1
|
Goh WX, Kok YY, Wong CY. Comparison of Cell-based and Nanoparticle-based Therapeutics in Treating Atherosclerosis. Curr Pharm Des 2023; 29:2827-2840. [PMID: 37936453 DOI: 10.2174/0113816128272185231024115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
Today, cardiovascular diseases are among the biggest public health threats worldwide. Atherosclerosis, a chronic inflammatory disease with complex aetiology and pathogenesis, predispose many of these conditions, including the high mortality rate-causing ischaemic heart disease and stroke. Nevertheless, despite the alarming prevalence and absolute death rate, established treatments for atherosclerosis are unsatisfactory in terms of efficacy, safety, and patient acceptance. The rapid advancement of technologies in healthcare research has paved new treatment approaches, namely cell-based and nanoparticle-based therapies, to overcome the limitations of conventional therapeutics. This paper examines the different facets of each approach, discusses their principles, strengths, and weaknesses, analyses the main targeted pathways and their contradictions, provides insights on current trends as well as highlights any unique mechanisms taken in recent years to combat the progression of atherosclerosis.
Collapse
Affiliation(s)
- Wen Xi Goh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Yoon JK, Kim DH, Kang ML, Jang HK, Park HJ, Lee JB, Yi SW, Kim HS, Baek S, Park DB, You J, Lee SD, Sei Y, Ahn SI, Shin YM, Kim CS, Bae S, Kim Y, Sung HJ. Anti-Atherogenic Effect of Stem Cell Nanovesicles Targeting Disturbed Flow Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000012. [PMID: 32239653 DOI: 10.1002/smll.202000012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Atherosclerosis development leads to irreversible cascades, highlighting the unmet need for improved methods of early diagnosis and prevention. Disturbed flow formation is one of the earliest atherogenic events, resulting in increased endothelial permeability and subsequent monocyte recruitment. Here, a mesenchymal stem cell (MSC)-derived nanovesicle (NV) that can target disturbed flow sites with the peptide GSPREYTSYMPH (PREY) (PMSC-NVs) is presented which is selected through phage display screening of a hundred million peptides. The PMSC-NVs are effectively produced from human MSCs (hMSCs) using plasmid DNA designed to functionalize the cell membrane with PREY. The potent anti-inflammatory and pro-endothelial recovery effects are confirmed, similar to those of hMSCs, employing mouse and porcine partial carotid artery ligation models as well as a microfluidic disturbed flow model with human carotid artery-derived endothelial cells. This nanoscale platform is expected to contribute to the development of new theragnostic strategies for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dae-Hyun Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Mi-Lan Kang
- TMD LAB Co., Ltd, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyeon-Ki Jang
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Ji Park
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Jung Bok Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Se Won Yi
- TMD LAB Co., Ltd, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sewoom Baek
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dan Bi Park
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin You
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Yoshitaka Sei
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Song Ih Ahn
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Young Min Shin
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Sangsu Bae
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Institute for Electronics and Nanotechnology (IEN), Georgia Institute of Technology, Atlanta, Georgia, 30313, USA
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Li J, Xue H, Li T, Chu X, Xin D, Xiong Y, Qiu W, Gao X, Qian M, Xu J, Wang Z, Li G. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE -/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 2019; 510:565-572. [PMID: 30739785 DOI: 10.1016/j.bbrc.2019.02.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature. Exosomes derived from mesenchymal stem cells (MSCs) exert immunomodulatory and immunosuppressive effects; however, the MSCs-exosomes administration on atherosclerosis was unknown. Here, our ApoE-/- mice were fed a high-fat diet and received intravenous injections of exosomes from MSCs for 12 weeks. After tail-vein injection, MSCs-exosomes were capable of migrating to atherosclerotic plaque and selectively taking up residence near macrophages. MSCs-exosomes treatment decreased the atherosclerotic plaque area of ApoE-/- mice and greatly reduced the infiltration of macrophages in the plaque, associating induced macrophage polarization towards M2. In vitro, MSCs-exosomes treatment markedly inhibited LPS-induced M1 markers expression, while increased M2 markers expression in macrophages. Moreover, miR-let7 family was found to be highly enriched in MSCs-exosomes. Endogenous miR-let7 expression was found in the aortic root of ApoE-/- mice, and MSCs-exosomes treatment further up-regulated miR-let7 levels. In addition, inhibition of miR-let7 in U937 cells significantly inhibited the migration and M2 polarization via IGF2BP1 and HMGA2 pathway respectively in vitro. Our study demonstrates that MSCs-exosomes ameliorated atherosclerosis in ApoE-/- and promoted M2 macrophage polarization in the plaque through miR-let7/HMGA2/NF-κB pathway. In addition, MSCs-exosomes suppressed macrophage infiltration via miR-let7/IGF2BP1/PTEN pathway in the plaque. This finding extends our knowledge on MSCs-exosomes affect inflammation in atherosclerosis plaque and provides a potential method to prevent the atherosclerosis. Exosomes from MSCs hold promise as therapeutic agents to reduce the residual risk of coronary artery diseases.
Collapse
Affiliation(s)
- Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China; Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Tingting Li
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China
| | - Ye Xiong
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Xiao Gao
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China; Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Jiangye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, PR China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong Province, 250012, PR China; Institute of Brain and Brain-Inspired Science, Shandong Provincial Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
4
|
Liu M, Zhou Z, Chai Y, Zhang S, Wu X, Huang S, Su J, Jiang J. Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts. Biofabrication 2017; 9:025030. [PMID: 28485303 DOI: 10.1088/1758-5090/aa71da] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fabrication of small diameter vascular grafts (SDVGs) with appropriate responses for clinical application is still challenging. In the present work, the production and characterization of solid alginate based microfibers as potential SDVG candidates through the method of microfluidics were considered original. A simple glass microfluidic device with a 'L-shape' cylindrical-flow channel in the microfluidic platform was developed. The gelation of microfibers occurred when the alginate solution and a CaCl2 solution were introduced as a core flow and as a sheath flow, respectively. The diameters of the microfibers could be controlled by varying the flow rates and the glass capillary tubes diameters at their tips. The generated microfibers had somewhat rough and porous surfaces, their suture retention strengths were comparable to the strength of other tissue engineered grafts. The encapsulated mesenchymal stem cells proliferated well in the microfibers, and showed a stable endothelialization under the angiogenesis effects of vascular endothelial growth factor and fibroblastic growth factor. The in vivo implant into the mice abdomens indicated that cell composite microfibers caused a mild host reaction. These encouraging results suggest great promise of the application of microfluidics as a future alternative in SDVGs engineering.
Collapse
Affiliation(s)
- Mingying Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gao F, Hu X, Xie X, Liu X, Wang J. Heat shock protein 90 stimulates rat mesenchymal stem cell migration via PI3K/Akt and ERK1/2 pathways. Cell Biochem Biophys 2016; 71:481-9. [PMID: 25287672 DOI: 10.1007/s12013-014-0228-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this study was to determine the role of Hsp90α in regulating the migration of mesenchymal stem cells (MSCs) and to investigate the underlying mechanisms of this effect. MSCs migration was assessed by wound healing assay and transwell migration assay. Hsp90α expression was silenced in MSC by siRNA (sirHsp90α). The activity of secreted metalloproteases MMP-2 and MMP-9, and their expression levels in MSC were evaluated using gelatin zymography, Western blot analysis and real-time PCR. Gene expression of VCAM-1 and CXCR4 cytokines was evaluated by real-time PCR. Akt and ERK activity were analyzed by Western blotting using antibodies against phosphorylated forms of these proteins. Treatment with Hsp90α significantly enhanced MSC migration, and this effect was blocked by transfecting MSC with sirHsp90α. Treating the cells with recombinant human Hsp90α (rhHsp90α) enhanced gene expression and protein levels of MMP-2 and MMP-9, as well as their secretion and activity. MSC incubated with rhHsp90α exhibited increased gene expression of CXCR4 and VCAM-1. Finally, the levels of phosphorylated Akt and Erk were markedly increased by rhHsp90α treatment. These findings indicate that Hsp90α promotes MSCs migration via PI3K/Akt and ERK signaling pathways, and that this effect is possibly mediated by MMPs, SDF-1/CXCR4 pathway, and VCAM-1.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310009, People's Republic of China
| | | | | | | | | |
Collapse
|
6
|
Liu M, Yang J, Hu W, Zhang S, Wang Y. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure. ACTA ACUST UNITED AC 2016; 11:015008. [PMID: 26836957 DOI: 10.1088/1748-6041/11/1/015008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, cell-based therapies have attracted attention as promising treatments for acute liver failure (ALF). Bone marrow-derived mesenchymal stem cells (MSCs) are potential candidates for co-culture with hepatocytes in poly(lactic acid-glycolic acid) (PLGA) scaffolds to support hepatocellular function. However, the mechanism of culturing protocol using PLGA scaffolds for MSC differentiation into hepatocyte-like cells as well as the therapeutic effect of cell seeded PLGA scaffolds on ALF remain unsatisfactory in clinical application. Here, MSCs and hepatocytes were co-cultured at ratios of 1:2.5 (MSCs: Hep), 1:5 and 1:10, respectively. The proliferation abilities of these co-cultured cells were detected by CCK8, MTT, EdU and by scanning electron microscopy (SEM), and the ability of MSCs to differentiate into hepatocytes was detected by PCR, western blot and immunofluorescence staining. Therapeutic trials of cell seeded PLGA scaffolds were conducted through mouse abdominal cavity transplantation. Results showed that the 1:5 group showed significantly higher cellular proliferation than the 1:2.5 and 1:10 groups, supernatant albumin and urea nitrogen levels were also significantly higher in the 1:5 group than in other two groups. Similarly, the 1:5 group demonstrated better DNA transcription and liver-specific protein (albumin, CK18 and P450) production. Meanwhile, the GalN-stimulated levels of ALT, AST and TBil in mouse serum were down-regulated significantly more by (MSC + Hep)-PLGA scaffold treatment than MSC-PLGA or Hep-PLGA scaffold treatments. Furthermore, the (MSC + Hep)-PLGA scaffold-treated ALF mice showed a lower immunogenic response level than the other two groups. These data suggested that the ratio of 1:5 (MSC:Hep) co-cultures was the optimal ratio for MSCs to support hepatocellular metabolism and function in PLGA scaffolds in vitro, the (MSC + Hep)-PLGA scaffold treatment could perform better restoration for damaged liver function and could give ALF mice a greater survival rate than the monocell seeded PLGA scaffold treatment.
Collapse
Affiliation(s)
- Mingying Liu
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Bone mesenchymal stem cells contributed to the neointimal formation after arterial injury. PLoS One 2013; 8:e82743. [PMID: 24349351 PMCID: PMC3857273 DOI: 10.1371/journal.pone.0082743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Recent findings suggest that in response to repair-to-injury bone marrow mesenchymal stem cells (BMSCs) participate in the process of angiogenesis. It is unclear what role BMSCs play in the structure of the vessel wall. In present study, we aimed to determine whether BMSCs had the capacity of endothelial cells (ECs). METHODS BMSCs were separated and cultured. FACS and RT-PCR analysis confirmed the gene expression phenotype. The capacity of migration and adhesion and the ultrastructure of BMSCs were examined. The effect of BMSCs transplantation on the vascular repair was investigated in a murine carotid artery-injured model. RESULTS BMSCs could express some markers and form the tube-like structure. The migration and adhesion capacity of BMSCs increased significantly after stimulated. In addition, BMSCs had the intact cell junction. In vivo the local transfer of BMSCs differentiated into neo-endothelial cells in the injury model for carotid artery and contributed to the vascular remodeling. CONCLUSION These results showed that BMSCs could contribute to neointimal formation for vascular lesion and might be associated with the differentiation into ECs, which indicated the important therapeutic implications for vascular diseases.
Collapse
|
8
|
Qu Z, Yu J, Ruan Q. TGF-β1-induced LPP expression dependant on Rho kinase during differentiation and migration of bone marrow-derived smooth muscle progenitor cells. ACTA ACUST UNITED AC 2012; 32:459-465. [PMID: 22886954 DOI: 10.1007/s11596-012-0080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 12/24/2022]
Abstract
Lipoma preferred partner (LPP) has been identified as a protein which is highly selective for smooth muscle progenitor cells (SMPCs) and regulates differentiation and migration of SMPCs, but mechanisms of LPP expression are not elucidated clearly. The aim of the present study was to discuss the mechanisms by which LPP expression is regulated in the differentiation and migration of SMPCs induced by TGF-β1. It was found that TGF-β1 could significantly increase the expression of LPP, smooth muscle α-actin, smooth muscle myosin heavy chain (SM-MHC), and smoothelin in SMPCs. Moreover, inactivation of Rho kinase (ROK) with ROK inhibitors significantly inhibited LPP mRNA expression in TGF-β1-treated SMPCs and mouse aortic smooth muscle cells (MAoSMCs). At the same time, LPP silencing with short interfering RNA significantly decreased SMPCs migration. In conclusion, LPP appears to be a ROK-dependant SMPCs differentiation marker that plays a role in regulating SMPCs migration.
Collapse
Affiliation(s)
- Zhiling Qu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiurong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Yang H, Mohamed ASS, Zhou SH. Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis 2012; 11:85. [PMID: 22747902 PMCID: PMC3475066 DOI: 10.1186/1476-511x-11-85] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/16/2012] [Indexed: 02/07/2023] Open
Abstract
Oxidized low density lipoprotein (ox-LDL), a risk factor of atherosclerosis, facilitates the formation and vulnerability of atherosclerotic plaque, thus contributing to several clinical complications. Stem cells participate in vascular repair after damage and atherosclerosis is a process of inflammation accompanied with vascular injury. Researchers have proposed that stem cells participate in the formation of atherosclerotic plaque. Also, because ox-LDL is capable of inducing toxic effects on stem cells, it is reasonable to postulate that ox-LDL promotes the progress of atherosclerosis via acting on stem cells. In the present article, we review the relationship between ox-LDL, stem cells, and atherosclerosis and a portion of the associated mechanisms.
Collapse
Affiliation(s)
- Hui Yang
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
10
|
Song YS, Lee HJ, Doo SH, Lee SJ, Lim I, Chang KT, Kim SU. Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. Cell Transplant 2012; 21:1641-50. [PMID: 22506988 DOI: 10.3727/096368912x637488] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bladder outlet obstruction (BOO) caused by collagen deposit is one of the most common problems in elderly male. This study was performed to examine the capability of human mesenchymal stem cells (MSCs) overexpressing hepatocyte growth factor (HGF) to inhibit collagen deposition in rat model of bladder outlet obstruction (BOO). HGF is known for its antifibrotic effect and the most promising agent for treating bladder fibrosis. BM3.B10 stable immortalized human MSC line (B10) was transduced to encode human HGF with a retroviral vector was prepared (B10.HGF). Two weeks after the onset of BOO, B10, and B10.HGF cells were injected into the rat's bladder wall. After 4 weeks, bladder tissues were harvested and Masson's trichrome staining was performed. Transgene expression in HGF-expressing B10 cells was demonstrated by reverse transcriptase polymerase chain reaction and immunohistochemical staining, and the high levels of HGF secreted by B10.HGF cells was confirmed by ELISA. The mean bladder weight in BOO rats was 5.8 times of the normal controls, while in animals grafted with B10.HGF cells, the weight was down to four times of the control [90.2 ± 1.6 (control), 89.9 ± 2.8 (sham), 527.9 ± 150.9 (BOO), 447.7 ± 41.0 (BOO + B10), and 362.7 ± 113.2 (BOO + B10.HGF)]. The mean percentage of collagen area increased in BOO rats, while in the animals transplanted with B10.HGF cells, the collagen area decreased to the normal control level [12.2 ± 1.3, (control), 12.8 ± 1.1 (sham), 26.6 ± 2.7 (BOO), 19.9 ± 6.0 (BOO + B10), and 13.3 ± 2.1 (BOO + B10.HGF)]. The expression of collagen and TGF-b protein increased after BOO, while the expression of HGF and c-met protein increased in the group with B10.HGF transplantation after BOO. Intercontraction interval decreased after BOO, but it recovered after B10.HGF transplantation. Maximal voiding pressure (MVP) increased after BOO, and it recovered to levels of the normal control after transplantation of B10.HGF cells. Residual urine volume (RU) increased after BOO, but the RU increase was not reversed by transplantation of B10.HGF cells. Human MSCs overexpressing HGF inhibited collagen deposition and improved cystometric parameters in bladder outlet obstruction of rats. The present study indicates that transplantation of MSCs modified to overexpress HGF could serve as a novel therapeutic strategy against bladder fibrosis in patients with bladder outlet obstruction.
Collapse
Affiliation(s)
- Yun Seob Song
- Department of Urology, Soonchunhyang University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Merkulova-Rainon T, Broquères-You D, Kubis N, Silvestre JS, Lévy BI. Towards the therapeutic use of vascular smooth muscle progenitor cells. Cardiovasc Res 2012; 95:205-14. [PMID: 22354897 DOI: 10.1093/cvr/cvs097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.
Collapse
|