1
|
Liu K, Yang Y, Yang JH. Underlying mechanisms of ketotherapy in heart failure: current evidence for clinical implementations. Front Pharmacol 2024; 15:1463381. [PMID: 39512825 PMCID: PMC11540999 DOI: 10.3389/fphar.2024.1463381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Heart failure (HF) is a life-threatening cardiac syndrome characterized by high morbidity and mortality, but current anti-heart failure therapies have limited efficacy, necessitating the urgent development of new treatment drugs. Exogenous ketone supplementation helps prevent heart failure development in HF models, but therapeutic ketosis in failing hearts has not been systematically elucidated, limiting the use of ketones to treat HF. Here, we summarize current evidence supporting ketotherapy in HF, emphasizing ketone metabolism in the failing heart, metabolic and non-metabolic therapeutic effects, and mechanisms of ketotherapy in HF, involving the dynamics within the mitochondria. We also discuss clinical strategies for therapeutic ketosis, aiming to deepen the understanding of the characteristics of ketone metabolism, including mitochondrial involvement, and its clinical therapeutic potential in HF.
Collapse
Affiliation(s)
| | | | - Jing-Hua Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Soni S, Tabatabaei Dakhili SA, Ussher JR, Dyck JRB. The therapeutic potential of ketones in cardiometabolic disease: impact on heart and skeletal muscle. Am J Physiol Cell Physiol 2024; 326:C551-C566. [PMID: 38193855 PMCID: PMC11192481 DOI: 10.1152/ajpcell.00501.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
β-Hydroxybutyrate (βOHB) is the major ketone in the body, and it is recognized as a metabolic energy source and an important signaling molecule. While ketone oxidation is essential in the brain during prolonged fasting/starvation, other organs such as skeletal muscle and the heart also use ketones as metabolic substrates. Additionally, βOHB-mediated molecular signaling events occur in heart and skeletal muscle cells, and via metabolism and/or signaling, ketones may contribute to optimal skeletal muscle health and cardiac function. Of importance, when the use of ketones for ATP production and/or as signaling molecules becomes disturbed in the presence of underlying obesity, type 2 diabetes, and/or cardiovascular diseases, these changes may contribute to cardiometabolic disease. As a result of these disturbances in cardiometabolic disease, multiple approaches have been used to elevate circulating ketones with the goal of optimizing either ketone metabolism or ketone-mediated signaling. These approaches have produced significant improvements in heart and skeletal muscle during cardiometabolic disease with a wide range of benefits that include improved metabolism, weight loss, better glycemic control, improved cardiac and vascular function, as well as reduced inflammation and oxidative stress. Herein, we present the evidence that indicates that ketone therapy could be used as an approach to help treat cardiometabolic diseases by targeting cardiac and skeletal muscles.
Collapse
Affiliation(s)
- Shubham Soni
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Mikami Y, Iwase F, Ohshima D, Tomida T, Adachi-Akahane S. Compensatory role of neuregulin-1 in diabetic cardiomyopathy. J Pharmacol Sci 2023; 153:130-141. [PMID: 37770154 DOI: 10.1016/j.jphs.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetes mellitus is a prevalent risk factor for congestive heart failure. Diabetic cardiomyopathy patients present with left ventricular (LV) diastolic dysfunction at an early stage, then systolic dysfunction as the disease progresses. The mechanism underlying the development of diabetic cardiomyopathy has not yet been fully understood. This study aimed to elucidate the mechanisms by which diastolic dysfunction precedes systolic dysfunction at the early stage of diabetic cardiomyopathy. We hypothesized that the downregulation of cardioprotective factors is involved in the pathogenesis of diabetic cardiomyopathy. LV diastolic dysfunction, but not systolic dysfunction, was observed in type-1 diabetes mellitus model mice 4 weeks after STZ administration (STZ-4W), mimicking the early stage of diabetic cardiomyopathy. Counter to expectations, neuregulin-1 (NRG1) was markedly upregulated in the vascular endothelial cell in the ventricles of STZ-4W mice. To clarify the functional significance of the upregulated NRG1, we blocked its receptor ErbB2 with trastuzumab (TRZ). In STZ-4W mice, TRZ significantly reduced the systolic function without affecting diastolic function and caused a more prominent reduction in Akt phosphorylation levels. These results indicate that the compensatory upregulated NRG1 contributes to maintaining the LV systolic function, which explains why diastolic dysfunction precedes systolic dysfunction at the early stage of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yoshinori Mikami
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Fumiki Iwase
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Daisuke Ohshima
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Taichiro Tomida
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan.
| |
Collapse
|
4
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
5
|
Garruti G, Baj J, Cignarelli A, Perrini S, Giorgino F. Hepatokines, bile acids and ketone bodies are novel Hormones regulating energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1154561. [PMID: 37274345 PMCID: PMC10236950 DOI: 10.3389/fendo.2023.1154561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Current views show that an impaired balance partly explains the fat accumulation leading to obesity. Fetal malnutrition and early exposure to endocrine-disrupting compounds also contribute to obesity and impaired insulin secretion and/or sensitivity. The liver plays a major role in systemic glucose homeostasis through hepatokines secreted by hepatocytes. Hepatokines influence metabolism through autocrine, paracrine, and endocrine signaling and mediate the crosstalk between the liver, non-hepatic target tissues, and the brain. The liver also synthetizes bile acids (BAs) from cholesterol and secretes them into the bile. After food consumption, BAs mediate the digestion and absorption of fat-soluble vitamins and lipids in the duodenum. In recent studies, BAs act not simply as fat emulsifiers but represent endocrine molecules regulating key metabolic pathways. The liver is also the main site of the production of ketone bodies (KBs). In prolonged fasting, the brain utilizes KBs as an alternative to CHO. In the last few years, the ketogenic diet (KD) became a promising dietary intervention. Studies on subjects undergoing KD show that KBs are important mediators of inflammation and oxidative stress. The present review will focus on the role played by hepatokines, BAs, and KBs in obesity, and diabetes prevention and management and analyze the positive effects of BAs, KD, and hepatokine receptor analogs, which might justify their use as new therapeutic approaches for metabolic and aging-related diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Angelo Cignarelli
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Lopaschuk GD, Dyck JRB. Ketones and the cardiovascular system. NATURE CARDIOVASCULAR RESEARCH 2023; 2:425-437. [PMID: 39196044 DOI: 10.1038/s44161-023-00259-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 08/29/2024]
Abstract
Ketone bodies, the main one being β-hydroxybutyrate, have emerged as important regulators of the cardiovascular system. In healthy individuals, as well as in individuals with heart failure or post-myocardial infarction, ketones provide a supplemental energy source for both the heart and the vasculature. In the failing heart, this additional energy may contribute to improved cardiac performance, whereas increasing ketone oxidation in vascular smooth muscle and endothelial cells enhances cell proliferation and prevents blood vessel rarefication. Ketones also have important actions in signaling pathways, posttranslational modification pathways and gene transcription; many of which modify cell proliferation, inflammation, oxidative stress, endothelial function and cardiac remodeling. Attempts to therapeutically increase ketone delivery to the cardiovascular system are numerous and have shown mixed results in terms of effectiveness. Here we review the bioenergetic and signaling effects of ketones on the cardiovascular system, and we discuss how ketones can potentially be used to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Huang Z, Song S, Zhang X, Zeng L, Sun A, Ge J. Metabolic substrates, histone modifications, and heart failure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194898. [PMID: 36403753 DOI: 10.1016/j.bbagrm.2022.194898] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
Histone epigenetic modifications are chemical modification changes to histone amino acid residues that modulate gene expression without altering the DNA sequence. As both the phenotypic and causal factors, cardiac metabolism disorder exacerbates mitochondrial ATP generation deficiency, thus promoting pathological cardiac hypertrophy. Moreover, several concomitant metabolic substrates also promote the expression of hypertrophy-responsive genes via regulating histone modifications as substrates or enzyme-modifiers, indicating their dual roles as metabolic and epigenetic regulators. This review focuses on the cardiac acetyl-CoA-dependent histone acetylation, NAD+-dependent SIRT-mediated deacetylation, FAD+-dependent LSD-mediated, and α-KG-dependent JMJD-mediated demethylation after briefly addressing the pathological and physiological cardiac energy metabolism. Besides using an "iceberg model" to explain the dual role of metabolic substrates as both metabolic and epigenetic regulators, we also put forward that the therapeutic supplementation of metabolic substrates is promising to blunt HF via re-establishing histone modifications.
Collapse
Affiliation(s)
- Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; Institute of Biomedical Sciences, Fudan University, Shanghai, China; National Clinical Research for Interventional Medicine, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; Institute of Biomedical Sciences, Fudan University, Shanghai, China; National Clinical Research for Interventional Medicine, China
| |
Collapse
|
8
|
Neonatal ketone body elevation regulates postnatal heart development by promoting cardiomyocyte mitochondrial maturation and metabolic reprogramming. Cell Discov 2022; 8:106. [PMID: 36220812 PMCID: PMC9553951 DOI: 10.1038/s41421-022-00447-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Neonatal heart undergoes metabolic conversion and cell cycle arrest preparing for the increased workload during adulthood. Herein, we report that neonatal ketone body elevation is a critical regulatory factor for postnatal heart development. Through multiomics screening, we found that the expression of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), the rate-limiting enzyme of ketogenesis, was transiently induced by colostrum in the neonatal heart. Hmgcs2 knockout caused mitochondrial maturation defects. Meanwhile, postnatal heart development was compromised and cardiomyocytes reacquired proliferation capacity in Hmgcs2 knockout mice. Consequently, over 40% of newborn Hmgcs2 knockout mice died before weaning. The heart function of surviving Hmgcs2 knockout mice was also impaired, which could be rescued by ketone body supplementation during the suckling stage. Mechanistically, ketone body deficiency inhibited β-hydroxybutyrylation but enhanced acetylation of mitochondrial proteins, which might be responsible for the inhibition of the enzyme activity in mitochondria. These observations suggest that ketone body is critical for postnatal heart development through regulating mitochondrial maturation and metabolic reprogramming.
Collapse
|
9
|
Lkhagva B, Lee TW, Lin YK, Chen YC, Chung CC, Higa S, Chen YJ. Disturbed Cardiac Metabolism Triggers Atrial Arrhythmogenesis in Diabetes Mellitus: Energy Substrate Alternate as a Potential Therapeutic Intervention. Cells 2022; 11:cells11182915. [PMID: 36139490 PMCID: PMC9497243 DOI: 10.3390/cells11182915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of sustained arrhythmia in diabetes mellitus (DM). Its morbidity and mortality rates are high, and its prevalence will increase as the population ages. Despite expanding knowledge on the pathophysiological mechanisms of AF, current pharmacological interventions remain unsatisfactory; therefore, novel findings on the underlying mechanism are required. A growing body of evidence suggests that an altered energy metabolism is closely related to atrial arrhythmogenesis, and this finding engenders novel insights into the pathogenesis of the pathophysiology of AF. In this review, we provide comprehensive information on the mechanistic insights into the cardiac energy metabolic changes, altered substrate oxidation rates, and mitochondrial dysfunctions involved in atrial arrhythmogenesis, and suggest a promising advanced new therapeutic approach to treat patients with AF.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Yakupova EI, Bocharnikov AD, Plotnikov EY. Effects of Ketogenic Diet on Muscle Metabolism in Health and Disease. Nutrients 2022; 14:nu14183842. [PMID: 36145218 PMCID: PMC9505561 DOI: 10.3390/nu14183842] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary intervention is widely used as a therapeutic approach ranging from the treatment of neurological disorders to attempts to extend lifespan. The most important effect of various diets is a change in energy metabolism. Since muscles constitute 40% of total body mass and are one of the major sites of glucose and energy uptake, various diets primarily affect their metabolism, causing both positive and negative changes in physiology and signaling pathways. In this review, we discuss changes in the energy metabolism of muscles under conditions of the low-carbohydrate, high-fat diet/ketogenic diet (KD), fasting, or administration of exogenous ketone bodies, which are all promising approaches to the treatment of various diseases. KD's main influence on the muscle is expressed through energy metabolism changes, particularly decreased carbohydrate and increased fat oxidation. This affects mitochondrial quantity, oxidative metabolism, antioxidant capacity, and activity of enzymes. The benefits of KD for muscles stay controversial, which could be explained by its different effects on various fiber types, including on muscle fiber-type ratio. The impacts of KD or of its mimetics are largely beneficial but could sometimes induce adverse effects such as cardiac fibrosis.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (E.I.Y.); (E.Y.P.)
| | - Alexey D. Bocharnikov
- International School of Medicine of the Future, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.I.Y.); (E.Y.P.)
| |
Collapse
|
11
|
Quentin V, Singh M, Nguyen LS. A review of potential mechanisms and uses of SGLT2 inhibitors in ischemia-reperfusion phenomena. World J Diabetes 2022; 13:683-695. [PMID: 36188147 PMCID: PMC9521445 DOI: 10.4239/wjd.v13.i9.683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Recently added to the therapeutic arsenal against chronic heart failure as a first intention drug, the antidiabetic drug-class sodium-glucose cotransporter-2 inhibitors (SGLT2i) showed efficacy in decreasing overall mortality, hospitalization, and sudden death in patients of this very population, in whom chronic or acute ischemia count among the first cause. Remarkably, this benefit was observed independently from diabetic status, and benefited both preserved and altered ventricular ejection fraction. This feature, observed in several large randomized controlled trials, suggests additional effects from SGLT2i beyond isolated glycemia control. Indeed, both in-vitro and animal models suggest that inhibiting the Na+/H+ exchanger (NHE) may be key to preventing ischemia/ reperfusion injuries, and by extension may hold a similar role in ischemic damage control and ischemic preconditioning. Yet, several other mechanisms may be explored which may help better target those who may benefit most from SGLT2i molecules. Because of a large therapeutic margin with few adverse events, ease of prescription and potential pharmacological efficacity, SGLT2i could be candidate for wider indications. In this review, we aim to summarize all evidence which link SGLT2i and ischemia/reperfusion injuries modulation, by first listing known mechanisms, including metabolic switch, prevention of lethal arrythmias and others, which portend the latter, and second, hypothesize how the former may interact with these mechanisms.
Collapse
Affiliation(s)
- Victor Quentin
- Intensive Care Medicine, CMC Ambroise Paré, Neuilly-sur-Seine 92200, France
| | - Manveer Singh
- Intensive Care Medicine, CMC Ambroise Paré, Neuilly-sur-Seine 92200, France
| | - Lee S Nguyen
- Research and Innovation, CMC Ambroise Paré, Neuilly-sur-Seine 92200, France
| |
Collapse
|
12
|
Wei S, Binbin L, Yuan W, Zhong Z, Donghai L, Caihua H. β-Hydroxybutyrate in Cardiovascular Diseases : A Minor Metabolite of Great Expectations. Front Mol Biosci 2022; 9:823602. [PMID: 35769904 PMCID: PMC9234267 DOI: 10.3389/fmolb.2022.823602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Despite recent advances in therapies, cardiovascular diseases ( CVDs ) are still the leading cause of mortality worldwide. Previous studies have shown that metabolic perturbations in cardiac energy metabolism are closely associated with the progression of CVDs. As expected, metabolic interventions can be applied to alleviate metabolic impairments and, therefore, can be used to develop therapeutic strategies for CVDs. β-hydroxybutyrate (β-HB) was once known to be a harmful and toxic metabolite leading to ketoacidosis in diabetes. However, the minor metabolite is increasingly recognized as a multifunctional molecular marker in CVDs. Although the protective role of β-HB in cardiovascular disease is controversial, increasing evidence from experimental and clinical research has shown that β-HB can be a “super fuel” and a signaling metabolite with beneficial effects on vascular and cardiac dysfunction. The tremendous potential of β-HB in the treatment of CVDs has attracted many interests of researchers. This study reviews the research progress of β-HB in CVDs and aims to provide a theoretical basis for exploiting the potential of β-HB in cardiovascular therapies.
Collapse
Affiliation(s)
- Shao Wei
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liu Binbin
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Wu Yuan
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Zhang Zhong
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Lin Donghai
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- *Correspondence: Huang Caihua, ; Lin Donghai,
| | - Huang Caihua
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
- *Correspondence: Huang Caihua, ; Lin Donghai,
| |
Collapse
|
13
|
Jiang M, Xie X, Cao F, Wang Y. Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:789267. [PMID: 34957264 PMCID: PMC8695728 DOI: 10.3389/fcvm.2021.789267] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemic heart disease refers to myocardial degeneration, necrosis, and fibrosis caused by coronary artery disease. It can lead to severe left ventricular dysfunction (LVEF ≤ 35–40%) and is a major cause of heart failure (HF). In each contraction, myocardium is subjected to a variety of mechanical forces, such as stretch, afterload, and shear stress, and these mechanical stresses are clinically associated with myocardial remodeling and, eventually, cardiac outcomes. Mitochondria produce 90% of ATP in the heart and participate in metabolic pathways that regulate the balance of glucose and fatty acid oxidative phosphorylation. However, altered energetics and metabolic reprogramming are proved to aggravate HF development and progression by disturbing substrate utilization. This review briefly summarizes the current insights into the adaptations of cardiomyocytes to mechanical stimuli and underlying mechanisms in ischemic heart disease, with focusing on mitochondrial metabolism. We also discuss how mechanical circulatory support (MCS) alters myocardial energy metabolism and affects the detrimental metabolic adaptations of the dysfunctional myocardium.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoye Xie
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cadre Ward, The 960 Hospital of Chinese People's Liberation Army, Jinan, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
14
|
Kolwicz SC. Ketone Body Metabolism in the Ischemic Heart. Front Cardiovasc Med 2021; 8:789458. [PMID: 34950719 PMCID: PMC8688810 DOI: 10.3389/fcvm.2021.789458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Ketone bodies have been identified as an important, alternative fuel source in heart failure. In addition, the use of ketone bodies as a fuel source has been suggested to be a potential ergogenic aid for endurance exercise performance. These findings have certainly renewed interest in the use of ketogenic diets and exogenous supplementation in an effort to improve overall health and disease. However, given the prevalence of ischemic heart disease and myocardial infarctions, these strategies may not be ideal for individuals with coronary artery disease. Although research studies have clearly defined changes in fatty acid and glucose metabolism during ischemia and reperfusion, the role of ketone body metabolism in the ischemic and reperfused myocardium is less clear. This review will provide an overview of ketone body metabolism, including the induction of ketosis via physiological or nutritional strategies. In addition, the contribution of ketone body metabolism in healthy and diseased states, with a particular emphasis on ischemia-reperfusion (I-R) injury will be discussed.
Collapse
|
15
|
Takahara S, Soni S, Maayah ZH, Ferdaoussi M, Dyck JRB. Ketone Therapy for Heart Failure: Current Evidence for Clinical Use. Cardiovasc Res 2021; 118:977-987. [PMID: 33705533 DOI: 10.1093/cvr/cvab068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
During conditions that result in depleted circulating glucose levels, ketone bodies synthesized in the liver are necessary fuel substrates for the brain. In other organs such as the heart, the reliance on ketones for generating energy is less life threatening as the heart can utilize alternative fuel sources such as fatty acids. However, during pathophysiological conditions such as heart failure, cardiac defects in metabolic processes that normally allow for sufficient energy production from fatty acids and carbohydrates contribute to a decline in contractile function. As such, it has been proposed that the failing heart relies more on ketone bodies as an energy source than previously appreciated. Furthermore, it has been suggested that ketone bodies may function as signaling molecules that can suppress systemic and cardiac inflammation. Thus, it is possible that intentionally elevating circulating ketones may be beneficial as an adjunct treatment for heart failure. Although many approaches can be used for 'ketone therapy', each of these has their own advantages and disadvantages in the treatment of heart failure. Thus, we summarize current preclinical and clinical studies involving various types of ketone therapy in cardiac disease and discuss the advantages and disadvantages of each modality as possible treatments for heart failure.
Collapse
Affiliation(s)
- Shingo Takahara
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shubham Soni
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zaid H Maayah
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Selvaraj S, Kelly DP, Margulies KB. Implications of Altered Ketone Metabolism and Therapeutic Ketosis in Heart Failure. Circulation 2020; 141:1800-1812. [PMID: 32479196 DOI: 10.1161/circulationaha.119.045033] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite existing therapy, patients with heart failure (HF) experience substantial morbidity and mortality, highlighting the urgent need to identify novel pathophysiological mechanisms and therapies, as well. Traditional models for pharmacological intervention have targeted neurohormonal axes and hemodynamic disturbances in HF. However, several studies have now highlighted the potential for ketone metabolic modulation as a promising treatment paradigm. During the pathophysiological progression of HF, the failing heart reduces fatty acid and glucose oxidation, with associated increases in ketone metabolism. Recent studies indicate that enhanced myocardial ketone use is adaptive in HF, and limited data demonstrate beneficial effects of exogenous ketone therapy in studies of animal models and humans with HF. This review will summarize current evidence supporting a salutary role for ketones in HF including (1) normal myocardial ketone use, (2) alterations in ketone metabolism in the failing heart, (3) effects of therapeutic ketosis in animals and humans with HF, and (4) the potential significance of ketosis associated with sodium-glucose cotransporter 2 inhibitors. Although a number of important questions remain regarding the use of therapeutic ketosis and mechanism of action in HF, current evidence suggests potential benefit, in particular, in HF with reduced ejection fraction, with theoretical rationale for its use in HF with preserved ejection fraction. Although it is early in its study and development, therapeutic ketosis across the spectrum of HF holds significant promise.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Division of Cardiovascular Medicine, Department of Medicine (S.S., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine (D.P.K., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Department of Medicine (S.S., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Cardiovascular Institute and Department of Medicine (D.P.K., K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Heart Failure and Transplant Program, Smilow Center for Translational Research (K.B.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
17
|
Kim BY. Effects of Low-Carbohydrate, High-Fat Diets on Weight Loss, Cardiovascular Health and Mortality. ACTA ACUST UNITED AC 2020. [DOI: 10.36011/cpp.2020.2.e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bo-Yeon Kim
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
18
|
Harvey KL, Holcomb LE, Kolwicz SC. Ketogenic Diets and Exercise Performance. Nutrients 2019; 11:nu11102296. [PMID: 31561520 PMCID: PMC6835497 DOI: 10.3390/nu11102296] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
The ketogenic diet (KD) has gained a resurgence in popularity due to its purported reputation for fighting obesity. The KD has also acquired attention as an alternative and/or supplemental method for producing energy in the form of ketone bodies. Recent scientific evidence highlights the KD as a promising strategy to treat obesity, diabetes, and cardiac dysfunction. In addition, studies support ketone body supplements as a potential method to induce ketosis and supply sustainable fuel sources to promote exercise performance. Despite the acceptance in the mainstream media, the KD remains controversial in the medical and scientific communities. Research suggests that the KD or ketone body supplementation may result in unexpected side effects, including altered blood lipid profiles, abnormal glucose homeostasis, increased adiposity, fatigue, and gastrointestinal distress. The purpose of this review article is to provide an overview of ketone body metabolism and a background on the KD and ketone body supplements in the context of obesity and exercise performance. The effectiveness of these dietary or supplementation strategies as a therapy for weight loss or as an ergogenic aid will be discussed. In addition, the recent evidence that indicates ketone body metabolism is a potential target for cardiac dysfunction will be reviewed.
Collapse
Affiliation(s)
- Kristin L Harvey
- Heart and Muscle Metabolism Laboratory, Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA.
| | - Lola E Holcomb
- Heart and Muscle Metabolism Laboratory, Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA.
| | - Stephen C Kolwicz
- Heart and Muscle Metabolism Laboratory, Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA.
| |
Collapse
|
19
|
Abstract
For more than half a century, metabolic perturbations have been explored in the failing myocardium, highlighting a reversion to a more fetal-like metabolic profile (characterized by depressed fatty acid oxidation and concomitant increased reliance on use of glucose). More recently, alterations in ketone body and amino acid/protein metabolism have been described during heart failure, as well as mitochondrial dysfunction and perturbed metabolic signaling (e.g., acetylation, O-GlcNAcylation). Although numerous mechanisms are likely involved, the current review provides recent advances regarding the metabolic origins of heart failure, and their potential contribution toward contractile dysfunction of the heart.
Collapse
|
20
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
21
|
Nilsson J, Ericsson M, Joibari MM, Anderson F, Carlsson L, Nilsson SK, Sjödin A, Burén J. A low-carbohydrate high-fat diet decreases lean mass and impairs cardiac function in pair-fed female C57BL/6J mice. Nutr Metab (Lond) 2016; 13:79. [PMID: 27891164 PMCID: PMC5111238 DOI: 10.1186/s12986-016-0132-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background Excess body fat is a major health issue and a risk factor for the development of numerous chronic diseases. Low-carbohydrate diets like the Atkins Diet are popular for rapid weight loss, but the long-term consequences remain the subject of debate. The Scandinavian low-carbohydrate high-fat (LCHF) diet, which has been popular in Scandinavian countries for about a decade, has very low carbohydrate content (~5 E %) but is rich in fat and includes a high proportion of saturated fatty acids. Here we investigated the metabolic and physiological consequences of a diet with a macronutrient composition similar to the Scandinavian LCHF diet and its effects on the organs, tissues, and metabolism of weight stable mice. Methods Female C57BL/6J mice were iso-energetically pair-fed for 4 weeks with standard chow or a LCHF diet. We measured body composition using echo MRI and the aerobic capacity before and after 2 and 4 weeks on diet. Cardiac function was assessed by echocardiography before and after 4 weeks on diet. The metabolic rate was measured by indirect calorimetry the fourth week of the diet. Mice were sacrificed after 4 weeks and the organ weight, triglyceride levels, and blood chemistry were analyzed, and the expression of key ketogenic, metabolic, hormonal, and inflammation genes were measured in the heart, liver, and adipose tissue depots of the mice using real-time PCR. Results The increase in body weight of mice fed a LCHF diet was similar to that in controls. However, while control mice maintained their body composition throughout the study, LCHF mice gained fat mass at the expense of lean mass after 2 weeks. The LCHF diet increased cardiac triglyceride content, impaired cardiac function, and reduced aerobic capacity. It also induced pronounced alterations in gene expression and substrate metabolism, indicating a unique metabolic state. Conclusions Pair-fed mice eating LCHF increased their percentage of body fat at the expense of lean mass already after 2 weeks, and after 4 weeks the function of the heart deteriorated. These findings highlight the urgent need to investigate the effects of a LCHF diet on health parameters in humans.
Collapse
Affiliation(s)
- Jessica Nilsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden.,Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Madelene Ericsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Fredrick Anderson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Leif Carlsson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stefan K Nilsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Sjödin
- Department of Food and Nutrition, Umeå University, Umeå, Sweden
| | - Jonas Burén
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden.,Department of Food and Nutrition, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Liu J, Wang P, Douglas SL, Tate JM, Sham S, Lloyd SG. Impact of high-fat, low-carbohydrate diet on myocardial substrate oxidation, insulin sensitivity, and cardiac function after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2016; 311:H1-H10. [PMID: 27199129 PMCID: PMC4967196 DOI: 10.1152/ajpheart.00809.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/02/2016] [Indexed: 01/10/2023]
Abstract
High-fat, low-carbohydrate Diet (HFLCD) impairs the myocardial response to ischemia-reperfusion, but the underlying mechanisms remain elusive. We sought to determine the magnitude of diet-induced alterations in intrinsic properties of the myocardium (including insulin sensitivity and substrate oxidation) and circulating substrate and insulin differences resulting from diet, leading to this impaired response. Rats were fed HFLCD (60% kcal from fat/30% protein/10% carbohydrate) or control diet (CONT) (16%/19%/65%) for 2 wk. Isolated hearts underwent global low-flow ischemia followed by reperfusion (I/R). Carbon-13 NMR spectroscopy was used to determine myocardial substrate TCA cycle entry. Myocardial insulin sensitivity was assessed as dose-response of Akt phosphorylation. There was a significant effect of HFLCD and I/R with both these factors leading to an increase in free fatty acid (FFA) oxidation and a decrease in carbohydrate or ketone oxidation. Following I/R, HFLCD led to decreased ketone and increased FFA oxidation; the recovery of left ventricular (LV) function was decreased in HFLCD and was negatively correlated with FFA oxidation and positively associated with ketone oxidation. HFLCD also resulted in reduced insulin sensitivity. Under physiologic ranges, there were no direct effects of buffer insulin and ketone levels on oxidation of any substrate and recovery of cardiac function after I/R. An insulin-ketone interaction exists for myocardial substrate oxidation characteristics. We conclude that the impaired recovery of function after ischemia-reperfusion with HFLCD is largely due to intrinsic diet effects on myocardial properties, rather than to diet effect on circulating insulin or substrate levels.
Collapse
Affiliation(s)
- Jian Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, National University of Singapore, Singapore; and
| | - Samuel L Douglas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua M Tate
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Simon Sham
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven G Lloyd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
23
|
Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu SS, Chen JX, Li RL, Wu Y, Zhang HY, Zhu Y, Li YX, He JH, Wang M, Jiang W. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms. Basic Res Cardiol 2016; 111:13. [PMID: 26786260 DOI: 10.1007/s00395-016-0531-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/08/2016] [Indexed: 02/05/2023]
Abstract
SIRT6, a member of the NAD(+)-dependent class III deacetylase sirtuin family, has been revealed to play important roles in promoting cellular resistance against oxidative stress. The formation of reactive oxygen species (ROS) and oxidative stress are the crucial mechanisms underlying cellular damage and dysfunction in cardiac ischemia/reperfusion (I/R) injury, but the role of SIRT6 in I/R-induced ROS and oxidative stress is poorly understood. In this study, by using heterozygous SIRT6 knockout (SIRT6(+/-)) mice and cultured neonatal cardiomyocyte models, we investigated how SIRT6 mediates oxidative stress and myocardial injury during I/R. Partial knockout (KO) of SIRT6 aggravated myocardial damage, ventricular remodeling, and oxidative stress in mice subjected to myocardial I/R, whereas restoration of SIRT6 expression by direct cardiac injection of adenoviral constructs encoding SIRT6 reversed these deleterious effects of SIRT6 KO in the ischemic heart. In addition, partial deletion of the SIRT6 gene decreased myocardial functional recovery following I/R in a Langendorff perfusion model. Similarly, the protective effects of SIRT6 were also observed in cultured cardiomyocytes following hypoxia/reoxygenation. Intriguingly, SIRT6 was noticed to up-regulate AMP/ATP and then activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)-forkhead box O3α (FoxO3α) axis and further initiated the downstream antioxidant-encoding gene expression (manganese superoxide dismutase and catalase), thereby decreasing cellular levels of oxidative stress and mediating cardioprotection in the ischemic heart. These results suggest that SIRT6 protects the heart from I/R injury through FoxO3α activation in the ischemic heart in an AMP/ATP-induced AMPK-dependent way, thus upregulating antioxidants and suppressing oxidative stress.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu-Lei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- School of Life Sciences and Bioengineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Ming-ming Tong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lu Gan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huali Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-si Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jia-Xiang Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ru-Li Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yao Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Heng-yu Zhang
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ye Zhu
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yan-xin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Jin-han He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Meijing Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
24
|
Urocortin-2 suppression of p38-MAPK signaling as an additional mechanism for ischemic cardioprotection. Mol Cell Biochem 2014; 398:135-46. [DOI: 10.1007/s11010-014-2213-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022]
|
25
|
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 2014; 5:260. [PMID: 25101001 PMCID: PMC4102118 DOI: 10.3389/fphys.2014.00260] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB), its linear polymer poly-β-hydroxybutyrate (PHB), and inorganic polyphosphate (polyP) in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g., diabetic ketoacidosis in type-1 diabetes mellitus), it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-OHB dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB) is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca(2+) which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial membrane system.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| |
Collapse
|
26
|
Littlejohns B, Pasdois P, Duggan S, Bond AR, Heesom K, Jackson CL, Angelini GD, Halestrap AP, Suleiman MS. Hearts from mice fed a non-obesogenic high-fat diet exhibit changes in their oxidative state, calcium and mitochondria in parallel with increased susceptibility to reperfusion injury. PLoS One 2014; 9:e100579. [PMID: 24950187 PMCID: PMC4065057 DOI: 10.1371/journal.pone.0100579] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/26/2014] [Indexed: 11/20/2022] Open
Abstract
Rationale High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. Objectives To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Methods and Results Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. Conclusions This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults.
Collapse
Affiliation(s)
- Ben Littlejohns
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Philippe Pasdois
- Bioénergétique et Métabolisme, Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, Pessac, France
| | - Simon Duggan
- Oxford Heart Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew R. Bond
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Kate Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher L. Jackson
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Gianni D. Angelini
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Andrew P. Halestrap
- School of Biochemistry, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - M.-Saadeh Suleiman
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Zhou Y, Wang D, Gao X, Lew K, Richards AM, Wang P. mTORC2 phosphorylation of Akt1: a possible mechanism for hydrogen sulfide-induced cardioprotection. PLoS One 2014; 9:e99665. [PMID: 24949720 PMCID: PMC4064967 DOI: 10.1371/journal.pone.0099665] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 05/16/2014] [Indexed: 01/05/2023] Open
Abstract
Hydrogen sulfide (H2S) is known to have cardiac protective effects through Akt activation. Akt acts as a 'central sensor' for myocyte survival or death; its activity is regulated by multiple kinases including PI3K, mTORC2, PDK1 and phosphatases including PTEN, PP2A and PHLPPL. Based on the previous finding that PI3K inhibitor LY294002 abolishes H2S-induced Akt phosphorylation and cardioprotection, it is accepted that PI3K is the mediator of H2S-induced Akt phosphorylation. However, LY294002 inhibits both PI3K and mTOR, and PI3K only recruits Akt to the membrane where Akt is phosphorylated by Akt kinases. We undertook a series of experiments to further evaluate the role of mTORC2, PDK1, PTEN, PP2A and PHLPPL in H2S-induced Akt phosphorylation and cardioprotection, which, we believe, has not been investigated before. Hearts from adult Sprague-Dawley rats were isolated and subjected to (i) normoxia, (ii) global ischemia and (iii) ischemia/reperfusion in the presence or absence of 50 µM of H2S donor NaHS. Cardiac mechanical function and lactate dehydrogenase (LDH) release were assessed. All hearts also were Western analyzed at the end of perfusion for Akt and a panel of appropriate Akt regulators and targets. Hearts pretreated with 50 µM NaHS had improved function at the end of reperfusion (Rate pressure product; 19±4×10(3) vs. 10±3×10(3) mmHg/min, p<0.05) and reduced cell injury (LDH release 19±10 vs. 170±87 mU/ml p<0.05) compared to untreated hearts. NaHS significantly increased phospho-Akt, phospho-mTOR, phospho-Bim and Bcl-2 in reperfused hearts (P<0.05). Furthermore using H9c2 cells we demonstrate that NaHS pretreatment reduces apoptosis following hypoxia/re-oxygenation. Importantly, PP242, a specific mTOR inhibitor, abolished both cardioprotection and protein phosphorylation in isolated heart and reduced apoptotic effects in H9c2 cells. Treating hearts with NaHS only during reperfusion produced less cardioprotection through a similar mechanism. These data suggest mTORC2 phosphorylation of Akt is a key mediator of H2S-induced cardioprotection in I/R.
Collapse
Affiliation(s)
- Yue Zhou
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Daying Wang
- Department of Cardiology, Putuo Hospital, Shanghai, China
| | - Xiufang Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Karsheng Lew
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Peipei Wang
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Liu J, Wang P, Zou L, Qu J, Litovsky S, Umeda P, Zhou L, Chatham J, Marsh SA, Dell'Italia LJ, Lloyd SG. High-fat, low-carbohydrate diet promotes arrhythmic death and increases myocardial ischemia-reperfusion injury in rats. Am J Physiol Heart Circ Physiol 2014; 307:H598-608. [PMID: 24929857 DOI: 10.1152/ajpheart.00058.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-fat, low-carbohydrate diets (HFLCD) are often eaten by humans for a variety of reasons, but the effects of such diets on the heart are incompletely understood. We evaluated the impact of HFLCD on myocardial ischemia/reperfusion (I/R) using an in vivo model of left anterior descending coronary artery ligation. Sprague-Dawley rats (300 g) were fed HFLCD (60% calories fat, 30% protein, 10% carbohydrate) or control (CONT; 16% fat, 19% protein, 65% carbohydrate) diet for 2 wk and then underwent open chest I/R. At baseline (preischemia), diet did not affect left ventricular (LV) systolic and diastolic function. Oil red O staining revealed presence of lipid in the heart with HFLCD but not in CONT. Following I/R, recovery of LV function was decreased in HFLCD. HFLCD hearts exhibited decreased ATP synthase and increased uncoupling protein-3 gene and protein expression. HFLCD downregulated mitochondrial fusion proteins and upregulated fission proteins and store-operated Ca(2+) channel proteins. HFLCD led to increased death during I/R; 6 of 22 CONT rats and 16 of 26 HFLCD rats died due to ventricular arrhythmias and hemodynamic shock. In surviving rats, HFLCD led to larger infarct size. We concluded that in vivo HFLCD does not affect nonischemic LV function but leads to greater myocardial injury during I/R, with increased risk of death by pump failure and ventricular arrhythmias, which might be associated with altered cardiac energetics, mitochondrial fission/fusion dynamics, and store-operated Ca(2+) channel expression.
Collapse
Affiliation(s)
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, National University of Singapore, Singapore, Singapore
| | - Luyun Zou
- Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Silvio Litovsky
- Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John Chatham
- Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Susan A Marsh
- Department of Clinical Pharmacology, Washington State University, Pullman, Washington
| | - Louis J Dell'Italia
- Departments of Medicine and Birmingham VA Medical Center, Birmingham, Alabama
| | - Steven G Lloyd
- Departments of Medicine and Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
29
|
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304:H1060-76. [PMID: 23396451 PMCID: PMC3625904 DOI: 10.1152/ajpheart.00646.2012] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
30
|
Liu J, Lloyd SG. High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats. Nutr Res 2013; 33:311-21. [PMID: 23602249 DOI: 10.1016/j.nutres.2013.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/09/2013] [Accepted: 02/15/2013] [Indexed: 11/25/2022]
Abstract
Obesity is associated with elevated risk of heart disease. A solid understanding of the safety and potential adverse effects of high-fat, low-carbohydrate diet (HFLCD) similar to that used by humans for weight loss on the heart is crucial. High fat intake is known to promote increases in reactive oxygen species and mitochondrial damage. We hypothesized that there would be adverse effects of HFLCD on myocardial ischemia/reperfusion injury through enhancing oxidative stress injury and impairing mitochondrial biogenesis in a nongenetic, diet-induced rat model of obesity. To test the hypothesis, 250-g male Sprague-Dawley rats were fed an obesity-promoting diet for 7 weeks to induce obesity, then switched to HFLCD or a low-fat control diet for 2 weeks. Isolated hearts underwent global low flow ischemia for 60 minutes and reperfusion for 60 minutes. High-fat, low-carbohydrate diet resulted in greater weight gain and lower myocardial glycogen, plasma adiponectin, and insulin. Myocardial antioxidant gene transcript and protein expression of superoxide dismutase and catalase were reduced in HFLCD, along with increased oxidative gene NADPH oxidase-4 transcript and xanthine oxidase activity, and a 37% increase in nitrated protein (nitrotyrosine) in HFLCD hearts. The cardiac expression of key mitochondrial regulatory factors such as nuclear respiratory factor-1 and transcription factor A-mitochondrial were inhibited and myocardial mitochondrial DNA copy number decreased. The cardiac expression of adiponectin and its receptors was down-regulated in HFLCD. High-fat, low-carbohydrate diet impaired recovery of left ventricular rate-pressure product after ischemia/reperfusion and led to 3.5-fold increased injury as measured by lactate dehydrogenase release. In conclusion, HFLCD leads to increased ischemic myocardial injury and impaired recovery of function after reperfusion and was associated with attenuation of mitochondrial biogenesis and enhanced oxidative stress in obese rats. These findings may have important implications for diet selection in obese patients with ischemic heart disease.
Collapse
Affiliation(s)
- Jian Liu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| | | |
Collapse
|