1
|
Peng B, Wang Y, Zhang H. Mitonuclear Communication in Stem Cell Function. Cell Prolif 2025; 58:e13796. [PMID: 39726221 DOI: 10.1111/cpr.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondria perform multiple functions within the cell, including the production of ATP and a great deal of metabolic intermediates, while also contributing to the cellular stress response. The majority of mitochondrial proteins are encoded by nuclear genomes, highlighting the importance of mitonuclear communication for sustaining mitochondrial homeostasis and functional. As a crucial part of the intracellular signalling network, mitochondria can impact stem cell fate determinations. Considering the essential function of stem cells in tissue maintenance, regeneration and aging, it is important to understand how mitochondria influence stem cell fate. This review explores the significant roles of mitonuclear communication and mitochondrial proteostasis, highlighting their influence on stem cells. We also examine how mitonuclear interactions contribute to cellular homeostasis, stem cell therapies, and the potential for extending lifespan.
Collapse
Affiliation(s)
- Baozhou Peng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaning Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Torres AK, Fleischhart V, Inestrosa NC. Mitochondrial unfolded protein response (UPR mt): what we know thus far. Front Cell Dev Biol 2024; 12:1405393. [PMID: 38882057 PMCID: PMC11176431 DOI: 10.3389/fcell.2024.1405393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondria are key organelles for the optimal function of the cell. Among their many functions, they maintain protein homeostasis through their own proteostatic machinery, which involves proteases and chaperones that regulate protein import and folding inside mitochondria. In the early 2000s, the mitochondrial unfolded protein response (UPRmt) was first described in mammalian cells. This stress response is activated by the accumulation of unfolded/misfolded proteins within the mitochondrial matrix, which results in the transmission of a signal to the nucleus to increase the expression of proteases and chaperones to address the abnormal mitochondrial protein load. After its discovery, this retrograde signaling pathway has also been described in other organisms of different complexities, suggesting that it is a conserved stress response. Although there are some specific differences among organisms, the mechanism of this stress response is mostly similar and involves the transmission of a signal from mitochondria to the nucleus that induces chromatin remodeling to allow the binding of specific transcription factors to the promoters of chaperones and proteases. In the last decade, proteins and signaling pathways that could be involved in the regulation of the UPRmt, including the Wnt signaling pathway, have been described. This minireview aims to summarize what is known about the mechanism of the UPRmt and its regulation, specifically in mammals and C. elegans.
Collapse
Affiliation(s)
- Angie K Torres
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Veronika Fleischhart
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
4
|
Wang Y, Li J, Zhang Z, Wang R, Bo H, Zhang Y. Exercise Improves the Coordination of the Mitochondrial Unfolded Protein Response and Mitophagy in Aging Skeletal Muscle. Life (Basel) 2023; 13:life13041006. [PMID: 37109535 PMCID: PMC10142204 DOI: 10.3390/life13041006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) and mitophagy are two mitochondrial quality control (MQC) systems that work at the molecular and organelle levels, respectively, to maintain mitochondrial homeostasis. Under stress conditions, these two processes are simultaneously activated and compensate for each other when one process is insufficient, indicating mechanistic coordination between the UPRmt and mitophagy that is likely controlled by common upstream signals. This review focuses on the molecular signals regulating this coordination and presents evidence showing that this coordination mechanism is impaired during aging and promoted by exercise. Furthermore, the bidirectional regulation of reactive oxygen species (ROS) and AMPK in modulating this mechanism is discussed. The hierarchical surveillance network of MQC can be targeted by exercise-derived ROS to attenuate aging, which offers a molecular basis for potential therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- School of Physical Education, Guangdong Institute of Petrochemical Technology, Maoming 525000, China
| | - Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Runzi Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
5
|
Chen W, Liu P, Liu D, Huang H, Feng X, Fang F, Li L, Wu J, Liu L, Solow-Cordero DE, Hu Y. Maprotiline restores ER homeostasis and rescues neurodegeneration via Histamine Receptor H1 inhibition in retinal ganglion cells. Nat Commun 2022; 13:6796. [PMID: 36357388 PMCID: PMC9649812 DOI: 10.1038/s41467-022-34682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
When the protein or calcium homeostasis of the endoplasmic reticulum (ER) is adversely altered, cells experience ER stress that leads to various diseases including neurodegeneration. Genetic deletion of an ER stress downstream effector, CHOP, significantly protects neuron somata and axons. Here we report that three tricyclic compounds identified through a small-scale high throughput screening using a CHOP promoter-driven luciferase cell-based assay, effectively inhibit ER stress by antagonizing their common target, histamine receptor H1 (HRH1). We further demonstrated that systemic administration of one of these compounds, maprotiline, or CRISPR-mediated retinal ganglion cell (RGC)-specific HRH1 inhibition, delivers considerable neuroprotection of both RGC somata and axons and preservation of visual function in two mouse optic neuropathy models. Finally, we determine that maprotiline restores ER homeostasis by inhibiting HRH1-mediated Ca2+ release from ER. In this work we establish maprotiline as a candidate neuroprotectant and HRH1 as a potential therapeutic target for glaucoma.
Collapse
Affiliation(s)
- Wei Chen
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA ,grid.8547.e0000 0001 0125 2443Present Address: Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 201203 China
| | - Pingting Liu
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Dong Liu
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Haoliang Huang
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Xue Feng
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Fang Fang
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA ,grid.452708.c0000 0004 1803 0208Present Address: Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Liang Li
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - Jian Wu
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA ,grid.414373.60000 0004 1758 1243Present Address: Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 China
| | - Liang Liu
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| | - David E. Solow-Cordero
- grid.168010.e0000000419368956High-Throughput Bioscience Center, Stanford University School of Medicine, Palo Alto, CA 94305 USA
| | - Yang Hu
- grid.168010.e0000000419368956Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304 USA
| |
Collapse
|
6
|
ATF5 is a regulator of exercise-induced mitochondrial quality control in skeletal muscle. Mol Metab 2022; 66:101623. [PMID: 36332794 PMCID: PMC9661517 DOI: 10.1016/j.molmet.2022.101623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The Mitochondrial Unfolded Protein Response (UPRmt) is a compartment-specific mitochondrial quality control (MQC) mechanism that uses the transcription factor ATF5 to induce the expression of protective enzymes to restore mitochondrial function. Acute exercise is a stressor that has the potential to temporarily disrupt organellar protein homeostasis, however, the roles of ATF5 and the UPRmt in maintaining basal mitochondrial content, function and exercise-induced MQC mechanisms in skeletal muscle are not known. METHODS ATF5 KO and WT mice were examined at rest or after a bout of acute endurance exercise. We measured protein content in whole muscle, nuclear, cytosolic and mitochondrial fractions, in addition to mRNA transcript levels in whole muscle. Using isolated mitochondria, we quantified rates of oxygen consumption and ROS emission to observe the effects of the absence of ATF5 on organelle function. RESULTS ATF5 KO mice exhibited a larger and less functional muscle mitochondrial pool, most likely a culmination of enhanced biogenesis via increased PGC-1α expression, and attenuated mitophagy. The absence of ATF5 resulted in a reduction in antioxidant proteins and increases in mitochondrial ROS emission, cytosolic cytochrome c, and the expression of mitochondrial chaperones. KO muscle also displayed enhanced exercise-induced stress kinase signaling, but a blunted mitophagic and UPRmt gene expression response, complemented by significant increases in the basal mRNA abundance and nuclear localization of ATF4. Instead of promoting its nuclear translocation, acute exercise caused the enrichment of ATF5 in mitochondrial fractions. We also identified PGC-1α as an additional regulator of the basal expression of UPRmt genes. CONCLUSION The transcription factor ATF5 retains a critical role in the maintenance of mitochondrial homeostasis and the appropriate response of muscle to acute exercise for the optimization of mitochondrial quality control.
Collapse
|
7
|
Mutation in FBXO32 causes dilated cardiomyopathy through up-regulation of ER-stress mediated apoptosis. Commun Biol 2021; 4:884. [PMID: 34272480 PMCID: PMC8285540 DOI: 10.1038/s42003-021-02391-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress induction of cell death is implicated in cardiovascular diseases. Sustained activation of ER-stress induces the unfolded protein response (UPR) pathways, which in turn activate three major effector proteins. We previously reported a missense homozygous mutation in FBXO32 (MAFbx, Atrogin-1) causing advanced heart failure by impairing autophagy. In the present study, we performed transcriptional profiling and biochemical assays, which unexpectedly revealed a reduced activation of UPR effectors in patient mutant hearts, while a strong up-regulation of the CHOP transcription factor and of its target genes are observed. Expression of mutant FBXO32 in cells is sufficient to induce CHOP-associated apoptosis, to increase the ATF2 transcription factor and to impair ATF2 ubiquitination. ATF2 protein interacts with FBXO32 in the human heart and its expression is especially high in FBXO32 mutant hearts. These findings provide a new underlying mechanism for FBXO32-mediated cardiomyopathy, implicating abnormal activation of CHOP. These results suggest alternative non-canonical pathways of CHOP activation that could be considered to develop new therapeutic targets for the treatment of FBXO32-associated DCM. Al-Yacoub et al. investigate the consequences of FBXO32 mutation on dilated cardiomyopathy. ER stress, abnormal CHOP activation and CHOP-induced apoptosis with no UPR effector activation are found to underlie the FBXO32 mutation induced cardiomyopathy, suggesting an alternative pathway that can be considered to develop new therapeutic targets for its treatment.
Collapse
|
8
|
Umemura M, Kaneko Y, Tanabe R, Takahashi Y. ATF5 deficiency causes abnormal cortical development. Sci Rep 2021; 11:7295. [PMID: 33790322 PMCID: PMC8012588 DOI: 10.1038/s41598-021-86442-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a member of the cAMP response element binding protein (CREB)/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5−/−) mice exhibited behavioural abnormalities, including abnormal social interactions, reduced behavioural flexibility, increased anxiety-like behaviours, and hyperactivity in novel environments. ATF5−/− mice may therefore be a useful animal model for psychiatric disorders. ATF5 is highly expressed in the ventricular zone and subventricular zone during cortical development, but its physiological role in higher-order brain structures remains unknown. To investigate the cause of abnormal behaviours exhibited by ATF5−/− mice, we analysed the embryonic cerebral cortex of ATF5−/− mice. The ATF5−/− embryonic cerebral cortex was slightly thinner and had reduced numbers of radial glial cells and neural progenitor cells, compared to a wild-type cerebral cortex. ATF5 deficiency also affected the basal processes of radial glial cells, which serve as a scaffold for radial migration during cortical development. Further, the radial migration of cortical upper layer neurons was impaired in ATF5−/− mice. These results suggest that ATF5 deficiency affects cortical development and radial migration, which may partly contribute to the observed abnormal behaviours.
Collapse
Affiliation(s)
- Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yasuyuki Kaneko
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ryoko Tanabe
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
9
|
Schwartz GW, Zhou Y, Petrovic J, Fasolino M, Xu L, Shaffer SM, Pear WS, Vahedi G, Faryabi RB. TooManyCells identifies and visualizes relationships of single-cell clades. Nat Methods 2020; 17:405-413. [PMID: 32123397 PMCID: PMC7439807 DOI: 10.1038/s41592-020-0748-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/15/2020] [Indexed: 01/24/2023]
Abstract
Identifying and visualizing transcriptionally similar cells is instrumental for accurate exploration of the cellular diversity revealed by single-cell transcriptomics. However, widely used clustering and visualization algorithms produce a fixed number of cell clusters. A fixed clustering 'resolution' hampers our ability to identify and visualize echelons of cell states. We developed TooManyCells, a suite of graph-based algorithms for efficient and unbiased identification and visualization of cell clades. TooManyCells introduces a visualization model built on a concept intentionally orthogonal to dimensionality-reduction methods. TooManyCells is also equipped with an efficient matrix-free divisive hierarchical spectral clustering different from prevalent single-resolution clustering methods. TooManyCells enables multiresolution and multifaceted exploration of single-cell clades. An advantage of this paradigm is the immediate detection of rare and common populations that outperforms popular clustering and visualization algorithms, as demonstrated using existing single-cell transcriptomic data sets and new data modeling drug-resistance acquisition in leukemic T cells.
Collapse
Affiliation(s)
- Gregory W Schwartz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jelena Petrovic
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Fasolino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Lanwei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney M Shaffer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Involvement of natriuretic peptide system in C2C12 myocytes. Mol Cell Biochem 2018; 456:15-27. [PMID: 30519782 DOI: 10.1007/s11010-018-3486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
The natriuretic peptide system, a key regulator of cGMP signaling, comprises three types of natriuretic peptides, osteocrin/musclin (OSTN), and their natriuretic peptide receptors. Although this system plays important roles in many organs, its physiological roles in skeletal muscle have not been clearly described. In the present study, we investigated the role of the natriuretic peptide system in C2C12 myocytes. All three natriuretic peptide receptors were expressed by cells differentiating from myoblasts to myotubes, and natriuretic peptide receptor B (NPR-B) transcripts were detected at the highest levels. Further, higher levels of cGMP were generated in response to stimulation with C-type natriuretic peptide (CNP) versus atrial natriuretic peptide (ANP), which reflected receptor expression levels. A cGMP analog downregulated the expression of a few ER stress-related genes. Furthermore, OSTN gene expression was strongly upregulated after 20 days of differentiation. Augmented gene expression was found to correlate closely with endoplasmic reticulum (ER) stress, and C/EBP [CCAAT-enhancer-binding protein] homologous protein (CHOP), which is known to be activated by ER stress, affected the expression of OSTN. Together, these results suggest a role for natriuretic peptide signaling in the ER stress response of myocytes.
Collapse
|
11
|
Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B. Transcription Factor C/EBP Homologous Protein in Health and Diseases. Front Immunol 2017; 8:1612. [PMID: 29230213 PMCID: PMC5712004 DOI: 10.3389/fimmu.2017.01612] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
C/EBP homologous protein (CHOP), known also as DNA damage-inducible transcript 3 and as growth arrest and DNA damage-inducible protein 153 (GADD153), is induced in response to certain stressors. CHOP is universally acknowledged as a main conduit to endoplasmic reticulum stress-induced apoptosis. Ongoing research established the existence of CHOP-mediated apoptosis signaling networks, for which novel downstream targets are still being determined. However, there are studies that contradict this notion and assert that apoptosis is not the only mechanism by which CHOP plays in the development of pathologies. In this review, insights into the roles of CHOP in pathophysiology are summarized at the molecular and cellular levels. We further focus on the newest advances that implicate CHOP in human diseases including cancer, diabetes, neurodegenerative disorders, and notably, fibrosis.
Collapse
Affiliation(s)
- Yuan Yang
- Center for Molecular Medicine, Medical School of Yangtze University, Jingzhou, China
- Department of Radiology, Medical School of Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, China
| | - Ishan Naik
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Boxu Ren
- Center for Molecular Medicine, Medical School of Yangtze University, Jingzhou, China
- Department of Radiology, Medical School of Yangtze University, Jingzhou, China
| |
Collapse
|
12
|
Sears TK, Angelastro JM. The transcription factor ATF5: role in cellular differentiation, stress responses, and cancer. Oncotarget 2017; 8:84595-84609. [PMID: 29137451 PMCID: PMC5663623 DOI: 10.18632/oncotarget.21102] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a cellular prosurvival transcription factor within the basic leucine zipper (bZip) family that is involved in cellular differentiation and promotes cellular adaptation to stress. Recent studies have characterized the oncogenic role of ATF5 in the development of several different types of cancer, notably glioblastoma. Preclinical assessment of a systemically deliverable dominant-negative ATF5 (dnATF5) biologic has found that targeting ATF5 results in tumor regression and tumor growth inhibition of glioblastoma xenografts in mouse models. In this review, we comprehensively and critically detail the current scientific literature on ATF5 in the context of cellular differentiation, survival, and response to stressors in normal tissues. Furthermore, we will discuss how the prosurvival role of ATF5 aides in cancer development, followed by current advances in targeting ATF5 using dominant-negative biologics, and perspectives on future research.
Collapse
Affiliation(s)
- Thomas K Sears
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, 95616 CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, 95616 CA, USA
| |
Collapse
|
13
|
Kim J, Song H, Heo HR, Kim JW, Kim HR, Hong Y, Yang SR, Han SS, Lee SJ, Kim WJ, Hong SH. Cadmium-induced ER stress and inflammation are mediated through C/EBP-DDIT3 signaling in human bronchial epithelial cells. Exp Mol Med 2017; 49:e372. [PMID: 28860664 PMCID: PMC5628270 DOI: 10.1038/emm.2017.125] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd), a major component of cigarette smoke, disrupts the normal functions of airway cells and can lead to the development of various pulmonary diseases such as chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms involved in Cd-induced pulmonary diseases are poorly understood. Here, we identified a cluster of genes that are altered in response to Cd exposure in human bronchial epithelial cells (BEAS-2B) and demonstrated that Cd-induced ER stress and inflammation are mediated via CCAAT-enhancer-binding proteins (C/EBP)-DNA-damaged-inducible transcript 3 (DDIT3) signaling in BEAS-2B cells. Cd treatment led to marked upregulation and downregulation of genes associated with the cell cycle, apoptosis, oxidative stress and inflammation as well as various signal transduction pathways. Gene set enrichment analysis revealed that Cd treatment stimulated the C/EBP signaling pathway and induced transcriptional activation of its downstream target genes, including DDIT3. Suppression of DDIT3 expression using specific small interfering RNA effectively alleviated Cd-induced ER stress and inflammatory responses in both BEAS-2B and normal primary normal human bronchial epithelial cells. Taken together, these data suggest that C/EBP signaling may have a pivotal role in the early induction of ER stress and inflammatory responses by Cd exposure and could be a molecular target for Cd-induced pulmonary disease.
Collapse
Affiliation(s)
- Jeeyoung Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Hye-Ryeon Heo
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Jung Woon Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Yoonki Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Seon-Sook Han
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea.,Environmental Health Center, Kangwon National University Hospital, Chuncheon, South Korea
| |
Collapse
|
14
|
Abstract
The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress.
Collapse
|
15
|
Madarampalli B, Yuan Y, Liu D, Lengel K, Xu Y, Li G, Yang J, Liu X, Lu Z, Liu DX. ATF5 Connects the Pericentriolar Materials to the Proximal End of the Mother Centriole. Cell 2015. [PMID: 26213385 DOI: 10.1016/j.cell.2015.06.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although it is known that the centrioles play instructive roles in pericentriolar material (PCM) assembly and that the PCM is essential for proper centriole formation, the mechanism that governs centriole-PCM interaction is poorly understood. Here, we show that ATF5 forms a characteristic 9-fold symmetrical ring structure in the inner layer of the PCM outfitting the proximal end of the mother centriole. ATF5 controls the centriole-PCM interaction in a cell-cycle- and centriole-age-dependent manner. Interaction of ATF5 with polyglutamylated tubulin (PGT) on the mother centriole and with PCNT in the PCM renders ATF5 as a required molecule in mother centriole-directed PCM accumulation and in PCM-dependent centriole formation. ATF5 depletion blocks PCM accumulation at the centrosome and causes fragmentation of centrioles, leading to the formation of multi-polar mitotic spindles and genomic instability. These data show that ATF5 is an essential structural protein that is required for the interaction between the mother centriole and the PCM.
Collapse
Affiliation(s)
- Bhanupriya Madarampalli
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Yunsheng Yuan
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Dan Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Kathleen Lengel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Yidi Xu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Guangfu Li
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Jinming Yang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Xinyuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Xinyuan Institute of Medicine and Biotechnology, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David X Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA.
| |
Collapse
|
16
|
Abe T, Kojima M, Akanuma S, Iwashita H, Yamazaki T, Okuyama R, Ichikawa K, Umemura M, Nakano H, Takahashi S, Takahashi Y. N-terminal hydrophobic amino acids of activating transcription factor 5 (ATF5) protein confer interleukin 1β (IL-1β)-induced stabilization. J Biol Chem 2013; 289:3888-900. [PMID: 24379400 DOI: 10.1074/jbc.m113.491217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a stress-response transcription factor that responds to amino acid limitation and exposure to cadmium chloride (CdCl2) and sodium arsenite (NaAsO2). The N-terminal amino acids contribute to the destabilization of the ATF5 protein in steady-state conditions and serve as a stabilization domain in the stress response after CdCl2 or NaAsO2 exposure. In this study, we show that interleukin 1β (IL-1β), a proinflammatory cytokine, increases the expression of ATF5 protein in HepG2 hepatoma cells in part by stabilizing the ATF5 protein. The N-terminal domain rich in hydrophobic amino acids that is predicted to form a hydrophobic network was responsible for destabilization in steady-state conditions and served as an IL-1β response domain. Furthermore, IL-1β increased the translational efficiency of ATF5 mRNA via the 5' UTRα and phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). ATF5 knockdown in HepG2 cells up-regulated the IL-1β-induced expression of the serum amyloid A 1 (SAA1) and SAA2 genes. Our results show that the N-terminal hydrophobic amino acids play an important role in the regulation of ATF5 protein expression in IL-1β-mediated immune response and that ATF5 is a negative regulator for IL-1β-induced expression of SAA1 and SAA2 in HepG2 cells.
Collapse
Affiliation(s)
- Takanori Abe
- From the Laboratory of Environmental Molecular Physiology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shi FH, Wu Y, Dai DZ, Cong XD, Zhang YM, Dai Y. Hepatosteatosis and hepatic insulin resistance are blunted by argirein, an anti-inflammatory agent, through normalizing endoplasmic reticulum stress and apoptosis in diabetic liver. ACTA ACUST UNITED AC 2013; 65:916-27. [PMID: 23647685 DOI: 10.1111/jphp.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/11/2013] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Insulin resistance represents a mechanism underlying defect metabolism of carbohydrate and lipid linked to inflammatory reactions in diabetic liver. We hypothesized that the changes may be secondary to endoplasmic reticulum (ER) stress, which could be alleviated by either argirein or valsartan. METHODS Hepatosteatosis in diabetic liver was induced in rats fed with a high-fat diet (HFD) for 12 weeks combined with a single low dose of streptozotocin (STZ 35 mg/kg, ip). Interventions (mg/kg/d, po)with either argirein (50, 100 and 200) or valsartan (12) were conducted in the last 4 weeks. KEY FINDINGS In diabetic liver fat was significantly accumulated in association with elevated hepatic glucose, serum insulin and homeostasis model assessment of insulin resistance value. Downregulated glucose transporter 4, insulin receptor substrate-1 and leptin receptor (P < 0.01) were found relative to normal, where DNA ladder, downregulated B cell lymphoma/leukemia-2, upregulated B cell lymphoma/leukemia-2 Associated X protein and upregulated ER stress chaperones such as Bip/GRP78 (also known as Binding Protein, BiP), PKR-like ER kinase (PERK), p-PERK/PERK and C/EBP homologous protein were significant. These abnormalities were significantly ameliorated by argirein and valsartan. CONCLUSIONS Hepatosteatosis induced by HFD/low STZ manifests insulin resistance and apoptosis, linked to an entity of low-grade inflammation due to activated ER stress sensors. With anti-inflammatory activity either argirein or valsartan blunts hepatosteatosis through normalizing ER stress and apoptosis in the diabetic liver.
Collapse
Affiliation(s)
- Fang-Hong Shi
- China Pharmaceutical University, Research Division of Pharmacology, Nanjing, China
| | | | | | | | | | | |
Collapse
|
18
|
Cadmium induces neuronal cell death through reactive oxygen species activated by GADD153. BMC Cell Biol 2013; 14:4. [PMID: 23339468 PMCID: PMC3563515 DOI: 10.1186/1471-2121-14-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background Cadmium(Cd), a heavy metal, which has a potent harmful effects, is a highly stress-inducible material that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER) (so-called ER stress). The mechanism Cd induced cell death of neuroblastoma cells complex, involving cellular signaling pathways as yet incompletely defined but, in part, involving the generation of reactive oxygen species (ROS). Several studies have correlated GADD153 expression with cell death, but a mechanistic link between GADD153 and apoptosis has never been demonstrated. Results SH-SY5Y cells were treated Cd led to increase in intracellular ROS levels. ROS generation is not consistent with intracellular [Ca2+]. The exposure of neuroblastoma cells to Cd led to increase in intracellular GADD153 and Bak levels in a doses and time dependent manner. The induction of these genes by Cd was attenuated by NAC. Cd-induced apoptosis is decreased in GADD153 knockdown cells compared with normal cells. The effect of GADD153 on the binding of C/EBP to the Bak promoters were analyzed ChIP assay. Basal constitutive GADD153 recruitment to the –3,398/–3,380 region of the Bak promoter is observed in SH-SY5Y cells. Conclusions The exposure of SH-SY5Y cells to Cd led to increase in intracellular ROS levels in a doses and time dependent manner. The generation of ROS result in the induction of GADD153 is causative of cadmium-induced apoptosis. GADD153 regulates Bak expression by its binding to promoter region (between −3,398 and −3,380). Therefore, we conclude that GADD153 sensitizes cells to ROS through mechanisms that involve up-regulation of BAK and enhanced oxidant injury.
Collapse
|
19
|
Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones 2013; 18:11-23. [PMID: 22802018 PMCID: PMC3508129 DOI: 10.1007/s12192-012-0351-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 02/08/2023] Open
Abstract
In the endoplasmic reticulum (ER), secretory and membrane proteins are properly folded and modified, and the failure of these processes leads to ER stress. At the same time, unfolded protein response (UPR) genes are activated to maintain homeostasis. Despite the thorough characterization of the individual gene regulation of UPR genes to date, further investigation of the mutual regulation among UPR genes is required to understand the complex mechanism underlying the ER stress response. In this study, we aimed to reveal a gene regulatory network formed by UPR genes, including immunoglobulin heavy chain-binding protein (BiP), X-box binding protein 1 (XBP1), C/EBP [CCAAT/enhancer-binding protein]-homologous protein (CHOP), PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring 1 (IRE1), activating transcription factor 6 (ATF6), and ATF4. For this purpose, we focused on promoter-luciferase reporters for BiP, XBP1, and CHOP genes, which bear an ER stress response element (ERSE), and p5 × ATF6-GL3, which bears an unfolded protein response element (UPRE). We demonstrated that the luciferase activities of the BiP and CHOP promoters were upregulated by all the UPR genes, whereas those of the XBP1 promoter and p5 × ATF6-GL3 were upregulated by all the UPR genes except for BiP, CHOP, and ATF4 in HeLa cells. Therefore, an ERSE- and UPRE-centered gene regulatory network of UPR genes could be responsible for the robustness of the ER stress response. Finally, we revealed that BiP protein was degraded when cells were treated with DNA-damaging reagents, such as etoposide and doxorubicin; this finding suggests that the expression level of BiP is tightly regulated at the post-translational level, rather than at the transcriptional level, in the presence of DNA damage.
Collapse
Affiliation(s)
- Sayuri Takayanagi
- Department of Life Sciences, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Riga Fukuda
- Department of Life Sciences, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Yuuki Takeuchi
- Department of Life Sciences, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Sakiko Tsukada
- Department of Life Sciences, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Kenichi Yoshida
- Department of Life Sciences, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| |
Collapse
|
20
|
Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 2012; 3:295-306. [PMID: 22585903 PMCID: PMC3649461 DOI: 10.3945/an.112.001891] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammals exhibit multiple adaptive mechanisms that sense and respond to fluctuations in dietary nutrients. Consumption of reduced total dietary protein or a protein diet that is deficient in 1 or more of the essential amino acids triggers wide-ranging changes in feeding behavior and gene expression. At the level of individual cells, dietary protein deficiency is manifested as amino acid (AA) deprivation, which activates the AA response (AAR). The AAR is composed of a collection of signal transduction pathways that terminate in specific transcriptional programs designed to catalyze adaptation to the nutrient stress or, ultimately, undergo apoptosis. Independently of the AAR, endoplasmic reticulum stress activates 3 signaling pathways, collectively referred to as the unfolded protein response. The transcription factor activating transcription factor 4 is one of the terminal transcriptional mediators for both the AAR and the unfolded protein response, leading to a significant degree of overlap with regard to the target genes for these stress pathways. Over the past 5 y, research has revealed that the basic leucine zipper superfamily of transcription factors plays the central role in the AAR. Formation of both homo- and heterodimers among the activating transcription factor, CCAAT enhancer-binding protein, and FOS/JUN families of basic leucine zipper proteins forms the nucleus of a highly integrated transcription factor network that determines the initiation, magnitude, and duration of the cellular response to dietary protein or AA limitation.
Collapse
|
21
|
Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, Stanley B, Yang J, Wang B, Liu X, Liu DX. Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells. J Biol Chem 2012; 287:19599-609. [PMID: 22528486 DOI: 10.1074/jbc.m112.363622] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin (NPM1/B23) and the activating transcription factor 5 (ATF5) are both known to subject to cell type-dependent regulation. NPM1 is expressed weakly in hepatocytes and highly expressed in hepatocellular carcinomas (HCC) with a clear correlation between enhanced NPM1 expression and increased tumor grading and poor prognosis, whereas in contrast, ATF5 is expressed abundantly in hepatocytes and down-regulated in HCC. Re-expression of ATF5 in HCC inhibits cell proliferation. We report here that using an unbiased approach, tandem affinity purification (TAP) followed with mass spectrometry (MS), we identified NPM1 as a novel ATF5-interacting protein. Unlike many other NPM1-interacting proteins that interact with the N-terminal oligomerization domain of NPM1, ATF5 binds via its basic leucine zipper to the C-terminal region of NPM1 where its nucleolar localization signal is located. NPM1 association with ATF5, whose staining patterns partially overlap in the nucleoli, promotes ATF5 protein degradation through proteasome-dependent and caspase-dependent pathways. NPM1-c, a mutant NPM1 that is defective in nucleolar localization, failed to stimulate ATF5 polyubiquitination and was unable to down-regulate ATF5. NPM1 interaction with ATF5 displaces HSP70, a known ATF5-interacting protein, from ATF5 protein complexes and antagonizes its role in stabilization of ATF5 protein. NPM1-promoted ATF5 down-regulation diminished ATF5-mediated repression of cAMP-responsive element-dependent gene transcription and abrogates ATF5-induced G(2)/M cell cycle blockade and inhibition of cell proliferation in HCC cells. Our study establishes a mechanistic link between elevated NPM1 expression and depressed ATF5 in HCC and suggests that regulation of ATF5 by NPM1 plays an important role in the proliferation and survival of HCC.
Collapse
Affiliation(s)
- Xijun Liu
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
John L, Thomas S, Herchenröder O, Pützer BM, Schaefer S. Hepatitis E virus ORF2 protein activates the pro-apoptotic gene CHOP and anti-apoptotic heat shock proteins. PLoS One 2011; 6:e25378. [PMID: 21966512 PMCID: PMC3179511 DOI: 10.1371/journal.pone.0025378] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/02/2011] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis E virus (HEV) is a non-enveloped plus-strand RNA virus that causes acute hepatitis. The capsid protein open reading frame 2 (ORF2) is known to induce endoplasmic reticulum stress in ORF2 expressing cells. Methodology/Principal Findings In this study we found that HEV ORF2 activates the expression of the pro-apoptotic gene C/EBP homologous protein (CHOP). ORF2 stimulates the CHOP promoter mainly through AARE (amino acid response elements) and to a minor extent the ERSE (endoplasmic reticulum stress response elements). Activating transcription factor 4 (ATF4) protein binds and activates the AARE regulatory sites of the CHOP promoter. ORF2 expression also leads to increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) that in turn initiates the translation of ATF4 mRNA. The pro-apoptotic gene CHOP is an important trigger to initiate endoplasmic reticulum stress induced apoptosis. However, the activation of CHOP by ORF2 in this study did not induce apoptosis, nor did BCL2-associated X protein (Bax) translocate to mitochondria. Microarray analysis revealed an ORF2 specific increased expression of chaperones Hsp72, Hsp70B', and co-chaperone Hsp40. Co-immunoprecipitation (Co-IP) and in silico molecular docking analysis suggests that HEV ORF2 interacts with Hsp72. In addition, Hsp72 shows nuclear accumulation in ORF2 expressing cells. Conclusions/Significance These data provide new insight into simultaneously occurring counter-acting effects of HEV ORF2 that may be part of a strategy to prevent host suicide before completion of the viral replication cycle.
Collapse
Affiliation(s)
- Lijo John
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
| | - Saijo Thomas
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
| | - Ottmar Herchenröder
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
| | - Brigitte M. Pützer
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
- * E-mail:
| | - Stephan Schaefer
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock Medical School, Rostock, Germany
| |
Collapse
|
23
|
Song JH, Park JK, Yoon JW, Nam SW, Lee JY, Park WS. Genetic alterations of the CHOP gene in gastric cancers. Mol Cell Toxicol 2011; 7:1-6. [DOI: 10.1007/s13273-011-0001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Dluzen D, Li G, Tacelosky D, Moreau M, Liu DX. BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in a cell type-dependent manner. J Biol Chem 2011; 286:7705-13. [PMID: 21212266 DOI: 10.1074/jbc.m110.207639] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATF5 loss of function has been shown previously to cause apoptotic cell death in glioblastoma and breast cancer cells but not in non-transformed astrocytes and human breast epithelial cells. The mechanism for the cell type-dependent survival function of ATF5 is unknown. We report here that the anti-apoptotic factor BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in C6 glioma cells and MCF-7 breast cancer cells. ATF5 binds to an ATF5-specific regulatory element that is downstream of and adjacent to the negative regulatory element in the BCL-2 P2 promoter, stimulating BCL-2 expression. Highlighting the critical role of BCL-2 in ATF5-dependent cancer cell survival, expression of BCL-2 blocks death of C6 and MCF-7 cells induced by dominant-negative ATF5, and depletion of BCL-2 impairs ATF5-promoted cell survival. Moreover, we found that BCL-2 expression is not regulated by ATF5 in non-transformed rat astrocytes, mouse embryonic fibroblasts, and human breast epithelial cells, where expression of BCL-2 but not ATF5 is required for cell survival. These findings identify BCL-2 as an essential mediator for the cancer-specific cell survival function of ATF5 in glioblastoma and breast cancer cells and provide direct evidence that the cell type-specific function of ATF5 derives from differential regulation of downstream targets by ATF5 in different types of cells.
Collapse
Affiliation(s)
- Douglas Dluzen
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|