1
|
Role of Hydrogen Sulfide and Polysulfides in the Regulation of Lipolysis in the Adipose Tissue: Possible Implications for the Pathogenesis of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23031346. [PMID: 35163277 PMCID: PMC8836184 DOI: 10.3390/ijms23031346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogen sulfide (H2S) and inorganic polysulfides are important signaling molecules; however, little is known about their role in the adipose tissue. We examined the effect of H2S and polysulfides on adipose tissue lipolysis. H2S and polysulfide production by mesenteric adipose tissue explants in rats was measured. The effect of Na2S and Na2S4, the H2S and polysulfide donors, respectively, on lipolysis markers, plasma non-esterified fatty acids (NEFA) and glycerol, was examined. Na2S but not Na2S4 increased plasma NEFA and glycerol in a time- and dose-dependent manner. Na2S increased cyclic AMP but not cyclic GMP concentration in the adipose tissue. The effect of Na2S on NEFA and glycerol was abolished by the specific inhibitor of protein kinase A, KT5720. The effect of Na2S on lipolysis was not abolished by propranolol, suggesting no involvement of β-adrenergic receptors. In addition, Na2S had no effect on phosphodiesterase activity in the adipose tissue. Obesity induced by feeding rats a highly palatable diet for 1 month was associated with increased plasma NEFA and glycerol concentrations, as well as greater H2S production in the adipose tissue. In conclusion, H2S stimulates lipolysis and may contribute to the enhanced lipolysis associated with obesity.
Collapse
|
2
|
Bhunu B, Riccio I, Intapad S. Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension. Integr Blood Press Control 2021; 14:141-152. [PMID: 34675650 PMCID: PMC8517636 DOI: 10.2147/ibpc.s312868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In recent decades, both clinical and animal studies have shown that fetal growth restriction (FGR), caused by exposure to adverse uterine environments, is a risk factor for hypertension as well as for a variety of adult diseases. This observation has shaped and informed the now widely accepted theory of developmental origins of health and disease (DOHaD). There is a plethora of evidence supporting the association of FGR with increased risk of adult hypertension; however, the underlying mechanisms responsible for this correlation remain unclear. This review aims to explain the current advances in the field of fetal programming of hypertension and a brief narration of the underlying mechanisms that may link FGR to increased risk of adult hypertension. We explain the theory of DOHaD and then provide evidence from both clinical and basic science research which support the theory of fetal programming of adult hypertension. In addition, we have explored the underlying mechanisms that may link FGR to an increased risk of adult hypertension. These mechanisms include epigenetic changes, metabolic disorders, vascular dysfunction, neurohormonal impairment, and alterations in renal physiology and function. We further describe sex differences seen in the developmental origins of hypertension and provide insights into the opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel Riccio
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
3
|
Hristov M, Landzhov B, Yakimova K. Cafeteria diet-induced obesity reduces leptin-stimulated NADPH-diaphorase reactivity in the hypothalamic arcuate nucleus of rats. Acta Histochem 2020; 122:151616. [PMID: 33066838 DOI: 10.1016/j.acthis.2020.151616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Leptin is an adipokine that plays an important role in the regulation of energy homeostasis. The failure of endogenous and exogenous leptin to mediate its effects (for example, at suppressing appetite and decreasing body weight) has been termed leptin resistance. Hyperleptinemia and leptin resistance can be well demonstrated in animals in which obesity is induced by consumption of a palatable, high-calorie diet (e.g., cafeteria diet-induced obesity). Since leptin receptor signaling is known to be impaired in the hypothalamic arcuate nucleus (ARC) of obese rodents, we investigated the effect of leptin on nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity in the ARC of male Wistar rats with cafeteria diet-induced obesity. Our results have shown that after intraperitoneal administration of leptin, the number of NADPH-d positive neurons in the ARC was significantly lower in obese rats compared with that observed in normal weight rats. Additionally, we have found that leptin-induced NADPH-d staining in ARC neurons and the adjacent ependyma was decreased in obese rats. The results presented here suggest that the ability of leptin to activate nitric oxide synthase in neurons within the ARC as well as tanycytes and ependymal cells of the third ventricle is reduced in rats made obese by a cafeteria diet. We speculate that impairment in leptin-induced NO production presents a potential mechanism, involved in the pathogenesis of obesity and obesity-related disease states.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St., 1431 Sofia, Bulgaria.
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St., 1431 Sofia, Bulgaria
| | - Krassimira Yakimova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St., 1431 Sofia, Bulgaria
| |
Collapse
|
4
|
Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice? Nutr Diabetes 2020; 10:24. [PMID: 32616730 PMCID: PMC7331639 DOI: 10.1038/s41387-020-0127-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MS) is a condition that includes obesity, insulin resistance, dyslipidemias among other, abnormalities that favors type 2 Diabetes Mellitus (T2DM) and cardiovascular diseases development. Three main diet-induced metabolic syndrome models in rats exist: High carbohydrate diet (HCHD), high fat diet (HFD), and high carbohydrate-high fat diet (HCHHFD). We analyzed data from at least 35 articles per diet, from different research groups, to determine their effect on the development of the MS, aimed to aid researchers in choosing the model that better suits their research question; and also the best parameter that defines obesity, as there is no consensus to determine this condition in rats. For the HCHD we found a mild effect on body weight gain and fasting blood glucose levels (FBG), but significant increases in triglycerides, fasting insulin, insulin resistance and visceral fat accumulation. HFD had the greater increase in the parameters previously mentioned, followed by HCHHFD, which had a modest effect on FBG levels. Therefore, to study early stages of MS a HCHD is recommended, while HFD and HCHHFD better reproduce more severe stages of MS. We recommend the assessment of visceral fat accumulation as a good estimate for obesity in the rat.
Collapse
|
5
|
The Influence of Photoperiod on the Action of Exogenous Leptin on Gene Expression of Proinflammatory Cytokines and Their Receptors in the Thoracic Perivascular Adipose Tissue (PVAT) in Ewes. Mediators Inflamm 2019; 2019:7129476. [PMID: 31780867 PMCID: PMC6875191 DOI: 10.1155/2019/7129476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/02/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
Leptin resistance is either a condition induced by human obesity or a natural phenomenon associated with seasonality in ruminants. In the cardiovascular system, the leptin resistance state presence is a complex issue. Moreover, the perivascular adipose tissue (PVAT) appears to be crucial as a source of proinflammatory cytokines and as a site of interaction for leptin contributing to endothelium dysfunction and atherosclerosis progression. So the aim of this study was to examine the influence of the photoperiod on the action of exogenous leptin on gene expression of selected proinflammatory cytokines and their receptors in thoracic PVAT of ewe with or without prior lipopolysaccharide (LPS) stimulation. The experiment was conducted on 48 adult, female ewes divided into 4 group (n = 6 in each): control, with LPS intravenous (iv.) injection (400 ng/kg of BW), with leptin iv. injection (20 μg/kg BW), and with LPS and 30-minute-later leptin injection, during short-day (SD) and long-day (LD) seasons. Three hours after LPS/control treatment, animals were euthanized to collect the PVAT adherent to the aorta wall. The leptin injection enhanced IL1B gene expression only in the LD season; however, in both seasons leptin injection intensified LPS-induced increase in IL1B gene expression. IL1R2 gene expression was increased by leptin injection only in the SD season. Neither IL6 nor its receptor and signal transducer gene expressions were influenced by leptin administration. Leptin injection increased TNFA gene expression regardless of photoperiodic conditions. Only in the SD season did leptin treatment increase the gene expression of both TNFα receptors. To conclude, leptin may modulate the inflammatory reaction progress in PVAT. In ewe, the sensitivity of PVAT on leptin action is dependent upon the photoperiodic condition with stronger effects stated in the SD season.
Collapse
|
6
|
Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol 2016; 174:3425-3442. [PMID: 27761903 PMCID: PMC5610151 DOI: 10.1111/bph.13650] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022] Open
Abstract
Under physiological conditions, perivascular adipose tissue (PVAT) attenuates agonist‐induced vasoconstriction by releasing vasoactive molecules including hydrogen peroxide, angiotensin 1–7, adiponectin, methyl palmitate, hydrogen sulfide, NO and leptin. This anticontractile effect of PVAT is lost under conditions of obesity. The central mechanism underlying this PVAT dysfunction in obesity is likely to be an ‘obesity triad’ (consisting of PVAT hypoxia, inflammation and oxidative stress) that leads to the impairment of PVAT‐derived vasoregulators. The production of hydrogen sulfide, NO and adiponectin by PVAT is reduced in obesity, whereas the vasodilator response to leptin is impaired (vascular leptin resistance). Strikingly, the vasodilator response to acetylcholine is reduced only in PVAT‐containing, but not in PVAT‐free thoracic aorta isolated from diet‐induced obese mice, indicating a unique role for PVAT in obesity‐induced vascular dysfunction. Furthermore, PVAT dysfunction has also been observed in small arteries isolated from the gluteal/visceral fat biopsy samples of obese individuals. Therefore, PVAT may represent a new therapeutic target for vascular complications in obesity. A number of approaches are currently being tested under experimental conditions. Potential therapeutic strategies improving PVAT function include body weight reduction, enhancing PVAT hydrogen sulfide release (e.g. rosiglitazone, atorvastatin and cannabinoid CB1 receptor agonists) and NO production (e.g. arginase inhibitors), inhibition of the renin–angiotensin–aldosterone system, inhibition of inflammation with melatonin or cytokine antagonists, activators of AMP‐activated kinase (e.g. metformin, resveratrol and diosgenin) and adiponectin releasers or expression enhancers. Linked Articles This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue – Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
7
|
Thieme K, Oliveira-Souza M. Renal hemodynamic and morphological changes after 7 and 28 days of leptin treatment: the participation of angiotensin II via the AT1 receptor. PLoS One 2015; 10:e0122265. [PMID: 25793389 PMCID: PMC4368722 DOI: 10.1371/journal.pone.0122265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/17/2015] [Indexed: 01/13/2023] Open
Abstract
The role of hyperleptinemia in cardiovascular diseases is well known; however, in the renal tissue, the exact site of leptin’s action has not been established. This study was conducted to assess the effect of leptin treatment for 7 and 28 days on renal function and morphology and the participation of angiotensin II (Ang II), through its AT1 receptor. Rats were divided into four groups: sham, losartan (10 mg/kg/day, s.c.), leptin (0.5 mg/kg/day for the 7 days group and 0.25 mg/kg/day for the 28 days group) and leptin plus losartan. Plasma leptin, Ang II and endothelin 1 (ET-1) levels were measured using an enzymatic immuno assay. The systolic blood pressure (SBP) was evaluated using the tail-cuff method. The renal plasma flow (RPF) and the glomerular filtration rate (GFR) were determined by p-aminohippuric acid and inulin clearance, respectively. Urinary Na+ and K+ levels were also analyzed. Renal morphological analyses, desmin and ED-1 immunostaining were performed. Proteinuria was analyzed by silver staining. mRNA expression of renin-angiotensin system (RAS) components, TNF-α and collagen type III was analyzed by quantitative PCR. Our results showed that leptin treatment increased Ang II plasma levels and progressively increased the SBP, achieving a pre-hypertension state. Rats treated with leptin 7 days showed a normal RPF and GFR, but increased filtration fraction (FF) and natriuresis. However, rats treated with leptin for 28 showed a decrease in the RPF, an increase in the FF and no changes in the GFR or tubular function. Leptin treatment-induced renal injury was demonstrated by: glomerular hypertrophy, increased desmin staining, macrophage infiltration in the renal tissue, TNF-α and collagen type III mRNA expression and proteinuria. In conclusion, our study demonstrated the progressive renal morphological changes in experimental hyperleptinemia and the interaction between leptin and the RAS on these effects.
Collapse
Affiliation(s)
- Karina Thieme
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | - Maria Oliveira-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Hydrogen sulfide and endothelium-dependent vasorelaxation. Molecules 2014; 19:21183-99. [PMID: 25521118 PMCID: PMC6271169 DOI: 10.3390/molecules191221183] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S), synthesized enzymatically from l-cysteine or l-homocysteine, is the third gasotransmitter in mammals. Endogenous H2S is involved in the regulation of many physiological processes, including vascular tone. Although initially it was suggested that in the vascular wall H2S is synthesized only by smooth muscle cells and relaxes them by activating ATP-sensitive potassium channels, more recent studies indicate that H2S is synthesized in endothelial cells as well. Endothelial H2S production is stimulated by many factors, including acetylcholine, shear stress, adipose tissue hormone leptin, estrogens and plant flavonoids. In some vascular preparations H2S plays a role of endothelium-derived hyperpolarizing factor by activating small and intermediate-conductance calcium-activated potassium channels. Endothelial H2S signaling is up-regulated in some pathologies, such as obesity and cerebral ischemia-reperfusion. In addition, H2S activates endothelial NO synthase and inhibits cGMP degradation by phosphodiesterase 5 thus potentiating the effect of NO-cGMP pathway. Moreover, H2S-derived polysulfides directly activate protein kinase G. Finally, H2S interacts with NO to form nitroxyl (HNO)-a potent vasorelaxant. H2S appears to play an important and multidimensional role in endothelium-dependent vasorelaxation.
Collapse
|
9
|
Obesity Hypertension: Pathophysiological Role of Leptin in Neuroendocrine Dysregulation. Am J Med Sci 2014; 347:485-9. [DOI: 10.1097/maj.0b013e31827ad5cf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Abstract
Obesity is an epidemic that threatens the health of millions of people worldwide and is a major risk factor for cardiovascular diseases, hypertension, diabetes, and dyslipidemia. There are multiple and complex mechanisms to explain how obesity can cause cardiovascular disease. In recent years, studies have shown some limitations in the way we currently define obesity and assess adiposity. This review focuses on the mechanisms involved in the cardiometabolic consequences of obesity and on the relationship between obesity and cardiovascular comorbidities, and provides a brief review of the latest studies focused on normal weight obesity and the obesity paradox.
Collapse
|
11
|
Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide. PLoS One 2014; 9:e86744. [PMID: 24475175 PMCID: PMC3901689 DOI: 10.1371/journal.pone.0086744] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/14/2013] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factors (EDHF). Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1) control, (2) treated with exogenous leptin for 1 week to induce hyperleptinemia, (3) obese, fed highly-palatable diet for 4 weeks, (4) obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA) for 1 week, (5) fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S) scavenger, bismuth (III) subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.
Collapse
|
12
|
Morioka T, Emoto M, Yamazaki Y, Kawano N, Imamura S, Numaguchi R, Urata H, Motoyama K, Mori K, Fukumoto S, Koyama H, Shoji T, Inaba M. Leptin is associated with vascular endothelial function in overweight patients with type 2 diabetes. Cardiovasc Diabetol 2014; 13:10. [PMID: 24410779 PMCID: PMC3893526 DOI: 10.1186/1475-2840-13-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/08/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The adipocyte-derived hormone leptin plays a key role in the regulation of appetite and body weight. Recent studies have suggested that leptin is also involved in the pathogenesis of obesity-related atherosclerosis and cardiovascular disease. In this study, we investigated the association of plasma leptin levels with vascular endothelial function in lean and overweight patients with type 2 diabetes. METHODS One hundred seventy-one type 2 diabetic patients, of which 85 were overweight (body mass index (BMI) ≥ 25 kg/m2), were enrolled in this cross-sectional study. Plasma leptin concentrations were measured by enzyme-linked immunosorbent assay. Flow-mediated dilatation (FMD) of the brachial artery was measured to evaluate vascular endothelial function using ultrasound. RESULTS No significant difference in FMD was found between the lean and overweight groups (7.0 ± 3.8% and 6.5 ± 3.6%, respectively; p = 0.354). FMD was negatively correlated with age (r = -0.371, p < 0.001) and serum creatinine levels (r = -0.236, p = 0.030), but positively correlated with BMI (r = 0.330, p = 0.002) and plasma leptin levels (r = 0.290, p = 0.007) in the overweight group. FMD was not associated with any parameters in the lean group. Multiple regression analysis including possible atherosclerotic risk factors revealed that the plasma leptin level (β = 0.427, p = 0.013) was independently associated with FMD in the overweight group (R2 = 0.310, p = 0.025), but not the lean group. CONCLUSION Plasma leptin levels are associated with vascular endothelial function in overweight patients with type 2 diabetes.
Collapse
Affiliation(s)
- Tomoaki Morioka
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masanori Emoto
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yuko Yamazaki
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Naoya Kawano
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Satoshi Imamura
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Ryutaro Numaguchi
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiromi Urata
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Koka Motoyama
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Katsuhito Mori
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Shinya Fukumoto
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hidenori Koyama
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Tetsuo Shoji
- Department of Geriatrics and Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masaaki Inaba
- Departments of Metabolism, Endocrinology and Molecular Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
13
|
Rodríguez A. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes Facts 2014; 7:82-95. [PMID: 24685565 PMCID: PMC5644879 DOI: 10.1159/000360837] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/15/2013] [Indexed: 01/27/2023] Open
Abstract
Ghrelin and leptin show opposite effects on energy balance. Ghrelin constitutes a gut hormone that is secreted to the bloodstream in two major forms, acylated and desacyl ghrelin. The isoforms of ghrelin not only promote adiposity by the activation of hypothalamic orexigenic neurons but also directly stimulate the expression of several fat storage-related proteins in adipocytes, including ACC, FAS, LPL and perilipin, thereby stimulating intracytoplasmic lipid accumulation. Moreover, both acylated and desacyl ghrelin reduce TNF-α-induced apoptosis and autophagy in adipocytes, suggesting an anti-inflammatory role of ghrelin in human adipose tissue. On the other hand, leptin is an adipokine with lipolytic effects. In this sense, leptin modulates via PI3K/Akt/mTOR the expression of aquaglyceroporins such as AQP3 and AQP7 that facilitate glycerol efflux from adipocytes in response to the lipolytic stimuli via its translocation from the cytosolic fraction (AQP3) or lipid droplets (AQP7) to the plasma membrane. Ghrelin and leptin also participate in the homeostasis of the cardiovascular system. Ghrelin operates as a cardioprotective factor with increased circulating acylated ghrelin concentrations in patients with left ventricular hypertrophy (LVH) causally related to LV remodeling during the progression to LVH. Additionally, leptin induces vasodilation by inducible NO synthase expression (iNOS) in the vascular wall. In this sense, leptin inhibits the angiotensin II-induced Ca(2+) increase, contraction and proliferation of VSMC through NO-dependent mechanisms. Together, dysregulation of circulating ghrelin isoforms and leptin resistance associated to obesity, type 2 diabetes, or the metabolic syndrome contribute to cardiometabolic derangements observed in these pathologies.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
- *Amaia Rodrèguez, PhD, Metabolic Research Laboratory, Clínica Universidad de Navarra, Irunlarrea 1, 31008 Pamplona (Spain),
| |
Collapse
|
14
|
Carillon J, Romain C, Bardy G, Fouret G, Feillet-Coudray C, Gaillet S, Lacan D, Cristol JP, Rouanet JM. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxide dismutase. Free Radic Biol Med 2013; 65:254-261. [PMID: 23792771 DOI: 10.1016/j.freeradbiomed.2013.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is involved in obesity. However, dietary antioxidants could prevent oxidative stress-induced damage. We have previously shown the preventive effects of a melon superoxide dismutase (SODB) on oxidative stress. However, the mechanism of action of SODB is still unknown. Here, we evaluated the effects of a 1-month curative supplementation with SODB on the liver of obese hamsters. Golden Syrian hamsters received either a standard diet or a cafeteria diet composed of high-fat, high-sugar, and high-salt supermarket products, for 15 weeks. This diet resulted in insulin resistance and in increased oxidative stress in the liver. However, inflammatory markers (IL-6, TNF-α, and NF-κB) were not enhanced and no liver steatosis was detected, although these are usually described in obesity-induced insulin resistance models. After the 1-month supplementation with SODB, body weight and insulin resistance induced by the cafeteria diet were reduced and hepatic oxidative stress was corrected. This could be due to the increased expression of the liver antioxidant defense proteins (manganese and copper/zinc superoxide dismutase, catalase, and glutathione peroxidase). Even though no inflammation was detected in the obese hamsters, inflammatory markers were decreased after SODB supplementation, probably through the reduction of oxidative stress. These findings suggest for the first time that SODB could exert its antioxidant properties by inducing the endogenous antioxidant defense. The mechanisms underlying this induction need to be further investigated.
Collapse
Affiliation(s)
- Julie Carillon
- Nutrition & Métabolisme, UMR 204 NutriPass-Prévention des Malnutritions et des Pathologies Associées, Université Montpellier 1-2, 34095 Montpellier Cedex 05, France; Bionov Sarl, Avignon, France
| | - Cindy Romain
- Nutrition & Métabolisme, UMR 204 NutriPass-Prévention des Malnutritions et des Pathologies Associées, Université Montpellier 1-2, 34095 Montpellier Cedex 05, France
| | - Guillaume Bardy
- Département de Biochimie, Centre Hospitalier Universitaire Montpellier, Université Montpellier 1, Montpellier, France
| | - Gilles Fouret
- INRA, UMR 866, Unité Différenciation Cellulaire et Croissance, Montpellier, France
| | | | - Sylvie Gaillet
- Nutrition & Métabolisme, UMR 204 NutriPass-Prévention des Malnutritions et des Pathologies Associées, Université Montpellier 1-2, 34095 Montpellier Cedex 05, France
| | | | - Jean-Paul Cristol
- Nutrition & Métabolisme, UMR 204 NutriPass-Prévention des Malnutritions et des Pathologies Associées, Université Montpellier 1-2, 34095 Montpellier Cedex 05, France; Département de Biochimie, Centre Hospitalier Universitaire Montpellier, Université Montpellier 1, Montpellier, France
| | - Jean-Max Rouanet
- Nutrition & Métabolisme, UMR 204 NutriPass-Prévention des Malnutritions et des Pathologies Associées, Université Montpellier 1-2, 34095 Montpellier Cedex 05, France.
| |
Collapse
|
15
|
Toda N, Okamura T. Obesity impairs vasodilatation and blood flow increase mediated by endothelial nitric oxide: an overview. J Clin Pharmacol 2013; 53:1228-39. [PMID: 24030923 DOI: 10.1002/jcph.179] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/04/2013] [Indexed: 11/07/2022]
Abstract
Obesity dramatically increases the risk of development of cardiovascular and metabolic diseases. Endothelial dysfunction induced by obesity is an important risk factor that impairs blood flow controls in various organs. Impaired endothelial function occurs early in life in obese children. Obesity-induced endothelial dysfunction is associated with decreased nitric oxide (NO) production due to impaired endothelial NO synthase activity and expression and increased production of superoxide anion and the endogenous NOS inhibitor ADMA, together with increased vasoconstrictor factors, such as endothelin-1 and sympathetic nerve activation. Decreased endothelial progenitor cells are also involved in endothelial cell senescence in obese individuals. Insulin resistance and diabetes mellitus augment obesity-induced endothelial dysfunction. Adipokines liberated from adipose tissues play roles in modulating endothelial function; adiponectin and ghrelin have beneficial effects on endothelial cells. Effects of leptin on endothelial function are controversial. Decreased body weight by physical exercise, dietary interventions, and bariatric surgery are effective measures that reverse endothelial dysfunction; however, the weight control is not only the reason for improving of endothelia function. Pharmacological therapies with β-adrenoceptor antagonists, resveratolol, anti-obesity agents, nifedipine, and NADPH oxidase inhibitors may also be effective; however, these treatments have to be utilized under the basis of exercise and dietary controls.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Osaka, Japan; Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | | |
Collapse
|
16
|
OP23 Role of hydrogen sulfide in leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats. Nitric Oxide 2013. [DOI: 10.1016/j.niox.2013.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Bełtowski J. Endogenous hydrogen sulfide in perivascular adipose tissue: role in the regulation of vascular tone in physiology and pathology. Can J Physiol Pharmacol 2013; 91:889-98. [PMID: 24117256 DOI: 10.1139/cjpp-2013-0001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide (H2S) is synthesized from L-cysteine by cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE), and is enzymatically metabolized in mitochondria by sulfide:quinone oxidoreductase (SQR). Recent studies have indicated that H2S is synthesized by CSE in perivascular adipose tissue (PVAT), and is responsible for the anticontractile effect of PVAT on adjacent vessels. The lipophilic statin atorvastatin increases PVAT-derived H2S by suppressing its mitochondrial oxidation; the effect that results from statin-induced depletion of ubiquinone. Experimental obesity induced by a highly palatable diet has a time-dependent effect on H2S in PVAT. Adipose tissue hypoxia suppresses H2S oxidation and increases its level in short-term obesity not associated with insulin resistance. In contrast, in long-term obesity, insulin resistance and (or) hyperinsulinemia result in the down-regulation of CSE and H2S deficiency, which is corrected by treatment with the insulin sensitizer rosiglitazone. In addition, cannabinoid CB1 receptor agonist administered for 2 weeks increases H2S by impairing mitochondria biogenesis. This indicates that the rate of mitochondrial H2S oxidation plays an important role in the regulation of H2S level in PVAT. Up-regulation of H2S signaling in short-term obesity and (or) by elevated endocannabinoids may be a compensatory mechanism that maintains vascular tone, despite endothelial dysfunction.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, ulica Jaczewskiego 8, 20-090 Lublin, Poland
| |
Collapse
|
18
|
Schinzari F, Tesauro M, Rovella V, Di Daniele N, Mores N, Veneziani A, Cardillo C. Leptin stimulates both endothelin-1 and nitric oxide activity in lean subjects but not in patients with obesity-related metabolic syndrome. J Clin Endocrinol Metab 2013; 98:1235-41. [PMID: 23372172 DOI: 10.1210/jc.2012-3424] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Leptin has nitric oxide (NO)-dependent vasodilator actions, but hyperleptinemia is an independent risk factor for cardiovascular disease. OBJECTIVE The objective of the study was to investigate whether, in the human circulation, properties of leptin to release NO are opposed by stimulation of vasculotoxic substances, such as endothelin (ET)-1, and whether this mechanism might contribute to vascular damage in hyperleptinemic states like obesity. METHODS Forearm blood flow responses (plethysmography) to ETA receptor antagonism (BQ-123, 10 nmol/min) and NO synthase inhibition [N(G)-monomethyl L-arginine (L-NMMA), 4 μmol/min] were assessed before and after intraarterial administration of leptin (2 μg/min) in lean controls (n = 8) and patients with obesity-related metabolic syndrome (MetS; n = 8). RESULTS Baseline plasma leptin was higher in patients than in controls (P < .001). Before infusion of leptin, the vasodilator response to BQ-123 was greater in patients than in controls (P < .001), whereas infusion of L-NMMA induced higher vasoconstriction in controls than in patients (P = .04). In lean subjects, hyperleptinemia resulted in increased vasodilator response to ETA receptor antagonism (P < .001 vs before) and enhanced vasoconstrictor effect of L-NMMA during ETA receptor blockade (P = .015 vs before). In patients with the MetS, by contrast, vascular responses to both BQ-123 and L-NMMA were not modified by exogenous leptin (both P > .05 vs before). CONCLUSIONS These findings indicate that, under physiological conditions, leptin stimulates both ET-1 and NO activity in the human circulation. This effect is absent in hyperleptinemic patients with the MetS who are unresponsive to additional leptin. In these patients, therefore, hyperleptinemia may be a biomarker of vascular dysfunction, rather than a mediator of vascular damage.
Collapse
Affiliation(s)
- Francesca Schinzari
- Department of Internal Medicine, Catholic University Medical School, 00168 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Rodríguez A, Becerril S, Valentí V, Ramírez B, Martín M, Méndez-Giménez L, Lancha A, del Sol Calderón P, Catalán V, Burrell MA, Gómez-Ambrosi J, Frühbeck G. Sleeve gastrectomy reduces blood pressure in obese (fa/fa) Zucker rats. Obes Surg 2012; 22:309-15. [PMID: 22101888 DOI: 10.1007/s11695-011-0562-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sleeve gastrectomy constitutes an effective surgical procedure for the treatment of morbid obesity in humans and rodents with diet-induced obesity. The aim of the present study was to establish the effects of sleeve gastrectomy on weight loss and cardiovascular parameters in genetically obese (fa/fa) Zucker rats. METHODS Eleven-week-old male obese (fa/fa) (n = 20) Zucker rats were assigned to three alternative procedures (sham operation, sleeve gastrectomy, or pair-fed to the amount of food eaten by sleeve-gastrectomized animals) and compared with lean Zucker (Fa/Fa) rats (n = 9). Systolic (SBP), diastolic (DBP), and mean (MBP) blood pressure values as well as heart rate (HR) were recorded in conscious, resting animals by non-invasive tail-cuff plethysmography before and 3 weeks after the surgical interventions. RESULTS Sleeve-gastrectomized rats experienced a reduction in body weight (P < 0.01), total adiposity amounts (P < 0.001), together with an increased excess weight loss (%EWL) (P < 0.05) compared with sham-operated and pair-fed animals 3 weeks after the surgical interventions. Rats with sleeve gastrectomy exhibited reduced (P < 0.01) blood pressure values (ΔSBP = -11 ± 8 mmHg; ΔDBP = -6 ± 4 mmHg; ΔMBP = -8 ± 6 mmHg) compared with the control group, but no changes were observed in HR (P = 0.560). Sham-operated and pair-fed groups did not alter their cardiovascular variables. CONCLUSIONS Our findings provide evidence of the beneficial effects of sleeve gastrectomy on blood pressure values in addition to the weight loss in obese (fa/fa) Zucker rats independently of surgical trauma and food intake reduction.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bełtowski J. Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin Exp Pharmacol Physiol 2012; 39:168-178. [PMID: 21973116 DOI: 10.1111/j.1440-1681.2011.05623.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity and the accompanying metabolic syndrome are among the most important causes of cardiovascular pathologies associated with endothelial dysfunction, such as arterial hypertension and atherosclerosis. This detrimental effect of obesity is mediated, in part, by excessive production of the adipose tissue hormone leptin. Under physiological conditions leptin induces endothelium-dependent vasorelaxation by stimulating nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). Leptin activates endothelial NO synthase (eNOS) through a mechanism involving AMP-activated protein kinase (AMPK) and protein kinase B/Akt, which phosphorylates eNOS at Ser(1177) , increasing its activity. Under pathological conditions, such as obesity and metabolic syndrome, the NO-mediated vasodilatory effect of leptin is impaired. Resistance to the acute NO-mimetic effect of leptin is accounted for by chronic hyperleptinaemia and may result from different mechanisms, such as downregulation of leptin receptors, increased levels of circulating C-reactive protein, oxidative stress and overexpression of suppressor of cytokine signalling-3. In short-lasting obesity, impaired leptin-induced NO production is compensated by EDHF; however, in advanced metabolic syndrome, the contribution of EDHF to the haemodynamic effect of leptin becomes inefficient. Resistance to the vasodilatory effects of leptin may contribute to the development of arterial hypertension owing to unopposed stimulation of the sympathetic nervous system by this hormone.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, Lublin, Poland.
| |
Collapse
|
21
|
|
22
|
Lõhmus M, Sild E, Hõrak P, Björklund M. Effects of chronic leptin administration on nitric oxide production and immune responsiveness of greenfinches. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:560-5. [DOI: 10.1016/j.cbpa.2011.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
23
|
Kshatriya S, Liu K, Salah A, Szombathy T, Freeman RH, Reams GP, Spear RM, Villarreal D. Obesity hypertension: the regulatory role of leptin. Int J Hypertens 2011; 2011:270624. [PMID: 21253519 PMCID: PMC3022168 DOI: 10.4061/2011/270624] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/15/2010] [Indexed: 12/17/2022] Open
Abstract
Leptin is a 16-kDa-peptide hormone that is primarily synthesized and secreted by adipose tissue. One of the major actions of this hormone is the control of energy balance by binding to receptors in the hypothalamus, leading to reduction in food intake and elevation in temperature and energy expenditure. In addition, increasing evidence suggests that leptin, through both direct and indirect mechanisms, may play an important role in cardiovascular and renal regulation. While the relevance of endogenous leptin needs further clarification, it appears to function as a pressure and volume-regulating factor under conditions of health. However, in abnormal situations characterized by chronic hyperleptinemia such as obesity, it may function pathophysiologically for the development of hypertension and possibly also for direct renal, vascular, and cardiac damage.
Collapse
Affiliation(s)
- Shilpa Kshatriya
- Department of Internal Medicine, SUNY Upstate Medical University, Veterans Affairs Medical Center, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Leptin inhibits the proliferation of vascular smooth muscle cells induced by angiotensin II through nitric oxide-dependent mechanisms. Mediators Inflamm 2010; 2010:105489. [PMID: 20592755 PMCID: PMC2879542 DOI: 10.1155/2010/105489] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 11/27/2022] Open
Abstract
Objective. This study was designed to investigate whether leptin modifies angiotensin (Ang) II-induced proliferation of aortic vascular smooth muscle cells (VSMCs) from 10-week-old male Wistar and spontaneously hypertensive rats (SHR), and the possible role of nitric oxide (NO). Methods. NO and NO synthase (NOS) activity were assessed by the Griess and 3H-arginine/citrulline conversion assays, respectively. Inducible NOS (iNOS) and NADPH oxidase subutnit Nox2 expression was determined by Western-blot. The proliferative responses to Ang II were evaluated through enzymatic methods. Results. Leptin inhibited the Ang II-induced proliferative response of VSMCs from control rats. This inhibitory effect of leptin was abolished by NOS inhibitor, NMMA, and iNOS selective inhibitor, L-NIL, and was not observed in leptin receptor-deficient fa/fa rats. SHR showed increased serum leptin concentrations and lipid peroxidation. Despite a similar leptin-induced iNOS up-regulation, VSMCs from SHR showed an impaired NOS activity and NO production induced by leptin, and an increased basal Nox2 expression. The inhibitory effect of leptin on Ang II-induced VSMC proliferation was attenuated. Conclusion. Leptin blocks the proliferative response to Ang II through NO-dependent mechanisms. The attenuation of this inhibitory effect of leptin in spontaneous hypertension appears to be due to a reduced NO bioavailability in VSMCs.
Collapse
|