1
|
Alhareth DY, Alanazi A, Alanazi WA, Ansari MA, Nagi MN, Ahmad SF, Attia MSM, Nadeem A, Bakheet SA, Attia SM. Carfilzomib Mitigates Lipopolysaccharide/D-Galactosamine/Dimethylsulfoxide-Induced Acute Liver Failure in Mice. Biomedicines 2023; 11:3098. [PMID: 38002097 PMCID: PMC10669466 DOI: 10.3390/biomedicines11113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Acute liver failure (ALF) is a disease accompanied by severe liver inflammation. No effective therapy is available yet apart from liver transplantation; therefore, developing novel treatments for ALF is urgently required. Inflammatory mediators released by NF-кB activation play an essential role in ALF. Proteasome inhibitors have many medical uses, such as reducing inflammation and NF-кB inhibition, which are believed to account for most of their repurposing effects. This study was undertaken to explore the possible protective effects and the underlying mechanisms of carfilzomib, a proteasome inhibitor, in a mouse model of ALF induced by lipopolysaccharide/D-galactosamine/dimethylsulfoxide (LPS/GalN/DMSO). Carfilzomib dose-dependently protected mice from LPS/GalN/DMSO-induced liver injury, as indicated by the decrease in serum alanine aminotransferase and aspartate aminotransferase levels. LPS/GalN/DMSO increased TNF-α, NF-кB, lipid peroxidation, NO, iNOS, cyclooxygenase-II, myeloperoxidase, and caspase-3 levels. Carfilzomib administration mitigated LPS/GalN/DMSO-induced liver damage by decreasing the elevated levels of TNF-α, NF-кB, lipid peroxidation, nitric oxide, iNOS, cyclooxygenase-II, myeloperoxidase, caspase-3, and histopathological changes. A restored glutathione level was also observed in the carfilzomib-treated LPS/GalN/DMSO mice. Our results demonstrate that carfilzomib protects against LPS/GalN/DMSO-induced ALF by inhibiting NF-кB, decreasing inflammatory mediators, oxidative/nitrosative stress, neutrophil recruitment, and apoptosis, suggesting that carfilzomib may be a potential therapeutic agent for ALF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
2
|
Georgiopoulos G, Makris N, Laina A, Theodorakakou F, Briasoulis A, Trougakos IP, Dimopoulos MA, Kastritis E, Stamatelopoulos K. Cardiovascular Toxicity of Proteasome Inhibitors: Underlying Mechanisms and Management Strategies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:1-21. [PMID: 36875897 PMCID: PMC9982226 DOI: 10.1016/j.jaccao.2022.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023] Open
Abstract
Proteasome inhibitors (PIs) are the backbone of combination treatments for patients with multiple myeloma and AL amyloidosis, while also indicated in Waldenström's macroglobulinemia and other malignancies. PIs act on proteasome peptidases, causing proteome instability due to accumulating aggregated, unfolded, and/or damaged polypeptides; sustained proteome instability then induces cell cycle arrest and/or apoptosis. Carfilzomib, an intravenous irreversible PI, exhibits a more severe cardiovascular toxicity profile as compared with the orally administered ixazomib or intravenous reversible PI such as bortezomib. Cardiovascular toxicity includes heart failure, hypertension, arrhythmias, and acute coronary syndromes. Because PIs are critical components of the treatment of hematological malignancies and amyloidosis, managing their cardiovascular toxicity involves identifying patients at risk, diagnosing toxicity early at the preclinical level, and offering cardioprotection if needed. Future research is required to elucidate underlying mechanisms, improve risk stratification, define the optimal management strategy, and develop new PIs with safe cardiovascular profiles.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ACS, acute coronary syndrome
- AE, adverse event
- AF, atrial fibrillation
- ARB, angiotensin receptor blocker
- ASCT, autologous stem cell transplantation
- BP, blood pressure
- CVAE, cardiovascular adverse event
- ESC, European Society of Cardiology
- FMD, flow-mediated dilatation
- GLS, global longitudinal strain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- IHD, ischemic heart disease
- IMiD, immunomodulatory drug
- Kd, carfilzomib and dexamethasone
- LA, left atrial
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- MM, multiple myeloma
- NO, nitric oxide
- NP, natriuretic peptide
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- PFS, progression-free survival
- PH, pulmonary hypertension
- PI, proteasome inhibitor
- PWV, pulse wave velocity
- PrA, proteasome activity
- RRMM, relapse or refractory multiple myeloma
- SBP, systolic blood pressure
- TMA, thrombotic microangiopathy
- UPP, ubiquitin proteasome pathway
- VTE, venous thromboembolism
- Vd, bortezomib and dexamethasone
- WM, Waldenström’s macroglobulinemia
- bortezomib
- cardiovascular toxicity
- carfilzomib
- eNOS, endothelial nitric oxide synthase
- ixazomib
- proteasome inhibition
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Nikolaos Makris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ageliki Laina
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | | | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Kastritis E, Laina A, Georgiopoulos G, Gavriatopoulou M, Papanagnou ED, Eleutherakis-Papaiakovou E, Fotiou D, Kanellias N, Dialoupi I, Makris N, Manios E, Migkou M, Roussou M, Kotsopoulou M, Stellos K, Terpos E, Trougakos IP, Stamatelopoulos K, Dimopoulos MA. Carfilzomib-induced endothelial dysfunction, recovery of proteasome activity, and prediction of cardiovascular complications: a prospective study. Leukemia 2021; 35:1418-1427. [PMID: 33589757 DOI: 10.1038/s41375-021-01141-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Carfilzomib (CFZ) improves survival in relapsed/refractory multiple myeloma but is associated with cardiovascular adverse events (CVAEs). We prospectively investigated the effect of CFZ on endothelial function and associations with CVAEs. Forty-eight patients treated with Kd (CFZ 20/56 mg/m2 and dexamethasone) underwent serial endothelial function evaluation, using brachial artery flow-mediated dilatation (FMD) and 26S proteasome activity (PrA) measurement in PBMCs; patients were followed until disease progression or cycle 6 for a median of 10 months. FMD and PrA decreased acutely after the first dose (p < 0.01) and FMD decreased at cycles 3 and 6 compared to baseline (p ≤ 0.05). FMD changes were associated with CFZ-induced PrA changes (p < 0.05) and lower PrA recovery during first cycle was associated with more prominent FMD decrease (p = 0.034 for group interaction). During treatment, 25 patients developed Grade ≥3 CVAEs. Low baseline FMD (HR 2.57 lowest vs. higher tertiles, 95% CI 1.081-6.1) was an independent predictor of CVAEs. During treatment, an acute FMD decrease >40% at the end of first cycle was also independently associated with CVAEs (HR = 3.91, 95% CI 1.29-11.83). Kd treatment impairs endothelial function which is associated with PrA inhibition and recovery. Both pre- and posttreatment FMD predicted CFZ-related CVAEs supporting its role as a possible cardiovascular toxicity biomarker.
Collapse
Affiliation(s)
- Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ageliki Laina
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dialoupi
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Makris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Manios
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Roussou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Kotsopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. .,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Fotiou D, Roussou M, Gakiopoulou C, Psimenou E, Gavriatopoulou M, Migkou M, Kanellias N, Dialoupi I, Eleutherakis-Papaiakovou E, Giannouli S, Delavinia C, Efstathiou K, Kontogiannis S, Terpos E, Dimopoulos MA, Kastritis E. Carfilzomib-associated renal toxicity is common and unpredictable: a comprehensive analysis of 114 multiple myeloma patients. Blood Cancer J 2020; 10:109. [PMID: 33149167 PMCID: PMC7642386 DOI: 10.1038/s41408-020-00381-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
Carfilzomib (CFZ) is a non-reversible proteasome inhibitor approved for the treatment of patients with relapsed and refractory myeloma (RRMM). Its use has been associated with cardiovascular toxicity but although recently a signal of clinically significant renal complications has also been identified, it is less extensively investigated. We analyzed data of 114 consecutive patients with RRMM who received CFZ-based regimens. Renal complications not related to MM progression were observed in 19 (17%) patients; thrombotic microangiopathy (TMA) was seen in 6 (5%) patients, albuminuria >1 gr/day in 7 patients (6%) and at least grade 3 acute kidney injury (AKI) which could not be otherwise explained in 6 patients (5%). A total of 15 patients discontinued CFZ and dosing was reinitiated at a lower level in one patient with AKI. Albuminuria was associated with focal segmental glomerulosclerosis in the renal biopsy (performed in a total of 6 patients). Renal complications during CFZ therapy are common, occur mostly early and are unpredictable. A potential effect of CFZ on the renal endothelium could be implicated in the pathogenesis of these complications and may also share common pathophysiology with cardiovascular effects of CFZ.
Collapse
Affiliation(s)
- Despina Fotiou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Roussou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Charikleia Gakiopoulou
- Fist Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Erasmia Psimenou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Ioanna Dialoupi
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Stavroula Giannouli
- Second Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Christina Delavinia
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Kostantinos Efstathiou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Sofoklis Kontogiannis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
5
|
Yamazaki O, Hirohama D, Ishizawa K, Shibata S. Role of the Ubiquitin Proteasome System in the Regulation of Blood Pressure: A Review. Int J Mol Sci 2020; 21:E5358. [PMID: 32731518 PMCID: PMC7432568 DOI: 10.3390/ijms21155358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
The kidney and the vasculature play crucial roles in regulating blood pressure. The ubiquitin proteasome system (UPS), a multienzyme process mediating covalent conjugation of the 76-amino acid polypeptide ubiquitin to a substrate protein followed by proteasomal degradation, is involved in multiple cellular processes by regulating protein turnover in various tissues. Increasing evidence demonstrates the roles of UPS in blood pressure regulation. In the kidney, filtered sodium is reabsorbed through diverse sodium transporters and channels along renal tubules, and studies conducted till date have provided insights into the complex molecular network through which ubiquitin ligases modulate sodium transport in different segments. Components of these pathways include ubiquitin ligase neuronal precursor cell-expressed developmentally downregulated 4-2, Cullin-3, and Kelch-like 3. Moreover, accumulating data indicate the roles of UPS in blood vessels, where it modulates nitric oxide bioavailability and vasoconstriction. Cullin-3 not only regulates renal salt reabsorption but also controls vascular tone using different adaptor proteins that target distinct substrates in vascular smooth muscle cells. In endothelial cells, UPS can also contribute to blood pressure regulation by modulating endothelial nitric oxide synthase. In this review, we summarize current knowledge regarding the role of UPS in blood pressure regulation, focusing on renal sodium reabsorption and vascular function.
Collapse
Affiliation(s)
| | | | | | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (O.Y.); (D.H.); (K.I.)
| |
Collapse
|
6
|
Priestley JRC, Fink KE, McCord JM, Lombard JH. NRF2 activation with Protandim attenuates salt-induced vascular dysfunction and microvascular rarefaction. Microcirculation 2019; 26:e12575. [PMID: 31132190 DOI: 10.1111/micc.12575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS This study tested the hypothesis that dietary activation of the master antioxidant and cell protective transcription factor nuclear factor, erythroid -2-like 2 (NRF2), protects against salt-induced vascular dysfunction by restoring redox homeostasis in the vasculature. METHODS Male Sprague-Dawley rats and Syrian hamsters were fed a HS (4.0% NaCl) diet containing ~60 mg/kg/day Protandim supplement for 2 weeks and compared to controls fed HS diet alone. RESULTS Protandim supplementation restoredendothelium-dependent vasodilation in response to acetylcholine (ACh) in middle cerebral arteries (MCA)of HS-fed rats and hamster cheek pouch arterioles, and increased microvessel density in the cremastermuscle of HS-fed rats. The restored dilation to ACh in MCA of Protandim-treated rats was prevented by inhibiting nitric oxide synthase (NOS) with L-NAME [100 μM] and was absent in MCA from Nrf2(-/-) knockout rats fed HS diet. Basilar arteries from HS-fed rats treated with Protandim exhibited significantly lower staining for mitochondrial oxidizing species than untreated animals fed HS diet alone; and Protandim treatment increased MnSOD (SOD2) protein expression in mesenteric arteries of HS-fed rats. CONCLUSIONS These results suggest that dietary activation of NRF2 protects against salt-induced vascular dysfunction, vascular oxidative stress, and microvascular rarefaction by upregulating antioxidant defenses and reducing mitochondrial ROS levels.
Collapse
Affiliation(s)
| | - Katie E Fink
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joe M McCord
- Division of Pulmonary Sciences and Critical Care Medicine Research, University of Colorado at Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
7
|
Complex regional pain syndrome: a focus on the autonomic nervous system. Clin Auton Res 2019; 29:457-467. [PMID: 31104164 DOI: 10.1007/s10286-019-00612-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Although autonomic features are part of the diagnostic criteria for complex regional pain syndrome (CRPS), the role of the autonomic nervous system in CRPS pathophysiology has been downplayed in recent years. The purpose of this review is to redress this imbalance. METHODS We focus in this review on the contribution of the autonomic nervous system to CRPS pathophysiology. In particular, we discuss regional sympathetic and systemic autonomic disturbances in CRPS and the mechanisms which may underlie them, and consider links between these mechanisms, immune disturbances and pain. RESULTS The focused literature research revealed that immune reactions, alterations in receptor populations (e.g., upregulation of adrenoceptors and reduced cutaneous nerve fiber density) and central changes in autonomic drive seem to contribute to regional and systemic disturbances in sympathetic activity and to sympathetically maintained pain in CRPS. CONCLUSIONS We conclude that alterations in the sympathetic nervous system contribute to CRPS pathology. Understanding these alterations may be an important step towards providing appropriate treatments for CRPS.
Collapse
|
8
|
Gavazzoni M, Vizzardi E, Gorga E, Bonadei I, Rossi L, Belotti A, Rossi G, Ribolla R, Metra M, Raddino R. Mechanism of cardiovascular toxicity by proteasome inhibitors: New paradigm derived from clinical and pre-clinical evidence. Eur J Pharmacol 2018; 828:80-88. [DOI: 10.1016/j.ejphar.2018.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
|
9
|
Abstract
Research into complex regional pain syndrome (CRPS) has made significant progress. First, there was the implementation of the official IASP "Budapest" diagnostic criteria. It would be desirable to also define exclusion and outcome criteria that should be reported in studies. The next step was to recognize the complex pathophysiology. After trauma, some inflammation is physiological; in acute CRPS, this inflammation persists for months. There is an abundance of inflammatory and a lack of anti-inflammatory mediators. This proinflammatory network (cytokines and probably also other mediators) sensitizes the peripheral and spinal nociceptive system, it facilitates the release of neuropeptides from nociceptors inducing the visible signs of inflammation, and it stimulates bone cell or fibroblast proliferation, and endothelial dysfunction leading to vascular changes. Trauma may also expose nervous system structures to the immune system and triggers autoantibodies binding to adreno- and acetylcholine receptors. In an individual time frame, the pain in this inflammatory phase pushes the transition into "centralized" CRPS, which is dominated by neuronal plasticity and reorganization. Sensory-motor integration becomes disturbed, leading to a loss of motor function; the body representation is distorted leading to numbness and autonomic disturbances. In an attempt to avoid pain, patients neglect their limb and learn maladaptive nonuse. The final step will be to assess large cohorts and to analyze these data together with data from public resources using a bioinformatics approach. We could then develop diagnostic toolboxes for individual pathophysiology and select focused treatments or develop new ones.
Collapse
|
10
|
Wilck N, Ludwig A. Targeting the ubiquitin-proteasome system in atherosclerosis: status quo, challenges, and perspectives. Antioxid Redox Signal 2014; 21:2344-63. [PMID: 24506455 DOI: 10.1089/ars.2013.5805] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a vascular disease of worldwide significance with fatal complications such as myocardial infarction, stroke, and peripheral artery disease. Atherosclerosis is recognized as a chronic inflammatory disease leading to arterial plaque formation and vessel narrowing in different vascular beds. Besides the strong inflammatory nature of atherosclerosis, it is also characterized by proliferation, apoptosis, and enhanced oxidative stress. The ubiquitin-proteasome system (UPS) is the major intracellular degradation system in eukaryotic cells. Besides its essential role in the degradation of dysfunctional and oxidatively damaged proteins, it is involved in many processes that influence disease progression in atherosclerosis. Hence, it is logical to ask whether targeting the proteasome is a reasonable and feasible option for the treatment of atherosclerosis. RECENT ADVANCES Several lines of evidence suggest stage-specific dysfunction of the UPS in atherogenesis. Regulation of key processes by the proteasome in atherosclerosis, as well as the modulation of these processes by proteasome inhibitors in vascular cells, is outlined in this review. The treatment of atherosclerotic animal models with proteasome inhibitors yielded partly opposing results, the potentially underlying reasons of which are discussed here. CRITICAL ISSUES AND FUTURE DIRECTIONS Targeting UPS function in atherosclerosis is a promising but challenging option. Limitations of current proteasome inhibitors, dose dependency, and the cell specificity of effects, as well as the potential of future therapeutics are discussed. A stage-specific in-depth exploration of UPS function in atherosclerosis in the future will help identify targets and windows for beneficial intervention.
Collapse
Affiliation(s)
- Nicola Wilck
- 1 Medizinische Klinik für Kardiologie und Angiologie, Charité-Universitätsmedizin Berlin , Campus Mitte, Berlin, Germany
| | | |
Collapse
|
11
|
Drews O, Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 2014; 21:2322-43. [PMID: 25133688 PMCID: PMC4241867 DOI: 10.1089/ars.2013.5823] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Novel therapeutic strategies to treat heart failure are greatly needed. The ubiquitin-proteasome system (UPS) affects the structure and function of cardiac cells through targeted degradation of signaling and structural proteins. This review discusses both beneficial and detrimental consequences of modulating the UPS in the heart. RECENT ADVANCES Proteasome inhibitors were first used to test the role of the UPS in cardiac disease phenotypes, indicating therapeutic potential. In early cardiac remodeling and pathological hypertrophy with increased proteasome activities, proteasome inhibition prevented or restricted disease progression and contractile dysfunction. Conversely, enhancing proteasome activities by genetic manipulation, pharmacological intervention, or ischemic preconditioning also improved the outcome of cardiomyopathies and infarcted hearts with impaired cardiac and UPS function, which is, at least in part, caused by oxidative damage. CRITICAL ISSUES An understanding of the UPS status and the underlying mechanisms for its potential deregulation in cardiac disease is critical for targeted interventions. Several studies indicate that type and stage of cardiac disease influence the dynamics of UPS regulation in a nonlinear and multifactorial manner. Proteasome inhibitors targeting all proteasome complexes are associated with cardiotoxicity in humans. Furthermore, the type and dosage of proteasome inhibitor impact the pathogenesis in nonuniform ways. FUTURE DIRECTIONS Systematic analysis and targeting of individual UPS components with established and innovative tools will unravel and discriminate regulatory mechanisms that contribute to and protect against the progression of cardiac disease. Integrating this knowledge in drug design may reduce adverse effects on the heart as observed in patients treated with proteasome inhibitors against noncardiac diseases, especially cancer.
Collapse
Affiliation(s)
- Oliver Drews
- 1 Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology , Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
12
|
Wanchoo R, Khan S, Kolitz JE, Jhaveri KD. Carfilzomib-related acute kidney injury may be prevented by N-acetyl-L-cysteine. J Oncol Pharm Pract 2014; 21:313-6. [PMID: 24748581 DOI: 10.1177/1078155214531804] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Carfilzomib is a second-generation epoxyketone proteasome inhibitor that is approved for treatment of relapsed and refractory multiple myeloma. Phase 2 trials have reported that 25% of treated patients have renal adverse effects. Pre-renal/vasoconstriction-related insult from this chemotherapy agent has been documented. We describe a case of a 78-year-old man with refractory multiple myeloma with acute kidney injury associated with carfilzomib treatment. We show that use of N-acetyl-l-cysteine in our patient partially mitigated the renal injury upon re-challenge. This case report hypothesizes that acute renal injury from carfilzomib is caused by vasoconstriction of the renal vessels, which may be prevented by N-acetyl-l-cysteine.
Collapse
Affiliation(s)
- Rimda Wanchoo
- Division of Kidney Diseases and Hypertension, Hofstra NS-LIJ School of Medicine, Great Neck, NY, USA
| | - Seyyar Khan
- Division of Kidney Diseases and Hypertension, Hofstra NS-LIJ School of Medicine, Great Neck, NY, USA
| | - Jonathan E Kolitz
- Don Monti Division of Oncology/Division of Hematology, Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Lake Success, New York
| | - Kenar D Jhaveri
- Division of Kidney Diseases and Hypertension, Hofstra NS-LIJ School of Medicine, Great Neck, NY, USA
| |
Collapse
|
13
|
Li S, Wang X, Li Y, Kost CK, Martin DS. Bortezomib, a proteasome inhibitor, attenuates angiotensin II-induced hypertension and aortic remodeling in rats. PLoS One 2013; 8:e78564. [PMID: 24205262 PMCID: PMC3813683 DOI: 10.1371/journal.pone.0078564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 09/16/2013] [Indexed: 11/20/2022] Open
Abstract
Background Hypertension is a highly prevalent disorder and a major risk factor for cardiovascular diseases. Hypertensive vascular remodeling is the pathological mal-adaption of blood vessels to the hypertensive condition that contributes to further development of high blood pressure and end-organ damage. Hypertensive remodeling involves, at least in part, changes in protein turnover. The ubiquitin proteasome system (UPS) is a major protein quality and quantity control system. This study tested the hypothesis that the proteasome inhibitor, bortezomib, would attenuate AngII-induced hypertension and its sequelae such as aortic remodeling in rats. Methodology/Principal Findings Male Sprague Dawley rats were subjected to AngII infusion for two weeks in the absence or presence of bortezomib. Mean arterial pressure was measured in conscious rats. Aortic tissue was collected for estimation of wall area, collagen deposition and expression of tissue inhibitors of matrix metalloproteases (TIMP), Ki67 (a marker of proliferation), reactive oxygen species (ROS) and VCAM-1 (a marker of inflammation). AngII infusion increased arterial pressure significantly (160±4 mmHg vs. vehicle treatment 133±2 mmHg). This hypertensive response was attenuated by bortezomib (138±5 mmHg). AngII hypertension was associated with significant increases in aortic wall to lumen ratio (∼29%), collagen deposition (∼14%) and expression of TIMP1 and TIMP2. AngII also increased MMP2 activity, proteasomal chymotrypsin-like activity, Ki67 staining, ROS generation and VCAM-1 immunoreactivity. Co-treatment of AngII-infused rats with bortezomib attenuated these AngII-induced responses. Conclusions Collectively, these data support the idea that proteasome activity contributes to AngII-induced hypertension and hypertensive aortic vascular remodeling at least in part by modulating TIMP1/2 and MMP2 function. Preliminary observations are consistent with a role for ROS, inflammatory and proliferative mechanisms in this effect. Further understanding of the mechanisms by which the proteasome is involved in hypertension and vascular structural remodeling may reveal novel targets for pharmacological treatment of hypertension, hypertensive remodeling or both.
Collapse
Affiliation(s)
- Shuai Li
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Xuejun Wang
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Yifan Li
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Curtis K. Kost
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Douglas S. Martin
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
14
|
Cui W, Bai Y, Luo P, Miao L, Cai L. Preventive and therapeutic effects of MG132 by activating Nrf2-ARE signaling pathway on oxidative stress-induced cardiovascular and renal injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:306073. [PMID: 23533688 PMCID: PMC3606804 DOI: 10.1155/2013/306073] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/14/2013] [Indexed: 12/25/2022]
Abstract
So far, cardiovascular and renal diseases have brought us not only huge economic burden but also serious society problems. Since effective therapeutic strategies are still limited, to find new methods for the prevention or therapy of these diseases is important. Oxidative stress has been found to play a critical role in the initiation and progression of cardiovascular and renal diseases. In addition, activation of nuclear-factor-E2-related-factor-2- (Nrf2-) antioxidant-responsive element (ARE) signaling pathway protects cells and tissues from oxidative damage. As a proteasomal inhibitor, MG132 was reported to activate Nrf2 expression and function, which was accompanied with significant preventive and/or therapeutic effect on cardiovascular and renal diseases under most conditions; therefore, MG132 seems to be a potentially effective drug to be used in the prevention of oxidative damage. In this paper, we will summarize the information available regarding the effect of MG132 on oxidative stress-induced cardiovascular and renal damage, especially through Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin Province 130041, China
- KCHRI at the Department of Pediatrics, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
| | - Yang Bai
- KCHRI at the Department of Pediatrics, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
- Department of Cardiology, The People's Hospital of Jilin Province, Changchun 130021, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin Province 130041, China
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin Province 130041, China
| | - Lu Cai
- KCHRI at the Department of Pediatrics, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
| |
Collapse
|
15
|
Bieler S, Hammer E, Gesell-Salazar M, Völker U, Stangl K, Meiners S. Low dose proteasome inhibition affects alternative splicing. J Proteome Res 2012; 11:3947-54. [PMID: 22702956 DOI: 10.1021/pr300435c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein degradation by the ubiquitin proteasome system ensures controlled degradation of structural proteins, signaling mediators, and transcription factors. Inhibition of proteasome function by specific proteasome inhibitors results in dose-dependent cellular effects ranging from induction of apoptosis to protective stress responses. The present study seeks to identify nuclear regulators mediating the protective stress response to low dose proteasome inhibition. Primary human endothelial cells were treated with low doses of the proteasome inhibitor MG132 for 2 h, and proteomic analysis of nuclear extracts was performed. Using a 2-D differential in gel electrophoresis (DIGE) approach, we identified more than 24 splice factors to be differentially regulated by low dose proteasome inhibition. In particular, several isoforms of hnRNPA1 were shown to be increased, pointing toward altered posttranslational modification of hnRNPA1 upon proteasome inhibition. Elevated levels of splice factors were associated with a different alternative splicing pattern in response to proteasome inhibition as determined by Affymetrix exon array profiling. Of note, we observed alternative RNA processing for stress associated genes such as caspases and heat shock proteins. Our study provides first evidence that low dose proteasome inhibition affects posttranscriptional regulation of splice factors and early alternative splicing events.
Collapse
Affiliation(s)
- Sven Bieler
- Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Zhang L, Zhang ZG, Chopp M. The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 2012; 33:415-22. [PMID: 22595494 DOI: 10.1016/j.tips.2012.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/06/2012] [Accepted: 04/18/2012] [Indexed: 01/01/2023]
Abstract
Tissue plasminogen activator (tPA) administered within 4.5h of symptom onset restores cerebral blood flow (CBF) and promotes neurological recovery of stroke patients. However, the narrow therapeutic time window and the risk of intracerebral hemorrhage after tPA treatment pose major hurdles to its clinical usage. In light of the failures of neuroprotective therapies in clinical trials, emerging concepts suggest that neuroprotection alone without restoration of tissue perfusion and vascular integrity may not be adequate for treatment of acute stroke. Here we review evidence of the use of adjuvant pharmacological agents to extend the therapeutic window for tPA via targeting the neurovascular unit and the underlying mechanisms of the combination therapy in experimental stroke.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
17
|
Wilck N, Fechner M, Dreger H, Hewing B, Arias A, Meiners S, Baumann G, Stangl V, Stangl K, Ludwig A. Attenuation of early atherogenesis in low-density lipoprotein receptor-deficient mice by proteasome inhibition. Arterioscler Thromb Vasc Biol 2012; 32:1418-26. [PMID: 22516063 DOI: 10.1161/atvbaha.112.249342] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Low and nontoxic proteasome inhibition has anti-inflammatory, antiproliferative, and antioxidative effects on vascular cells in vitro and in vivo. We hypothesized that low-dose inhibition of the proteasome could provide antiatherogenic protection. The present study investigated the effect of low-dose proteasome inhibition on early lesion formation in low-density lipoprotein receptor-deficient mice fed a Western-type diet. METHODS AND RESULTS Male low-density lipoprotein receptor-deficient mice, 10 weeks old, were fed a Western-type diet for 6 weeks with intraperitoneal injections of bortezomib or solvent. Bortezomib was injected at a dose of 50 μg/kg body weight. Cholesterol plasma levels were not affected by bortezomib treatment. En face Oil Red O staining of aortae and aortic root cryosections demonstrated significant reduction of atherosclerotic lesion coverage in bortezomib-treated animals. Bortezomib significantly reduced vascular cellular adhesion molecule-1 expression and macrophage infiltration as shown by histological analysis. Bortezomib treatment resulted in a significant reduction of superoxide content, lipid peroxidation and protein oxidation products, serum levels of monocyte chemoattractant protein-1, and interleukin-6. Gene expression microarray analysis showed that expressional changes induced by Western-type diet were attenuated by treatment with low-dose bortezomib. CONCLUSIONS Low-dose proteasome inhibition exerts antioxidative and anti-inflammatory effects and attenuates development of atherosclerotic lesions in low-density lipoprotein receptor-deficient mice.
Collapse
Affiliation(s)
- Nicola Wilck
- Medizinische Klinik für Kardiologie und Angiologie, Charité-Universitätsmedizin Berlin Campus Mitte, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dschietzig T, Brecht A, Bartsch C, Baumann G, Stangl K, Alexiou K. Relaxin improves TNF-α-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc Res 2012; 95:97-107. [PMID: 22510373 DOI: 10.1093/cvr/cvs149] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Human relaxin-2 influences renal and cardiovascular functions. We investigated its effects on experimental endothelial dysfunction. METHODS AND RESULTS Acetylcholine-mediated vasodilation of rat aortic rings, impaired by 48 h tumour necrosis factor-α (TNF-α) treatment, was dose-dependently improved by relaxin co-incubation, an effect sensitive to phosphatidylinositol 3-kinase (PI3K) inhibition and the glucocorticoid receptor (GR) antagonist RU-486. TNF increased endothelial nitric oxide synthase (eNOS) phosphorylation at Thr495 and decreased total eNOS expression and both basal and stimulated eNOS activity. Relaxin co-incubation did not affect eNOS expression but improved its activity via PI3K-dependent Thr495 dephosphorylation and Ser1177 phosphorylation, and additional Ser633 phosphorylation. Via GR, relaxin attenuated the TNF-related stimulation of endothelin-1 expression, superoxide and nitrotyrosine formation, and arginase II expression. Relaxin restored, via GR-CCAAT/enhancer-binding protein-β (c/EBP-β)-mediated promoter stimulation, the compromised expression of superoxide dismutase-1 (SOD1). In rat aortic endothelial cells, relaxin activated protein kinase B (Akt) and repressed TNF-induced nuclear factor-κB and activator protein-1. Finally, the relevance of the different findings to the model used was proved by pharmacological interventions. CONCLUSION Relaxin improved endothelial dysfunction by promoting eNOS activity, suppressing endothelin-1 and arginase-II expression, and up-regulating SOD1 via GR, GR-c/EBP-β, and PI3K-Akt pathways. This corroborates the notion that it functions as an endogenous and potentially therapeutic vasoprotector.
Collapse
|
19
|
Caramori ML, Kim Y, Moore JH, Rich SS, Mychaleckyj JC, Kikyo N, Mauer M. Gene expression differences in skin fibroblasts in identical twins discordant for type 1 diabetes. Diabetes 2012; 61:739-44. [PMID: 22315306 PMCID: PMC3282806 DOI: 10.2337/db11-0617] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical studies suggest metabolic memory to hyperglycemia. We tested whether diabetes leads to persistent systematic in vitro gene expression alterations in patients with type 1 diabetes (T1D) compared with their monozygotic, nondiabetic twins. Microarray gene expression was determined in skin fibroblasts (SFs) of five twin pairs cultured in high glucose (HG) for ∼6 weeks. The Exploratory Visual Analysis System tested group differences in gene expression levels within KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. An overabundance of differentially expressed genes was found in eight pathways: arachidonic acid metabolism (P = 0.003849), transforming growth factor-β signaling (P = 0.009167), glutathione metabolism (P = 0.01281), glycosylphosphatidylinositol anchor (P = 0.01949), adherens junction (P = 0.03134), dorsal-ventral axis formation (P = 0.03695), proteasome (P = 0.04327), and complement and coagulation cascade (P = 0.04666). Several genes involved in epigenetic mechanisms were also differentially expressed. All differentially expressed pathways and all the epigenetically relevant differentially expressed genes have previously been related to HG in vitro or to diabetes and its complications in animal and human studies. However, this is the first in vitro study demonstrating diabetes-relevant gene expression differences between T1D-discordant identical twins. These SF gene expression differences, persistent despite the HG in vitro conditions, likely reflect "metabolic memory", and discordant identical twins thus represent an excellent model for studying diabetic epigenetic processes in humans.
Collapse
Affiliation(s)
- M Luiza Caramori
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Xu J, Wang S, Zhang M, Wang Q, Asfa S, Zou MH. Tyrosine nitration of PA700 links proteasome activation to endothelial dysfunction in mouse models with cardiovascular risk factors. PLoS One 2012; 7:e29649. [PMID: 22272240 PMCID: PMC3260160 DOI: 10.1371/journal.pone.0029649] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 12/02/2011] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress is believed to cause endothelial dysfunction, an early event and a hallmark in cardiovascular diseases (CVD) including hypertension, diabetes, and dyslipidemia. However, the targets for oxidative stress-mediated endothelial dysfunction in CVD have not been completely elucidated. Here we report that 26S proteasome activation by peroxynitrite (ONOO−) is a common pathway for endothelial dysfunction in mouse models of diabetes, hypertension, and dyslipidemia. Endothelial function, assayed by acetylcholine-induced vasorelaxation, was impaired in parallel with significantly increased 26S proteasome activity in aortic homogenates from streptozotocin (STZ)-induced type I diabetic mice, angiotensin-infused hypertensive mice, and high fat-diets -fed LDL receptor knockout (LDLr−/−) mice. The elevated 26S proteasome activities were accompanied by ONOO−-mediated PA700/S10B nitration and increased 26S proteasome assembly and caused accelerated degradation of molecules (such as GTPCH I and thioredoxin) essential to endothelial homeostasis. Pharmacological (administration of MG132) or genetic inhibition (siRNA knockdown of PA700/S10B) of the 26S proteasome blocked the degradation of the vascular protective molecules and ablated endothelial dysfunction induced by diabetes, hypertension, and western diet feeding. Taken together, these results suggest that 26S proteasome activation by ONOO−-induced PA700/S10B tyrosine nitration is a common route for endothelial dysfunction seen in mouse models of hypertension, diabetes, and dyslipidemia.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Cells, Cultured
- Cysteine Proteinase Inhibitors/pharmacology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Dyslipidemias/metabolism
- Dyslipidemias/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Activation/drug effects
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Leupeptins/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitrosation/drug effects
- Peroxynitrous Acid/metabolism
- Peroxynitrous Acid/pharmacology
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA Interference
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Risk Factors
- Thioredoxins/metabolism
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Jian Xu
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America.
| | | | | | | | | | | |
Collapse
|
21
|
Bardag-Gorce F. Proteasome inhibitor treatment in alcoholic liver disease. World J Gastroenterol 2011; 17:2558-62. [PMID: 21633661 PMCID: PMC3103814 DOI: 10.3748/wjg.v17.i20.2558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/02/2011] [Accepted: 02/09/2011] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were up-regulated when rats fed alcohol were treated with a low dose of PS-341 (Bortezomib, Velcade®). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease are related to proteasome inhibitor reversibility and the rebound of proteasome activity 72 h post PS-341 administration.
Collapse
|
22
|
Luo ZF, Qi W, Feng B, Mu J, Zeng W, Guo YH, Pang Q, Ye ZL, Liu L, Yuan FH. Prevention of diabetic nephropathy in rats through enhanced renal antioxidative capacity by inhibition of the proteasome. Life Sci 2011; 88:512-20. [DOI: 10.1016/j.lfs.2010.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 11/16/2010] [Accepted: 12/29/2010] [Indexed: 12/17/2022]
|
23
|
Bardag-Gorce F, Oliva J, Lin A, Li J, French BA, French SW. Proteasome inhibitor up regulates liver antioxidative enzymes in rat model of alcoholic liver disease. Exp Mol Pathol 2010; 90:123-30. [PMID: 21036165 DOI: 10.1016/j.yexmp.2010.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 10/23/2010] [Indexed: 12/22/2022]
Abstract
Oxidative stress occurs in the liver of rats fed with alcohol chronically due to ethanol metabolism by CYP2E1, causing liver injury. The proteasome is considered as an antioxidant defense in the cell because of its activity in removing damaged and oxidized proteins, but a growing body of evidence shows that proteasome inhibitor treatment, at a non toxic low dose, provides protection against oxidative stress. In the present study, rats were fed with ethanol for 4 weeks and were treated with the proteasome inhibitor PS-341 (Bortezomib, Velcade®). Exposure to proteasome inhibitor elicited the elevation of antioxidative defense by enhancing the levels of mRNA and protein expression transcripts of glutathione reductase (GSR), glutathione synthetase (GSS), glutathione peroxidase 2 (GPX2), and superoxide dismutase 2 (SOD2) in the liver of rats fed with ethanol chronically, while ethanol alone did not increase these genes' mRNA. Our results also showed that glutamate cysteine ligase catalytic subunit (GCLC), a rate-limiting enzyme in glutathione biosynthesis, was also up regulated in the liver of rats fed with ethanol and injected with PS-431. Nrf2 mRNA level was significantly decreased in the liver of ethanol fed rats, as well as in the livers of animal fed with ethanol and treated with proteasome inhibitor, indicating that the mechanism by which proteasome inhibitor up regulates the antioxidant response element is not due to regulation of Nrf2. However, ATF4, a major regulator of antioxidant response elements, was significantly up regulated by proteasome inhibitor treatment. The beneficial effects of proteasome inhibitor treatment also reside in the reversibility of the drug because the proteasome activity was significantly increased 72 h post treatment. In conclusion, proteasome inhibitor treatment used at a non toxic low dose has potential protective effects against oxidative stress due to chronic ethanol feeding.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Department of Pathology, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Dreger H, Westphal K, Wilck N, Baumann G, Stangl V, Stangl K, Meiners S. Protection of vascular cells from oxidative stress by proteasome inhibition depends on Nrf2. Cardiovasc Res 2009; 85:395-403. [PMID: 19679681 DOI: 10.1093/cvr/cvp279] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Increased levels of reactive oxygen species cause oxidative stress and severely damage lipids, proteins, and DNA. We have previously shown that partial proteasome inhibition induces an antioxidative gene pattern in endothelial cells. Here, we elucidate the mechanisms of proteasome inhibitor-mediated upregulation of antioxidative enzymes and cytoprotection. METHODS AND RESULTS Non-toxic proteasome inhibition upregulated mRNA and protein expression of superoxide dismutase 1 (SOD1) and haem oxygenase 1 (HO1) in several human endothelial and vascular smooth muscle cell types. Transcriptional activation of these enzymes was shown by inhibition of RNA polymerase II and nuclear run-on assays. Transfection of endothelial cells with luciferase reporter constructs revealed that upregulation can be largely confined to an antioxidant response element (ARE), which proved to be sufficient for transcriptional activation of SOD1 and HO1. Co-transfection studies and bandshift analyses confirmed binding of the antioxidative transcription factor NF-E2-related factor 2 (Nrf2)-which was stabilized by proteasome inhibition as shown by immunoblots-to the ARE site of HO1. Experiments with aortic endothelial and smooth muscle cells from Nrf2 wild-type and knockout mice revealed an essential role of Nrf2: in wild-type cells, proteasome inhibitor-mediated induction of SOD1 and HO1 was accompanied by protection of vascular cells against oxidative stress as determined by lactate dehydrogenase release assays. In contrast, proteasome inhibitor-mediated induction of antioxidative enzymes and cytoprotection were completely lost in cells from Nrf2 knockout mice. CONCLUSION Nrf2-dependent transcriptional activation of antioxidative enzymes is crucial for proteasome inhibitor-mediated protection of vascular cells against oxidative stress.
Collapse
Affiliation(s)
- Henryk Dreger
- Medizinische Klinik für Kardiologie und Angiologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|