j.issn.1671-5411.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase (XO), may be used in the prevention and management of atrial fibrillation (AF). The purpose of this study was to evaluate the effects of febuxostat on atrial remodeling in a rabbit model of AF induced by rapid atrial pacing (RAP) and the mechanisms by which it acts. Methods Twenty-four rabbits were randomly divided into four groups: sham-operated group (Group S), RAP group (Group P), RAP with 5 mg/kg per day febuxostat group (Group LFP), and RAP with 10 mg/kg per day febuxostat group (Group HFP). All rabbits except those in Group S were subjected to RAP at 600 beats/min for four weeks. The effects of febuxostat on atrial electrical and structural remodeling, markers of inflammation and oxidative stress, and signaling pathways involved in the left atrium were examined. Results Shortened atrial effective refractory period (AERP), increased AF inducibility, decreased mRNA levels of Cav1.2 and Kv4.3, and left atrial enlargement and dysfunction were observed in Group P, and these changes were suppressed in the groups treated with febuxostat. Prominent atrial fibrosis was observed in Group P, as were increased levels of TGF-β1, Collagen I, and α-SMA and decreased levels of Smad7 and eNOS. Treatment with febuxostat attenuated these differences. Changes in inflammatory and oxidative stress markers induced by RAP were consistent with the protective effects of febuxostat. Conclusions This study is the first to find that febuxostat can inhibit atrial electrical and structural remodeling of AF by suppressing XO and inhibiting the TGF-β1/Smad signaling pathway.
Collapse
|
7
|
Johnson TA, Jinnah HA, Kamatani N. Shortage of Cellular ATP as a Cause of Diseases and Strategies to Enhance ATP. Front Pharmacol 2019; 10:98. [PMID: 30837873 PMCID: PMC6390775 DOI: 10.3389/fphar.2019.00098] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Germline mutations in cellular-energy associated genes have been shown to lead to various monogenic disorders. Notably, mitochondrial disorders often impact skeletal muscle, brain, liver, heart, and kidneys, which are the body’s top energy-consuming organs. However, energy-related dysfunctions have not been widely seen as causes of common diseases, although evidence points to such a link for certain disorders. During acute energy consumption, like extreme exercise, cells increase the favorability of the adenylate kinase reaction 2-ADP -> ATP+AMP by AMP deaminase degrading AMP to IMP, which further degrades to inosine and then to purines hypoxanthine -> xanthine -> urate. Thus, increased blood urate levels may act as a barometer of extreme energy consumption. AMP deaminase deficient subjects experience some negative effects like decreased muscle power output, but also positive effects such as decreased diabetes and improved prognosis for chronic heart failure patients. That may reflect decreased energy consumption from maintaining the pool of IMP for salvage to AMP and then ATP, since de novo IMP synthesis requires burning seven ATPs. Similarly, beneficial effects have been seen in heart, skeletal muscle, or brain after treatment with allopurinol or febuxostat to inhibit xanthine oxidoreductase, which catalyzes hypoxanthine -> xanthine and xanthine -> urate reactions. Some disorders of those organs may reflect dysfunction in energy-consumption/production, and the observed beneficial effects related to reinforcement of ATP re-synthesis due to increased hypoxanthine levels in the blood and tissues. Recent clinical studies indicated that treatment with xanthine oxidoreductase inhibitors plus inosine had the strongest impact for increasing the pool of salvageable purines and leading to increased ATP levels in humans, thereby suggesting that this combination is more beneficial than a xanthine oxidoreductase inhibitor alone to treat disorders with ATP deficiency.
Collapse
Affiliation(s)
| | - H A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
8
|
White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, Hunt B, Castillo M, Gunawardhana L. Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. N Engl J Med 2018. [PMID: 29527974 DOI: 10.1056/nejmoa1710895] [Citation(s) in RCA: 552] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cardiovascular risk is increased in patients with gout. We compared cardiovascular outcomes associated with febuxostat, a nonpurine xanthine oxidase inhibitor, with those associated with allopurinol, a purine base analogue xanthine oxidase inhibitor, in patients with gout and cardiovascular disease. METHODS We conducted a multicenter, double-blind, noninferiority trial involving patients with gout and cardiovascular disease; patients were randomly assigned to receive febuxostat or allopurinol and were stratified according to kidney function. The trial had a prespecified noninferiority margin of 1.3 for the hazard ratio for the primary end point (a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or unstable angina with urgent revascularization). RESULTS In total, 6190 patients underwent randomization, received febuxostat or allopurinol, and were followed for a median of 32 months (maximum, 85 months). The trial regimen was discontinued in 56.6% of patients, and 45.0% discontinued follow-up. In the modified intention-to-treat analysis, a primary end-point event occurred in 335 patients (10.8%) in the febuxostat group and in 321 patients (10.4%) in the allopurinol group (hazard ratio, 1.03; upper limit of the one-sided 98.5% confidence interval [CI], 1.23; P=0.002 for noninferiority). All-cause and cardiovascular mortality were higher in the febuxostat group than in the allopurinol group (hazard ratio for death from any cause, 1.22 [95% CI, 1.01 to 1.47]; hazard ratio for cardiovascular death, 1.34 [95% CI, 1.03 to 1.73]). The results with regard to the primary end point and all-cause and cardiovascular mortality in the analysis of events that occurred while patients were being treated were similar to the results in the modified intention-to-treat analysis. CONCLUSIONS In patients with gout and major cardiovascular coexisting conditions, febuxostat was noninferior to allopurinol with respect to rates of adverse cardiovascular events. All-cause mortality and cardiovascular mortality were higher with febuxostat than with allopurinol. (Funded by Takeda Development Center Americas; CARES ClinicalTrials.gov number, NCT01101035 .).
Collapse
Affiliation(s)
- William B White
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| | - Kenneth G Saag
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| | - Michael A Becker
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| | - Jeffrey S Borer
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| | - Philip B Gorelick
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| | - Andrew Whelton
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| | - Barbara Hunt
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| | - Majin Castillo
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| | - Lhanoo Gunawardhana
- From the University of Connecticut School of Medicine, Farmington (W.B.W.); the University of Alabama, Birmingham (K.G.S.); University of Chicago Medicine, Chicago (M.A.B.), and Takeda Development Center Americas, Deerfield (B.H., M.C., L.G.) - both in Illinois; the State University of New York, Downstate Medical Center, Brooklyn (J.S.B.); Michigan State University College of Human Medicine, Grand Rapids (P.B.G.); and Johns Hopkins University School of Medicine, Baltimore (A.W.)
| |
Collapse
|
9
|
Electrophilic Nitro-Fatty Acids: Nitric Oxide and Nitrite-Derived Metabolic and Inflammatory Signaling Mediators. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions-A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6353469. [PMID: 26881035 PMCID: PMC4736421 DOI: 10.1155/2016/6353469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
The prevalence of heart failure (HF) is still increasing worldwide, with enormous human, social, and economic costs, in spite of huge efforts in understanding pathogenetic mechanisms and in developing effective therapies that have transformed this syndrome into a chronic disease. Myocardial redox imbalance is a hallmark of this syndrome, since excessive reactive oxygen and nitrogen species can behave as signaling molecules in the pathogenesis of hypertrophy and heart failure, leading to dysregulation of cellular calcium handling, of the contractile machinery, of myocardial energetics and metabolism, and of extracellular matrix deposition. Recently, following new interesting advances in understanding myocardial ROS and RNS signaling pathways, new promising therapeutical approaches with antioxidant properties are being developed, keeping in mind that scavenging ROS and RNS tout court is detrimental as well, since these molecules also play a role in physiological myocardial homeostasis.
Collapse
|
11
|
Interplay between oxidant species and energy metabolism. Redox Biol 2015; 8:28-42. [PMID: 26741399 PMCID: PMC4710798 DOI: 10.1016/j.redox.2015.11.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. Energy metabolism is both a source and target of oxidant species. Reactive oxygen species are formed in redox reactions in catabolic pathways. Sensitive targets of oxidant species regulate the flux of metabolic pathways. Metabolic pathways and antioxidant systems are regulated coordinately.
Collapse
|
12
|
Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1502-17. [DOI: 10.1016/j.bbadis.2014.05.022] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 02/07/2023]
|
13
|
López-Cruz RI, Pérez-Milicua MB, Crocker DE, Gaxiola-Robles R, Bernal-Vertiz JA, de la Rosa A, Vázquez-Medina JP, Zenteno-Savín T. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:31-5. [PMID: 24530799 DOI: 10.1016/j.cbpa.2014.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 01/23/2023]
Abstract
Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.
Collapse
Affiliation(s)
- Roberto I López-Cruz
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico.
| | - Myrna Barjau Pérez-Milicua
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico.
| | - Daniel E Crocker
- Sonoma State University, Department of Biology, 1801 E. Cotati Ave., Rohnert Park, CA 94928, USA.
| | - Ramón Gaxiola-Robles
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico; Hospital General de Zona No.1. Instituto Mexicano del Seguro Social, La Paz, Baja California Sur, Mexico.
| | - Jaime A Bernal-Vertiz
- Cabo Dolphins, Paseo de la Marina 7A, Cabo San Lucas, Baja California Sur, C.P. 23410, Mexico.
| | - Alejandro de la Rosa
- Acuario de Veracruz A.C., Departamento de Mamíferos Acuáticos, Aves y Reptiles, Veracruz, Veracruz, Mexico.
| | - José P Vázquez-Medina
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, C.P. 23096, Mexico.
| |
Collapse
|
14
|
Gladden JD, Zelickson BR, Guichard JL, Ahmed MI, Yancey DM, Ballinger S, Shanmugam M, Babu GJ, Johnson MS, Darley-Usmar V, Dell'Italia LJ. Xanthine oxidase inhibition preserves left ventricular systolic but not diastolic function in cardiac volume overload. Am J Physiol Heart Circ Physiol 2013; 305:H1440-50. [PMID: 24014679 DOI: 10.1152/ajpheart.00007.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Xanthine oxidase (XO) is increased in human and rat left ventricular (LV) myocytes with volume overload (VO) of mitral regurgitation and aortocaval fistula (ACF). In the setting of increased ATP demand, XO-mediated ROS can decrease mitochondrial respiration and contractile function. Thus, we tested the hypothesis that XO inhibition improves cardiomyocyte bioenergetics and LV function in chronic ACF in the rat. Sprague-Dawley rats were randomized to either sham or ACF ± allopurinol (100 mg·kg(-1)·day(-1), n ≥7 rats/group). Echocardiography at 8 wk demonstrated a similar 37% increase in LV end-diastolic dimension (P < 0.001), a twofold increase in LV end-diastolic pressure/wall stress (P < 0.05), and a twofold increase in lung weight (P < 0.05) in treated and untreated ACF groups versus the sham group. LV ejection fraction, velocity of circumferential shortening, maximal systolic elastance, and contractile efficiency were significantly depressed in ACF and significantly improved in ACF + allopurinol rats, all of which occurred in the absence of changes in the maximum O2 consumption rate measured in isolated cardiomyocytes using the extracellular flux analyzer. However, the improvement in contractile function is not paralleled by any attenuation in LV dilatation, LV end-diastolic pressure/wall stress, and lung weight. In conclusion, allopurinol improves LV contractile function and efficiency possibly by diminishing the known XO-mediated ROS effects on myofilament Ca(2+) sensitivity. However, LV remodeling and diastolic properties are not improved, which may explain the failure of XO inhibition to improve symptoms and hospitalizations in patients with severe heart failure.
Collapse
Affiliation(s)
- James D Gladden
- University of Alabama at Birmingham (UABComprehensive Cardiovascular Center, UAB Birmingham, Alabama
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang Y, Tocchetti CG, Krieg T, Moens AL. Oxidative and nitrosative stress in the maintenance of myocardial function. Free Radic Biol Med 2012; 53:1531-40. [PMID: 22819981 DOI: 10.1016/j.freeradbiomed.2012.07.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/12/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are generated by several different cellular sources, and their accumulation within the myocardium is widely considered to cause harmful oxidative stress. On the other hand, their role as second messengers has gradually emerged. The equilibrium of the nitroso/redox balance between reactive nitrogen species and ROS is crucial for the health of cardiomyocytes. This review provides a comprehensive overview of sources of oxidative stress in cardiac myocytes and describes the role of the nitroso/redox balance in cardiac pathophysiology. Although the exact mechanism of ROS production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox's) is not completely understood, Nox2 and Nox4 have particularly important roles within the myocardium. Increasing evidence suggests that Nox2 produces superoxide and Nox4 generates only hydrogen peroxide. We also discuss the key role of nitric oxide synthases (NOSs) in the maintenance of the nitroso/redox balance: uncoupled endothelial NOS has been suggested to shift from nitric oxide to ROS production, contributing to increased oxidative stress within the myocardium. Furthermore, we highlight the importance of sequentially targeting and/or regulating the specific sources of oxidative and nitrosative stress to prevent and/or reverse myocardial dysfunction. Inhibition of NADPH oxidase-dependent ROS is considered to be a potential strategy for treatment of cardiomyopathy. Neither in vivo nor clinical data are available for NADPH oxidase inhibitors. Specifically targeting the mitochondria with the antioxidant MitoQ would be a very promising translation approach, because it could prevent mitochondrial permeability transition pore opening when ROS are produced during heart reperfusion. Enhancing NO signaling could also be a promising therapeutic approach against myocardial dysfunction.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht, 6202 AZ Maastricht, The Netherlands
| | | | | | | |
Collapse
|
16
|
Xie Y, Chen J, Han P, Yang P, Hou J, Kang YJ. Immunohistochemical detection of differentially localized up-regulation of lysyl oxidase and down-regulation of matrix metalloproteinase-1 in rhesus monkey model of chronic myocardial infarction. Exp Biol Med (Maywood) 2012; 237:853-9. [PMID: 22829703 DOI: 10.1258/ebm.2012.012070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myocardial remodeling after ischemic infarction is characterized by collagen accumulation leading to replacement and interstitial fibrosis. Type I and III collagens are predominant components in cardiac fibrosis. Lysyl oxidase (LOX) facilitates the cross-linking of type I and III fibrils, resulting in the formation of stiff fibers and their subsequent tissue deposition. However, the matrix metalloproteinases (MMPs), a family of zinc-dependent enzymes, function in the degradation of the collagen components of extracellular matrix. Tissue inhibitors for MMPs (TIMPs) manipulate the action of MMPs. To understand the contribution of these molecules to cardiac fibrosis, we developed a rhesus monkey model to determine the changes in LOX, MMP1 and TIMP1 in relation to collagen deposition after myocardial ischemic infarction. Male rhesus monkeys were subjected to left anterior descending artery ligation along with sham-operated controls. Histological examination and immunochemistry were performed eight weeks after the ischemic injury. The results showed that both type I and III collagens were increased in the scar area and in the interstitium, and the ratio of type I/III collagens also increased in the scar area but not in the interstitium. The expression of LOX was up-regulated, but the expression of MMP1 was down-regulated in residual myocytes of the scar area and the border zone. The expression of TIMP1 was not changed. The data thus demonstrated that the collagen deposition in infarcted myocardium is correlated with an enhanced cross-linking capacity and a decreased degradation process.
Collapse
Affiliation(s)
- Yuping Xie
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | |
Collapse
|
17
|
Khanna AK, Xu J, Mehra MR. Antioxidant N-acetyl cysteine reverses cigarette smoke-induced myocardial infarction by inhibiting inflammation and oxidative stress in a rat model. J Transl Med 2012; 92:224-35. [PMID: 21968809 DOI: 10.1038/labinvest.2011.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The contribution of chronic tobacco exposure in determining post-myocardial infarction (MI) left ventricular (LV) remodeling and possible therapeutic strategies has not been investigated systematically. In this small animal investigation, we demonstrate that chronic tobacco smoke exposure leading up to acute MI in rats is associated with greater histological extent of myocardial necrosis and consequent worse LV function. These findings are associated with increased transcriptomic expression of pro-inflammatory cytokines, tissue repair molecules and markers of oxidative stress in the myocardium. The results demonstrate that an N-acetyl cysteine (NAC) treatment significantly reduced tobacco-exposed induced infarct size and percent fractional shortening. A significantly increased LV end-systolic diameter was observed in tobacco-exposed sham compared to tobacco-naïve sham (4.92±0.41 vs 3.45±0.33; P<0.05), and tobacco-exposed MI compared to tobacco-naïve MI (8.24±0.3 vs 6.1±0.49; P<0.01) rats. Decreased intracardiac mRNA expression of the markers of inflammation, tissue repair and oxidative stress and circulating levels of pro-inflammatory cytokines accompanied these positive effects of NAC. The treatment of tobacco-exposed MI rats with NAC resulted in significantly increased levels of intracardiac mRNA expression of antioxidants, including superoxide dismutase, thioredoxin and nuclear factor-E2-related factor 2, as well as circulating levels of glutathione (7±0.12 vs 10±0.18; P≤0.001), where the levels were almost identical to the tobacco-naïve sham rats. These findings identify a novel post-infarction therapy for amelioration of the adverse effects of tobacco exposure on the infracted myocardium and advocate the use of dietary supplement antioxidants for habitual smokers to prevent and reverse cardiovascular adverse effects in the absence of successful achievement of cessation of smoking.
Collapse
Affiliation(s)
- Ashwani K Khanna
- Department of Pathology, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
18
|
Abstract
Mechanisms of left ventricular (LV) dysfunction in isolated mitral regurgitation (MR) are not well understood. Vasodilator therapy in other forms of LV dysfunction reduces LV wall stress and improves LV function; however, studies in isolated MR show no beneficial effect on LV remodeling using vasodilator drugs or renin-angiotensin system blockade. Therefore, the search for new therapies that improve LV remodeling and function in isolated MR is clinically significant. Recent work in the authors' laboratory has demonstrated increased oxidants from a number of sources including the enzyme xanthine oxidase (XO) in the LV of patients with isolated MR. In addition to being a major source of reactive oxygen species, XO is linked to bioenergetic dysfunction because its substrates derive from adenosine triphosphate catabolism. Correspondingly, there was also evidence of aggregates of small mitochondria in cardiomyocytes, which is generally considered a response to bioenergetic deficit in cells. Future studies are required to determine whether XO and persistent oxidative stress are causative in maladaptive LV remodeling and offer potential therapeutic targets in ameliorating LV damage in patients with isolated MR.
Collapse
|
19
|
Agarwal A, Banerjee A, Banerjee UC. Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit Rev Biotechnol 2011; 31:264-80. [PMID: 21774633 DOI: 10.3109/07388551.2010.527823] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Xanthine oxidoreductase (XOR) is a ubiquitous complex cytosolic molybdoflavoprotein which controls the rate limiting step of purine catabolism by converting xanthine to uric acid. It is known that optimum concentrations of uric acid (UA) and reactive oxygen species (ROS) are necessary for normal functioning of the body. The ability of XOR to perform detoxification reactions, and to synthesize UA and reactive oxygen species (ROS) makes it a versatile intra- and extra-cellular protective "housekeeping enzyme". It is also an important component of the innate immune system. The enzyme is a target of drugs against gout and hyperuricemia and the protein is of major interest as it is associated with ischemia reperfusion (I/R) injury, vascular disorders in diabetes, cardiovascular disorders, adipogenesis, metabolic syndrome, cancer, and many other disease conditions. Xanthine oxidoreductase in conjugation with antibodies has been shown to have an anti-tumor effect due to its ability to produce ROS, which in turn reduces the growth of cancer tissues. Apart from this, XOR in association with nitric oxide synthase also participates in myocardial excitation-contraction coupling. Although XOR was discovered over 100 years ago, its physiological and pathophysiological roles are still not clearly elucidated. In this review, various physiological and pathophysiological functional aspects of XOR and its association with various forms of cancer are discussed in detail.
Collapse
Affiliation(s)
- Amit Agarwal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | | |
Collapse
|
20
|
Xu X, Zhao L, Hu X, Zhang P, Wessale J, Bache R, Chen Y. Delayed treatment effects of xanthine oxidase inhibition on systolic overload-induced left ventricular hypertrophy and dysfunction. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:306-13. [PMID: 20544512 PMCID: PMC2903770 DOI: 10.1080/15257771003738683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nonpurine selective xanthine oxidase (XO) inhibitor febuxostat attenuates development of left ventricular (LV) hypertrophy and dysfunction in mice when treatment is initiated within 1 hour of transverse aortic constriction (TAC). This study investigated whether a 7-day delay of treatment with the XO inhibitors febuxostat or allopurinol would reverse TAC-induced changes after onset of heart failure (HF). Neither treatment significantly affected TAC-induced LV hypertrophy; only febuxostat caused a modest improvement in LV function ( approximately 10% increase in LV ejection fraction). However, the purine analog allopurinol tended to increase mortality compared with vehicle or febuxostat in HF mice.
Collapse
Affiliation(s)
- X. Xu
- University of Minnesota, The Center of Vascular Biology and Cardiovascular Division, Department of Medicine, Minneapolis, Minnesota, USA
| | - L. Zhao
- Takeda Global Research & Development Center, Inc., Deerfield, Illinois, USA
| | - X. Hu
- University of Minnesota, The Center of Vascular Biology and Cardiovascular Division, Department of Medicine, Minneapolis, Minnesota, USA
| | - P. Zhang
- University of Minnesota, The Center of Vascular Biology and Cardiovascular Division, Department of Medicine, Minneapolis, Minnesota, USA
| | - J. Wessale
- Takeda Global Research & Development Center, Inc., Deerfield, Illinois, USA
| | - R. Bache
- University of Minnesota, The Center of Vascular Biology and Cardiovascular Division, Department of Medicine, Minneapolis, Minnesota, USA
| | - Y. Chen
- University of Minnesota, The Center of Vascular Biology and Cardiovascular Division, Department of Medicine, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Energetic myocardial metabolism and oxidative stress: let's make them our friends in the fight against heart failure. Biomed Pharmacother 2009; 64:203-7. [PMID: 19954925 DOI: 10.1016/j.biopha.2009.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/19/2009] [Indexed: 01/31/2023] Open
Abstract
Heart failure (HF) is a syndrome causing a huge burden in morbidity and mortality worldwide. Current medical therapies for HF are aimed at suppressing the neurohormonal activation. However, novel therapies are needed for HF, independent of the neurohormonal axis, that can improve cardiac performance and prevent the progression of heart dysfunction. The modulation of cardiac metabolism may represent a new approach to the treatment of HF. The healthy heart converts chemical energy stored in fatty acids (FA) and glucose. Utilization of FA costs more oxygen per unit of ATP generated than glucose, and the heart gets 60-90% of its energy for oxidative phosphorylation from FA oxidation. The failing heart has been demonstrated to be metabolically abnormal, in both animal models and in patients, showing a shift toward an increased glucose uptake and utilization. The manipulation of myocardial substrate oxidation toward greater carbohydrate oxidation and less FA oxidation may improve ventricular performance and slow the progression of heart dysfunction. Impaired mitochondrial function and oxidative phosphorylation can reduce cardiac function by providing an insufficient supply of ATP to cardiomyocytes and by increasing myocardial oxidative stress. Although there are no effective stimulators of oxidative phosphorylation, several classes of drugs have been shown to open mitochondrial K(ATP) channels and, indirectly, to improve cardiac protection against oxidative stress. This article focuses on the energetic myocardial metabolism and oxidative status in the normal and failing heart, and briefly, it overviews the therapeutic potential strategies to improve cardiac energy and oxidative status in HF patients.
Collapse
|
22
|
Szabó T, Felger D, von Haehling S, Lainscak M, Anker SD, Doehner W. Overview of emerging pharmacotherapy in chronic heart failure. Expert Opin Pharmacother 2009; 10:2055-74. [DOI: 10.1517/14656560903117291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Bergamini C, Cicoira M, Rossi A, Vassanelli C. Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail 2009; 11:444-52. [PMID: 19346534 DOI: 10.1093/eurjhf/hfp042] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heart failure (HF) is a state of chronic deterioration of oxidative mechanisms due to enhanced oxidative stress and consequent subcellular alterations. In this condition, oxidant-producing enzymes, in particular xanthine oxidase (XO), the major cardiovascular source of reactive oxygen species (ROS), are up-regulated. Growing evidence shows that this impaired oxidative metabolism due to enhanced ROS release is implicated in the development of cardiac hypertrophy, myocardial fibrosis, left ventricular remodelling, and contractility impairment responsible for worsening of cardiac function in CHF. Uric acid (UA) has long been linked with cardiovascular diseases, and hyperuricaemia is a common finding in patients with CHF. Hyperuricaemia is associated with impairment of peripheral blood flow and reduced vasodilator capacity, which relate closely to clinical status and reduced exercise capacity. Recent studies also suggest an association between UA levels and parameters of diastolic function; more importantly, UA has emerged as a strong independent prognostic factor in patients with CHF. In this review, we describe the up-to-date experimental and clinical studies that have begun to test whether the inhibition of XO translates into meaningful beneficial pathophysiological changes. This treatment gives evidence that myocardial energy, endothelial dysfunction, and vasodilator reactivity to exercise are improved by reducing markers of oxidative stress responsible for vascular dysfunction, so it represents an interesting therapeutic alternative for better outcome in CHF patients.
Collapse
Affiliation(s)
- Corinna Bergamini
- Department of Biomedical and Surgical Sciences, Division of Cardiology, Ospedale Civile Maggiore, University of Verona, Piazzale Stefani 1, Verona, Italy
| | | | | | | |
Collapse
|
24
|
Hu M, Tomlinson B. Febuxostat in the management of hyperuricemia and chronic gout: a review. Ther Clin Risk Manag 2008; 4:1209-20. [PMID: 19337428 PMCID: PMC2643102 DOI: 10.2147/tcrm.s3310] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Febuxostat is a novel, potent, non-purine selective xanthine oxidase inhibitor, which in clinical trials demonstrated superior ability to lower and maintain serum urate levels below 6 mg/dL compared with conventionally used doses of allopurinol. Febuxostat was well tolerated in long term treatment in patients with hyperuricemia including those experiencing hypersensitity/intolerance to allopurinol. Dose adjustment appears unnecessary in patients with mild to moderate renal or liver insufficiency or advanced age. The most common adverse reactions reported were abnormal liver function tests, headache, and gastrointestinal symptoms, which were usually mild and transient. However, whether hepatotoxicity becomes a limitation in the use of febuxostat needs to be determined in further studies. An increased frequency of gout flares occurs for a prolonged period after treatment initiation, as with any aggressive lowering of serum urate, and prolonged prophylaxis with colchicine or NSAIDs is usually required. Febuxostat has been granted marketing authorization by the European Commission in early 2008 for the treatment of chronic hyperuricemia and gout. Febuxostat is the first major treatment alternative for gout in more than 40 years and is a promising alternative to allopurinol, although continued long-term surveillance on safety and efficacy is required.
Collapse
Affiliation(s)
- Miao Hu
- Division of Clinical Pharmacology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Brian Tomlinson
- Division of Clinical Pharmacology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
25
|
Xu X, Hu X, Lu Z, Zhang P, Zhao L, Wessale JL, Bache RJ, Chen Y. Xanthine oxidase inhibition with febuxostat attenuates systolic overload-induced left ventricular hypertrophy and dysfunction in mice. J Card Fail 2008; 14:746-53. [PMID: 18995179 PMCID: PMC2610415 DOI: 10.1016/j.cardfail.2008.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/16/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
The purine analog xanthine oxidase (XO) inhibitors (XOIs), allopurinol and oxypurinol, have been reported to protect against heart failure secondary to myocardial infarction or rapid ventricular pacing. Because these agents might influence other aspects of purine metabolism that could influence their effect, this study examined the effect of the non-purine XOI, febuxostat, on pressure overload-induced left ventricular (LV) hypertrophy and dysfunction. Transverse aortic constriction (TAC) in mice caused LV hypertrophy and dysfunction and increased myocardial nitrotyrosine at 8 days. TAC also caused increased phosphorylated Akt (p-Akt(Ser473)), p42/44 extracellular signal-regulated kinase (p-Erk(Thr202/Tyr204)), and mammalian target of rapamycin (mTOR) (p-mTOR(Ser2488)). XO inhibition with febuxostat (5 mg/kg/d by gavage for 8 days) beginning approximately 60minutes after TAC attenuated the TAC-induced LV hypertrophy and dysfunction. Febuxostat blunted the TAC-induced increases in nitrotyrosine (indicating reduced myocardial oxidative stress), p-Erk(Thr202/Tyr204), and p-mTOR(Ser2488), with no effect on total Erk or total mTOR. Febuxostat had no effect on myocardial p-Akt(Ser473) or total Akt. The results suggest that XO inhibition with febuxostat reduced oxidative stress in the pressure overloaded LV, thereby diminishing the activation of pathways that result in pathologic hypertrophy and contractile dysfunction.
Collapse
Affiliation(s)
- Xin Xu
- Cardiovascular Division and Center of Vascular Biology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN55455
| | - Xinli Hu
- Cardiovascular Division and Center of Vascular Biology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN55455
| | - Zhongbing Lu
- Cardiovascular Division and Center of Vascular Biology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN55455
| | - Ping Zhang
- Cardiovascular Division and Center of Vascular Biology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN55455
| | - Lin Zhao
- TAP Pharmaceutical Products, Inc. 675 North Field Drive, Lake Forest, IL 60045
| | - Jerry L. Wessale
- TAP Pharmaceutical Products, Inc. 675 North Field Drive, Lake Forest, IL 60045
| | - Robert J. Bache
- Cardiovascular Division and Center of Vascular Biology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN55455
| | - Yingjie Chen
- Cardiovascular Division and Center of Vascular Biology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN55455
| |
Collapse
|
26
|
Perez-Ruiz F, Dalbeth N, Schlesinger N. Febuxostat, a novel drug for the treatment of hyperuricemia of gout. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460816.3.5.421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Abstract
Cellular metabolism generates the cytotoxic superoxide free radical, O(2).(-), and a family of enzymes called superoxide dismutases (SOD) protects us from O(2).(-) by catalyzing its conversion to O(2) and H(2)O(2). Superoxide production increases in a wide variety of pathological states, especially those involving inflammation or ischemic injury. Most of the literature has described systems wherein added or over expressed SOD produced beneficial effects, yet in some circumstances SOD provided no benefit, or was clearly detrimental, exacerbating cell injury or death. When broad dose-response studies were finally possible in models of reperfusion injury in the isolated heart, hormesis became clear. We propose that the mechanisms underlying the hormesis are related to the paradoxical abilities of the superoxide radical to serve as both an initiator and a terminator of the free radical-mediated chain reaction that results in lipid peroxidation. Lipid peroxidation is a universal feature of oxidative stress, causing loss of cellular structure and function. Under any given conditions, the optimal concentration of SOD is that which decreases chain initiation without elimination of the chain termination properties of the radical, resulting in a minimum of net lipid peroxidation. Mathematical modeling of this hypothesis yields predictions fully consistent with observed laboratory data.
Collapse
Affiliation(s)
- Joe M McCord
- Division of Pulmonary and Critical Care Medicine, University of Colorado-Denver Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80246, USA.
| |
Collapse
|