1
|
Mohtadi S, Shariati S, Mansouri E, Khodayar MJ. Nephroprotective effect of diosmin against sodium arsenite-induced renal toxicity is mediated via attenuation of oxidative stress and inflammation in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105652. [PMID: 38072527 DOI: 10.1016/j.pestbp.2023.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023]
Abstract
Arsenic compounds, which are used in different industries like pesticide manufacturing, cause severe toxic effects in almost all organs, including the kidneys. Since the primary route of exposure to arsenic is through drinking water, and millions of people worldwide are exposed to unsafe levels of arsenic that can pose a threat to their health, this research was performed to investigate the nephroprotective effects of Diosmin (Dios), a flavonoid found in citrus fruits, against nephrotoxicity induced by sodium arsenite (SA). To induce nephrotoxicity, SA (10 mg/kg, oral gavage) was administered to mice for 30 days. Dios (25, 50, and 100 mg/kg, oral gavage) was given to mice for 30 days prior to SA administration. After the study was completed, animals were euthanized and blood and kidney samples were taken for biochemical and histopathological assessments. Results showed that SA-treated mice significantly increased the blood urea nitrogen and creatinine levels in the serum. This increase was associated with significant kidney tissue damage in SA-treated mice, which was confirmed by histopathological studies. Furthermore, SA enhanced the amounts of renal thiobarbituric acid reactive substances and decreased total thiol reserves, as well as the activity of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase. Also, in the SA-exposed group, an increase in the levels of kidney inflammatory biomarkers, including nitric oxide and tumor necrosis factor-alpha was observed. The western blot analysis indicated an elevation in the protein expression of kidney injury molecule-1 and nuclear factor-kappa B in SA-treated mice. However, pretreatment with Dios ameliorated the SA-related renal damage in mice. Our findings suggest that Dios can protect the kidneys against the nephrotoxic effects of SA by its antioxidant and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Marini HR, Bellone F, Catalano A, Squadrito G, Micali A, Puzzolo D, Freni J, Pallio G, Minutoli L. Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites 2023; 13:722. [PMID: 37367879 PMCID: PMC10303146 DOI: 10.3390/metabo13060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is the kidney, where it accumulates. In the present narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney morphological and functional damage caused by Cd and the state of the art about possible therapeutic managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and other research groups studied the possible pathophysiological molecular pathways induced by Cd, such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy, that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the results of recent studies have confirmed the altered composition and functions of the gut microbial communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet, food components, and CKD management, and also taking into account that gut microbiota are very sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced kidney damage and, accordingly, could help in the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy;
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (D.P.); (J.F.)
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (D.P.); (J.F.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| |
Collapse
|
3
|
Westerhausen MT, Bernard M, Choi G, Jeffries-Stokes C, Chandrajith R, Banati R, Bishop DP. Preparation of matrix-matched standards for the analysis of teeth via laser ablation-inductively coupled plasma-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:797-806. [PMID: 36722471 DOI: 10.1039/d2ay02015g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mineralised tissue such as teeth can serve as a retrospective, chronological bioindicator of past exposure to toxic metals. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) can be used to determine the presence and spatial distribution of toxic metals in teeth, giving a record of when an exposure occurred. Concentrations of these metals are often determined by a one-point calibration against NIST glass using an equation that requires an internal standard factor that accounts for differences in ablation behaviour between the glass and the tooth. However, an ideal external calibration would contain multiple matrix-matched standards to obtain a calibration curve. Here, we investigated optimal procedures for preparing synthetic hydroxyapatite (HA) doped with elements of interest as a calibration material. The materials were examined for homogeneity of metal incorporation, matrix-matched ablation characteristics, linearity, and limits of detection. A homogenised and pelleted HA was the most suitable material, providing improved ablation characteristics over previous HA materials and NIST glass for the analysis of teeth. An ablation yield of 1.1 showed its suitability to analyse teeth, the metals were homogeneously incorporated, and it produced excellent linearity with limits of detection ranging from 0.1-2 μg kg-1 for magnesium, aluminium, nickel, copper, zinc, cadmium, barium and lead. A juvenile incisor from a remote indigenous community in Australia and an adult molar from Sri Lanka were assessed for toxic metal exposure. The molar showed evidence of exposure to cadmium and lead. The synthetic HA material was straightforward to prepare, and will improve confidence in the analysis of teeth and other biomineralised material when assessing toxic metal exposure.
Collapse
Affiliation(s)
- Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory (HyMaS), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, P. O. Box 123, Broadway, NSW 2007, Australia.
| | - Martin Bernard
- Hyphenated Mass Spectrometry Laboratory (HyMaS), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, P. O. Box 123, Broadway, NSW 2007, Australia.
| | - Gina Choi
- Hyphenated Mass Spectrometry Laboratory (HyMaS), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, P. O. Box 123, Broadway, NSW 2007, Australia.
| | | | - Rohana Chandrajith
- Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
- Faculty of Medicine and Health, University of Sydney, 94 Mallett St, Camperdown, NSW 2050, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, P. O. Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
4
|
Ibraheem O, Oyewole TA, Adedara A, Abolaji AO, Ogundipe OM, Akinyelu J, Eze CT, Albogami S, Alotaibi SS, Adeyemi OS, Batiha GES, Alorabi M, De Waard M. Ackee ( Blighia sapida K.D. Koenig) Leaves and Arils Methanolic Extracts Ameliorate CdCl 2-Induced Oxidative Stress Biomarkers in Drosophila melanogaster. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3235031. [PMID: 36425055 PMCID: PMC9679428 DOI: 10.1155/2022/3235031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2024]
Abstract
Different ethnomedical benefits have been documented on different parts of Ackee (Blighia sapida); however, their roles in ameliorating oxidative damages are not well established. CdCl2 inhibitory effects on some oxidative-stress biomarkers and ameliorative potentials of Ackee leaves (AL) and arils (AS) methanolic extracts were studied using Drosophila melanogaster as a model. One to 3-day-old D. melanogaster flies were orally exposed to different concentrations of CdCl2 in their diet for 7 days. The fly's survival profile and negative geotaxis assays were subsequently analysed. Methanolic extracts of AL and AS treatments showed negative geotaxis behaviour, and extracts were able to ameliorate the effect of Cd2+ on catalase and GST activities and increase total thiol and GSH levels, while it reduced the H2O2 generation (p ≤ 0.05) when compared to the control. Furthermore, Cd2+ exhibited noncompetitive and uncompetitive enzyme inhibition on catalase and GST activities, respectively, which may have resulted in the formation of Enzyme-substrate-Cd2+ transition complexes, thus inhibiting the conversion of substrate to product. This study, thus, suggests that the Cd2+ mechanism of toxicity was associated with oxidative damage, as evidenced by the alteration in the oxidative stress-antioxidant imbalance, and that the AL and AS extracts possess essential phytochemicals that could alleviate possibly deleterious oxidative damage effects of environmental pollutants such as CdCl2. Thus, Ackee plant parts possess essential phytonutrients which could serve as valuable resources in heavy metal toxicity management.
Collapse
Affiliation(s)
- Omodele Ibraheem
- Plants for Biotechnological Resources Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Tosin A. Oyewole
- Plants for Biotechnological Resources Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Adeola Adedara
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo, Nigeria
| | - Amos O. Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo, Nigeria
| | - Oluwatobiloba M. Ogundipe
- Plants for Biotechnological Resources Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Jude Akinyelu
- Nanobiochemistry Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Chukwuebuka T. Eze
- Environmental Toxicology Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Oluyomi S. Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB, Omu-Aran, 1001, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, El Beheira, Egypt
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egreve, France
- L'Institute du thorax, Inserm, Cnrs, Univ Nantes, F-44007 Nantes, France
- Universite de Nice Sophia-Antipolis, LabEx Ion Channels, Science and Therapeutics, F-06560, Valbonne, France
| |
Collapse
|
5
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
6
|
Renoprotective and Oxidative Stress-Modulating Effects of Taxifolin against Cadmium-Induced Nephrotoxicity in Mice. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081150. [PMID: 36013329 PMCID: PMC9409698 DOI: 10.3390/life12081150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is an inessential trace metal that accumulates in the kidney and may lead to renal toxicity by mediating oxidative stress (OS), inflammatory reactions, and apoptosis. The main objective of this experiment was to inspect the protecting potential of taxifolin (TA) on Cd-induced renal toxicity. Adult male mice were allocated into equal five groups as follows: control, TA-treated (50 mg/kg, oral), CdCl2-treated (4 mg/kg body weight (BW), p.o.), pretreated with TA (25 mg/kg) 1 h before CdCl2 injection (4 mg/kg BW, p.o.), and pretreated with TA (50 mg/kg) 1 h before CdCl2 injection (4 mg/kg BW, p.o.) for 14 days. Cd-intoxicated mice revealed higher serum urea and creatinine levels and notable histopathological alterations in the renal tissues. Malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappa B (NF-κB) p65, tumor necrosis factor-α (TNF-α), and IL-1β were increased. In contrast, glutathione levels, catalase and superoxide dismutase activities, and IL-10 levels were decreased under Cd-administered effects. Conversely, the TA pre-treatment highly protected tissues from Cd-toxicity, improved renal function, decreased MDA and NO levels, attenuated inflammation, and improved redox status in the renal tissues of Cd-intoxicated mice. The TA pre-treatment of Cd-intoxicated mice showed down-regulation of both Bax and caspase-3 protein and up-regulation of Bcl-2 protein expression in the kidney. Furthermore, TA pre-treatment induced higher upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression in kidney cells of Cd-intoxicated mice. Therefore, TA can protect renal tissues against Cd-induced nephrotoxicity via improving redox status, modulating inflammation, diminishing cell apoptosis, and activating the Nrf2/HO-1 signaling pathway.
Collapse
|
7
|
Cadmium-Induced Kidney Injury in Mice Is Counteracted by a Flavonoid-Rich Extract of Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, via the Enhancement of Different Defense Mechanisms. Biomedicines 2021; 9:biomedicines9121797. [PMID: 34944613 PMCID: PMC8698830 DOI: 10.3390/biomedicines9121797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is considered the kidney, where it accumulates. No effective treatment for Cd poisoning is available so that several therapeutic approaches were proposed to prevent damages after Cd exposure. We evaluated the effects of a flavonoid-rich extract of bergamot juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), in the kidney of mice exposed to cadmium chloride (CdCl2). Male mice were administered with CdCl2 and treated with Cur, Re, or BJe alone or in combination for 14 days. The kidneys were processed for biochemical, structural and morphometric evaluation. Cd treatment significantly increased urea nitrogen and creatinine levels, along with tp53, Bax, Nos2 and Il1b mRNA, while reduced that of Bcl2, as well as glutathione (GSH) content and glutathione peroxidase (GPx) activity. Moreover, Cd caused damages to glomeruli and tubules, and increased Nrf2, Nqo1 and Hmox1 gene expression. Cur, Re and BJe at 40 mg/kg significantly improved all parameters, while BJe at 20 mg/kg showed a lower protective effect. After treatment with the associations of the three nutraceuticals, all parameters were close to normal, thus suggesting a new potential strategy in the protection of renal functions in subjects exposed to environmental toxicants.
Collapse
|
8
|
Yan LJ, Allen DC. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021; 11:1575. [PMID: 34827573 PMCID: PMC8615899 DOI: 10.3390/biom11111575] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cadmium is a nonessential metal that has heavily polluted the environment due to human activities. It can be absorbed into the human body via the gastrointestinal tract, respiratory tract, and the skin, and can cause chronic damage to the kidneys. The main site where cadmium accumulates and causes damage within the nephrons is the proximal tubule. This accumulation can induce dysfunction of the mitochondrial electron transport chain, leading to electron leakage and production of reactive oxygen species (ROS). Cadmium may also impair the function of NADPH oxidase, resulting in another source of ROS. These ROS together can cause oxidative damage to DNA, proteins, and lipids, triggering epithelial cell death and a decline in kidney function. In this article, we also reviewed evidence that the antioxidant power of plant extracts, herbal medicines, and pharmacological agents could ameliorate cadmium-induced kidney injury. Finally, a model of cadmium-induced kidney injury, centering on the notion that oxidative damage is a unifying mechanism of cadmium renal toxicity, is also presented. Given that cadmium exposure is inevitable, further studies using animal models are warranted for a detailed understanding of the mechanism underlying cadmium induced ROS production, and for the identification of more therapeutic targets.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | | |
Collapse
|
9
|
Guan Y, Zhao X, Song N, Cui Y, Chang Y. Albicanol antagonizes Cd-induced apoptosis through a NO/iNOS-regulated mitochondrial pathway in chicken liver cells. Food Funct 2021; 12:1757-1768. [PMID: 33502412 DOI: 10.1039/d0fo03270k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cadmium (Cd) induces hepatocyte injury by oxidative stress. Albicanol is a sesquiterpenoid extracted from the medicinal plant Dryopteris fragrans that has previously been shown to exhibit anti-aging and antioxidant activity. In this study, we explored the mechanism of albicanol inhibition of the Cd-induced apoptosis of chicken hepatoma cells (LMH) by treating these cells with CdCl2 (25 μM) and/or albicanol (2.5 × 10-5 μg mL-1) for 24 h. Under Cd treatment, the research results showed that the apoptosis rate markedly increased in LMH cells. In addition, the iNOS activity and NO content increased significantly, which promoted the expressions of genes associated with the mitochondrial apoptosis pathway (Bax, CytC, Caspase-3 and Caspase-9) and inhibited the expression of Bcl-2 in this pathway. However, Cd + albicanol co-treatment significantly reduced the apoptosis rate and the expressions of iNOS and genes associated with the mitochondrial apoptosis pathway (Bax, CytC, Caspase-3 and Caspase-9), and promoted the expression of Bcl-2 in this pathway. In addition, molecular docking supported a link between the albicanol ligand and the iNOS receptor. These results indicated that albicanol can inhibit Cd-induced apoptosis by regulating the NO/iNOS-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Yalin Guan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Chang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Kandemir FM, Caglayan C, Darendelioğlu E, Küçükler S, İzol E, Kandemir Ö. Modulatory effects of carvacrol against cadmium-induced hepatotoxicity and nephrotoxicity by molecular targeting regulation. Life Sci 2021; 277:119610. [PMID: 33989663 DOI: 10.1016/j.lfs.2021.119610] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
AIM Cadmium (Cd) is a toxic heavy metal that causes severe toxic effects on different tissues including liver and kidney. Therefore the research for alternatives to reduce the damage caused by Cd has substantial importance. This study was performed to examine the possible modulatory effects of carvacrol (CRV) against Cd-induced hepatorenal toxicities and the possible mechanisms underlying these effects. MATERIALS AND METHODS In the present study, 35 male Wistar rats were randomly divided into 5 groups. The rats were treated with Cd (25 mg/kg) and treated with CRV (25 and 50 mg/kg body weight) for 7 consecutive days. KEY FINDINGS CRV could modulate Cd-induced elevations of ALT, ALP, AST, urea, creatinine, MDA and enhance antioxidant enzymes' activities such as SOD, CAT, and GPx, and GSH's level. CRV also reversed the changes in levels of inflammatory biomarker and apoptotic genes that include NF-κB, Bcl-3, MAPK-14, iNOS, COX-2, MPO, PGE2, Bax, Bcl-2, P53, Caspase-9, Caspase-6 and Caspase-3 in both tissues. The levels of 8-OHdG in the Cd-induced liver and kidney tissues were modulated after CRV treatment. Furthermore, CRV treatment considerably lowered Cd, Na, Fe, and Zn content while increased K, Ca, Mg and Cu contents in both tissues as compared to the Cd-exposed rats. SIGNIFICANCE The results of the present study revealed that CRV supplementation could be a promising strategy to protect the liver and kidney tissues against Cd-induced oxidative damage, inflammation and apoptosis.
Collapse
Affiliation(s)
- Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey.
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey.
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Ebubekir İzol
- Central Laboratory Application and Research Center, Bingol University, 12000 Bingol, Turkey
| | - Özge Kandemir
- Erzurum Veterinary Control Institute, 25070 Erzurum, Turkey
| |
Collapse
|
11
|
Momeni HR, Eskandari N. Curcumin protects the testis against cadmium-induced histopathological damages and oxidative stress in mice. Hum Exp Toxicol 2019; 39:653-661. [PMID: 31876186 DOI: 10.1177/0960327119895564] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cadmium is an environmental pollutant which can induce the overproduction of free radicals while suppressing the antioxidant defense system. Curcumin is considered a free-radical scavenger and a potent antioxidant. This study was conducted to investigate the effect of curcumin on serum antioxidant enzymes and histopathological changes in mice treated with cadmium. METHODS In this experimental study, adult mice were divided into four groups, namely, control, cadmium chloride (5 mg kg-1), curcumin (100 mg kg-1), and curcumin+cadmium chloride. The animals received curcumin 24 h prior to cadmium chloride injection. After 24 h, blood samples were collected and used to assess the levels of malondialdehyde (MDA), antioxidant enzymes activity (catalase, superoxide dismutase, and glutathione peroxidase), total glutathione, total thiol, and hydrogen peroxide. Histopathological evaluation was also performed for testicular tissue. RESULTS Mice treated with cadmium showed a significant (p < 0.001) decrease in the activity of antioxidant enzymes, serum amounts of total glutathione and total thiol, and the diameter of seminiferous tubules compared to the control group. This pollutant also significantly (p < 0.001) increased serum levels of MDA and hydrogen peroxide and the lumen diameter of seminiferous tubules compared to the control group. In the curcumin+cadmium group, curcumin significantly (p < 0.001) reversed the adverse effects of cadmium, compared to the cadmium group. In addition, curcumin alone significantly (p < 0.001) increased serum glutathione peroxidase activity and thiol content compared to the control group. CONCLUSION Curcumin, as a potent antioxidant, could compensate the adverse effects of cadmium on lipid and protein peroxidation, potentiated serum antioxidant defense system, and ameliorated some morphometrical parameters in the testis of cadmium-treated mice.
Collapse
Affiliation(s)
- H R Momeni
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - N Eskandari
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
12
|
Pallio G, Micali A, Benvenga S, Antonelli A, Marini HR, Puzzolo D, Macaione V, Trichilo V, Santoro G, Irrera N, Squadrito F, Altavilla D, Minutoli L. Myo-inositol in the protection from cadmium-induced toxicity in mice kidney: An emerging nutraceutical challenge. Food Chem Toxicol 2019; 132:110675. [PMID: 31306689 DOI: 10.1016/j.fct.2019.110675] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) induces functional and morphological changes in kidney. Therefore, the effects of a natural nutraceutical antioxidant, myo-inositol (MI), were evaluated in mice kidneys after Cd challenge. Twenty-eight C57 BL/6 J mice were divided into these groups: 0.9% NaCl; MI (360 mg/kg/day); CdCl2 (2 mg/kg/day) plus vehicle; CdCl2 (2 mg/kg/day) plus MI (360 mg/kg/day). After 14 days, kidneys were processed for structural, biochemical and morphometric evaluation. Treatment with CdCl2 increased urea nitrogen and creatinine in serum and augmented tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression. Furthermore, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecule-1 (KIM-1) and myo-inositol oxygenase (MIOX) immunoreactivity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells number were significantly higher than control and MI groups. Glutathione (GSH) content and glutathione peroxidase (GPx) activity were reduced and structural changes were evident. The treatment with MI significantly lowered urea nitrogen and creatinine levels, TNF-α and iNOS expression, MCP-1, KIM-1 and MIOX immunoreactivity and TUNEL positive cells number, increased GSH content and GPx activity and preserved kidney morphology. A protection of MI against Cd-induced damages in mice kidney was demonstrated, suggesting a strong antioxidant role of this nutraceutical against environmental Cd harmful effects on kidney lesions.
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy.
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Herbert R Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Vincenzo Trichilo
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Giuseppe Santoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| |
Collapse
|
13
|
Jin X, Jia T, Liu R, Xu S. The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-γ/PI3K/Akt pathway in chicken pancreas. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:355-362. [PMID: 29909169 DOI: 10.1016/j.jhazmat.2018.06.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
The animal experiment was preformed to investigate the roles of PPAR-γ/PI3K/Akt pathway in apoptosis triggered by cadmium (Cd) and in the antagonistic effects of selenium (Se) on Cd in the pancreas of chicken. The current study showed that Cd treatment obviously increased the accumulation of Cd and directly led to lower activities of amylase, trypsin and lipase in chicken pancreas. The expression of PPAR-γ, PI3K, and Akt was declined, whereas the level of Bax, Cyt C and caspase-3 were increased in Cd group. In the result of TUNEL assay and the histological examination, typical apoptosis characteristics in the pancreas of Cd group were confirmed. Cd group also showed high levels of inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) content in pancreas. However, those Cd-induced changes were obviously alleviated in Cd + Se group. Our study revealed that Cd could impact the pancreas function and induce the activation of Bax and the overproduction of NO via PPAR-γ/PI3K/Akt pathway to promote apoptosis in chicken pancreas. However, Se could reduce Cd accumulation and antagonize Cd-triggered apoptosis in chicken pancreas.
Collapse
Affiliation(s)
- Xi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | - Tiantian Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | - Ruohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
14
|
Oyouni AAA, Saggu S, Tousson E, Rehman H. Immunosuppressant drug tacrolimus induced mitochondrial nephrotoxicity, modified PCNA and Bcl-2 expression attenuated by Ocimum basilicum L. in CD1 mice. Toxicol Rep 2018; 5:687-694. [PMID: 30003047 PMCID: PMC6041355 DOI: 10.1016/j.toxrep.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022] Open
Abstract
Tacrolimus (TAC) is used sporadically as an immunosuppressive agent for organ transplantation, but its clinical used is limited due to its marked nephrotoxicity. Ocimum basilicum L. (Lamiaceae) (OB) had been shown to possess antioxidant, anti-inflammatory and nephroprotective activity, and effective at improving renal inflammation and glomerular. In our study, we aim to evaluate the efficacy of the OB against TAC-induced mitochondrial nephrotoxicity in CD1 mice. Mice were randomly divided into four groups. Group 1 (control group); administered orally with normal saline (1 mL/kg) for two weeks; Group 2 (OB extract treated-group) (500 mg/kg b.wt) gavaged once/day for two weeks; Group 3 (TAC-treated group) (3 mg/kg b.wt, administered ip once a day for two weeks); and Group 4; (TAC plus OB extract treated-group). Tacrolimus-induced nephrotoxicity was assessed biochemically and histopathologically. The OB extract was high in phenolic content (50.3 mg/g of gallic acid equivalent), total flavonoids (14.5 mg/g CE equivalent). The potential antioxidant efficacy of the extract (IC50) was 24.5 μg/mL. OB pretreatment significantly improved the TAC-induced changes in biochemical markers of nephrotoxicity for instance blood urea nitrogen (BUN), creatinine, total protein, and albumin (P < 0.01, when compared with TAC treated group). Also, it significantly restored the increase activities of TBARS, protein carbonyl (PC) (P < 0.001, when compared to healthy control group) and decreased activities of nonprotein thiol (NP-SH) levels, Mn-superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPx) antioxidants of mitochondria. The nephroprotective efficacy of the OB leaves extract was further evident by histopathological analysis together with the PCNA-ir and Bcl2. The upshot of the present study revealed that the OB possessed significant antioxidant and nephroprotective activity and had a preventive effect on the biochemical alterations and histological changes in TAC-treated mice.
Collapse
Key Words
- ABC, Avidin-Biotin- Peroxidase
- ANOVA, analysis of variance
- BUN, blood urea nitrogen
- Bcl-2
- DNPH, dinitrophenylhydrazine
- DPPH, 2,2-Diphenyl-1-picrylhydrazyl
- EOBPV, Egyptian Organization for Biological Products and Vaccines
- GPx, glutathione peroxidase
- GSH, glutathione
- H&E, hematoxylin and eosin
- H2O2, hydrogenperoxide
- IAEC, Institutional Animals Ethics Committee
- IC, inhibitory concentration
- Ip, intraperitoneal
- Mn-SOD, Mn-superoxide dismutase
- NP-SH, nonprotein thiol
- Nephrotoxicity
- OB, Ocimum basilicum
- OPA, orthophosphoric acid
- Ocimum basilicum
- PC, protein carbonyl
- PCNA
- PCNA-ir, proliferating cell nuclear antigen immunoreactivity
- ROS, reactive oxygen species
- TAC, tacroliums
- Tacrolimus
- mLPO, mitochondrial lipid peroxidation
Collapse
Affiliation(s)
| | - Shalini Saggu
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Sciences, Tanta University, Tanta, 31527, Egypt
| | - Hasibur Rehman
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
15
|
Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9162946. [PMID: 29849925 PMCID: PMC5932425 DOI: 10.1155/2018/9162946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 12/18/2022]
Abstract
Background Cadmium (Cd), a diffused environmental pollutant, has adverse effects on urinary apparatus. The role of flavocoxid, a natural flavonoid with antioxidant activity, on the morphological and biochemical changes induced in vivo by Cd in mice kidney was evaluated. Methods C57 BL/6J mice received 0.9% NaCl alone, flavocoxid (20 mg/kg/day i.p.) alone, Cd chloride (CdCl2) (2 mg/kg/day i.p.) alone, or CdCl2 plus flavocoxid (2 mg/kg/day i.p. plus 20 mg/kg/day i.p.) for 14 days. The kidneys were processed for biochemical, structural, ultrastructural, and morphometric evaluation. Results Cd treatment alone significantly increased urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; reduced GSH, GR, and GPx; and induced structural and ultrastructural changes in the glomeruli and in the tubular epithelium. After 14 days of treatment, flavocoxid administration reduced urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; increased GSH, GR, and GPx; and showed an evident preservation of the glomerular and tubular structure and ultrastructure. Conclusions A protective role of flavocoxid against Cd-induced oxidative damages in mouse kidney was demonstrated for the first time. Flavocoxid may have a promising antioxidant role against environmental Cd harmful effects on glomerular and tubular lesions.
Collapse
|
16
|
Zhang R, Yi R, Bi Y, Xing L, Bao J, Li J. The Effect of Selenium on the Cd-Induced Apoptosis via NO-Mediated Mitochondrial Apoptosis Pathway in Chicken Liver. Biol Trace Elem Res 2017; 178:310-319. [PMID: 28062951 DOI: 10.1007/s12011-016-0925-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
Abstract
Cd-induced apoptosis and the protective effects of Se against Cd-induced injury have been reported in previous studies. However, little is known regarding the effects of Cd-induced apoptosis in hepatic cells and the antagonistic effects of Se on Cd in poultry. In the present study, 128 healthy 31-week-old laying hens were randomly divided into four groups, which were fed basic diets, with the addition of Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or Se + Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. Ultrastructural changes, nitric oxide (NO) concentrations, inducible nitric oxide synthase (iNOS) activities, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and the expression of iNOS and apoptosis-related genes in livers were determined. It was observed that Cd treatment significantly increased the concentrations of NO and iNOS activity in chicken livers. The production of excessive NO initiated the mitochondrial apoptotic pathway. Exposure to Cd increased the mRNA and the protein expression levels of iNOS, caspase-3, Bax, p53, and Cyt-c. Furthermore, the ratio of Bax/Bcl-2 increased, while the expression of Bcl-2 decreased. Treatment with Se significantly alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein expression levels of iNOS, caspase-3, Bax, and Cyt-c. It indicated that Cd induced NO-mediated apoptosis through the mitochondrial apoptotic pathway and Se exerted antagonizing effects. The present study provides new insights as to how Se affects Cd-induced toxicity in the chicken liver.
Collapse
Affiliation(s)
- Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ran Yi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
17
|
Ansari MA, Raish M, Ahmad A, Alkharfy KM, Ahmad SF, Attia SM, Alsaad AMS, Bakheet SA. Sinapic acid ameliorate cadmium-induced nephrotoxicity: In vivo possible involvement of oxidative stress, apoptosis, and inflammation via NF-κB downregulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:100-107. [PMID: 28233699 DOI: 10.1016/j.etap.2017.02.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Cadmium (CD), an environmental and industrial pollutant, generates reactive oxygen species (ROS) and NOS responsible for oxidative and nitrosative stress that can lead to nephrotoxic injury, including proximal tubule and glomerulus dysfunction. Sinapic acid (SA) has been found to possess potent antioxidant and anti-inflammatory effects in vitro and in vivo. We aimed to examine the nephroprotective, anti-oxidant, anti-inflammatory, and anti-apoptotic effects of SA against CD-induced nephrotoxicity and its underlying mechanism. Kidney functional markers (serum urea, uric acid, creatinine, LDH, and calcium) and histopathological examinations of the kidney were used to evaluate CD-induced nephrotoxicity. Oxidative stress markers (lipid peroxidation and total protein), renal nitrosative stress (nitric oxide), antioxidant enzymes (catalase and NP-SH), inflammation markers (NF-κB [p65], TNF-α, IL-6, and myeloperoxidase [MPO]), and apoptotic markers (caspase 3, Bax, and Bcl-2) were also assessed. SA (10 and 20mg/kg) pretreatment restored kidney function, upregulated antioxidant levels, and prevented the elevation of lipid peroxidation and nitric oxide levels, significantly reducing oxidative and nitrosative stress. CD upregulated renal cytokine levels (TNF-α, IL-6), nuclear NF-κB (p65) expression, NF-κB-DNA-binding activity, and MPO activity, which were significantly downregulated upon SA pretreatment. Furthermore, SA treatment prevented the upregulation of caspase 3 and Bax protein expression and upregulated Bcl-2 protein expression. SA pretreatment also alleviated the magnitude of histological injuries and reduced neutrophil infiltration in renal tubules. We conclude that the nephroprotective potential of SA in CD-induced nephrotoxicity might be due to its antioxidant, anti-inflammatory, and anti-apoptotic potential via downregulation of oxidative/nitrosative stress, inflammation, and apoptosis in the kidney.
Collapse
Affiliation(s)
- Mushtaq Ahmad Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia; Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdulaziz M S Alsaad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Karimi O, Hesaraki S, Mortazavi SP. Histological and Functional Alteration in the Liver and Kidney and the Response of Antioxidants in Japanese quail Exposed to Dietary Cadmium. IRANIAN JORNAL OF TOXICOLOGY 2017. [DOI: 10.29252/arakmu.11.3.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Kocak C, Kocak FE, Akcilar R, Bayat Z, Aras B, Metineren MH, Yucel M, Simsek H. Effects of captopril, telmisartan and bardoxolone methyl (CDDO-Me) in ischemia-reperfusion-induced acute kidney injury in rats: an experimental comparative study. Clin Exp Pharmacol Physiol 2016; 43:230-41. [PMID: 26515498 DOI: 10.1111/1440-1681.12511] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/13/2015] [Accepted: 10/25/2015] [Indexed: 12/13/2022]
Abstract
Renal ischemia-reperfusion (IR) injury is one of the most common causes of acute kidney injury. This study investigated the effects of captopril (CAP), telmisartan (TEL) and bardoxolone methyl (BM) in animals with renal IR injury. Adult male Wistar-Albino rats were divided into six groups: control, vehicle, IR, IR with CAP, IR with TEL and IR with BM. Before IR was induced, drugs were administered by oral gavage. After a 60-min ischemia and a 120-min reperfusion period, bilateral nephrectomies were performed. Serum urea, creatinine, neutrophil gelatinase-associated lipocalin (NGAL) levels, tissue total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), asymmetric dimethylarginine (ADMA) levels, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) activity were measured. Tissue mRNA expression levels of peroxisome proliferator-activated receptor-ɣ (PPAR-ɣ), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were analyzed. In addition, renal tissues were evaluated histopathologically and immunohistochemically. All tested drugs reduced renal damage, apoptosis, urea, creatinine, NGAL, TOS, nitric oxide (NO) and ADMA levels, NF-κB, inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) expressions (P < 0.001). All tested drugs increased SOD activity, GSH-Px activity, TAS levels, TT levels, endothelial nitric oxide synthase (eNOS) expression, dimethylarginine dimethylaminohydrolases (DDAHs) expression, Nrf2 expression and PPAR-ɣ expression (P < 0.001, P < 0.003). These results suggest that CAP, TEL and BM pretreatment could reduce renal IR injury via anti-inflammatory, antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
- Cengiz Kocak
- Department of Pathology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey
| | - Fatma Emel Kocak
- Department of Medical Biochemistry, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey
| | - Raziye Akcilar
- Department of Physiology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey
| | - Zeynep Bayat
- Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, Kutahya, Turkey
| | - Bekir Aras
- Department of Urology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey
| | | | - Mehmet Yucel
- Department of Urology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey
| | - Hasan Simsek
- Department of Physiology, Faculty of Medicine, Dumlupinar University, Kutahya, Turkey
| |
Collapse
|
20
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
21
|
Erboga M, Kanter M, Aktas C, Sener U, Fidanol Erboga Z, Bozdemir Donmez Y, Gurel A. Thymoquinone Ameliorates Cadmium-Induced Nephrotoxicity, Apoptosis, and Oxidative Stress in Rats is Based on its Anti-Apoptotic and Anti-Oxidant Properties. Biol Trace Elem Res 2016; 170:165-72. [PMID: 26226832 DOI: 10.1007/s12011-015-0453-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd), an environmental and industrial pollutant, generates free radicals responsible for oxidative stress. Cd can also lead to various renal toxic damage such as the proximal tubules and glomerulus dysfunction. Thymoquinone (TQ) is the main constituent of the essential oil obtained from black seeds (Nigella sativa) and has various pharmacological effects. The aim of the present study was to examine the nephroprotective, anti-oxidant, and anti-apoptotic effect of the TQ against Cd-induced nephrotoxicity. A total of 24 male Wistar albino rats were divided into three groups: control, Cd-treated, and Cd-treated with TQ; each group contain eight animals. The Cd-treated group was injected subcutaneously with CdCl2 dissolved in saline in the amount of 2 ml/kg/day for 30 days, resulting in a dosage of 1 mg/kg Cd. The rats in TQ-treated groups were given TQ (50 mg/kg body weight) once a day orally together with first Cd injection during the study period. The histopathological studies in the kidney of rats also showed that TQ markedly reduced the toxicity of Cd and preserved the normal histological architecture of the renal tissue. Immunohistochemical analysis revealed that TQ significantly decreased the Cd-induced over expression of nuclear factor-κB in renal tissue. Furthermore, TQ treatment resulted in decreased the number of apoptotic cells. TQ significantly suppressed lipid peroxidation, compensated deficits in the anti-oxidant defenses (reduced superoxide dismutase, glutathione peroxidase and catalase activities) in renal tissue resulted from Cd administration. These findings suggest that the nephroprotective potential of TQ in Cd toxicity might be due to its anti-oxidant and anti-apoptotic properties, which could be useful for achieving optimum effects in Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Erboga
- Department of Histology and Embryology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey.
| | - Mehmet Kanter
- Department of Histology and Embryology, Faculty of Medicine, University of Istanbul Medeniyet, Istanbul, Turkey
| | - Cevat Aktas
- Department of Histology and Embryology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| | - Umit Sener
- Department of Physiology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| | - Zeynep Fidanol Erboga
- Department of Histology and Embryology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| | - Yeliz Bozdemir Donmez
- Department of Histology and Embryology, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| | - Ahmet Gurel
- Department of Biochemistry, Faculty of Medicine, University of Namik Kemal, Tekirdag, Turkey
| |
Collapse
|
22
|
Abarikwu SO, Adebayo OL, Otuechere CA, Iserhienrhien BO, Badejo TA. Selenium and rutin alone or in combination do not have stronger protective effects than their separate effects against cadmium-induced renal damage. PHARMACEUTICAL BIOLOGY 2015; 54:896-904. [PMID: 26455473 DOI: 10.3109/13880209.2015.1089912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Selenium (Se) and rutin (RUT) are antioxidants that protect against tissue damage. OBJECTIVE In this study, the separate and combine protective effects of RUT and Se against cadmium (Cd)-induced renal damage were evaluated in rats. MATERIALS AND METHODS Wistar rats were treated by gavage to RUT (30 mg/kg) or Se (0.15 ppm) or Cd (200 ppm) in drinking water alone or in combination (30 mg/kg RUT +0.15 ppm Se + 200 ppm Cd). Corn oil was used as vehicle (2 mL/kg). After a 5-week treatment period, rat kidneys were removed for biochemical assays and histopathological examination. Se and Cd levels were evaluated by flame atomic absorption spectrophotometry. RESULTS The malondialdehyde and glutathione levels as well as superoxide dismutase and catalase activities in the Cd-treated animals were increased compared with control values (0.056 ± 0.0003 versus 0.011 ± 0.0005 μmol/mg; 0.005 ± 0.0006 versus 0.00085 ± 0.0002 μg/mg; 1.62 ± 0.09 versus 0.48 ± 0.12 units/mg; 650 ± 25 versus 361.89 ± 31 μmol H2O2/mg, respectively). Cd treatment was also associated with decreased renal Se concentration (4.19 ± 0.92 versus 7.73 ± 0.7 μg/g dry weight), increased alkaline phosphatase (0.07 ± 0.0015 versus 0.033 ± 0.0019 unit/mg), acid phosphatase (0.029 ± 0.0021 versus 0.015 ± 0.0016 unit/mg), and lactate dehydrogenase (0.032 ± 0.004 versus 0.014 ± 0.0027 unit/mg) activities, respectively, and with evidence of severe renal damage. The combination of RUT and Se or their separate effects prevented the Cd-induced oxidative renal damage. However, their combine effects do not have stronger effects than their separate effect against Cd-induced renal damage. DISCUSSION AND CONCLUSION RUT and Se function as potent antioxidant in the protection of renal damage induced by Cd.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- a Department of Biochemistry , University of Port Harcourt , Choba , Nigeria and
| | - Olusegun L Adebayo
- b Department of Chemical Sciences , Redeemer's University , Ede , Nigeria
| | | | | | - Temitope A Badejo
- b Department of Chemical Sciences , Redeemer's University , Ede , Nigeria
| |
Collapse
|
23
|
Liu L, Yang B, Cheng Y, Lin H. Ameliorative Effects of Selenium on Cadmium-Induced Oxidative Stress and Endoplasmic Reticulum Stress in the Chicken Kidney. Biol Trace Elem Res 2015; 167:308-19. [PMID: 25805271 DOI: 10.1007/s12011-015-0314-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/13/2015] [Indexed: 01/11/2023]
Abstract
The harmful influences of dietary cadmium (Cd) on the chicken kidney and the protective role of selenium (Se) against Cd-induced nephrotoxicity in the chicken are relatively unexplored subjects. The aim of this study was to investigate the ameliorative role of Se on the effects of Cd-induced oxidative stress, endoplasmic reticulum stress, and apoptosis in chicken kidneys. For this study, 100-day-old chickens received Se (as 10 mg Na2SeO3/kg dry weight of diet), Cd (as 150 mg CdCl2/kg dry weight of diet), or Cd + Se in their diets for 60 days. Then, the histopathological changes, Cd and Se contents, levels of oxidative stress, inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity, levels of endoplasmic reticulum (ER) stress, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and expression levels of Bcl-2 and caspase 3 in the kidney were examined. The results showed that Cd exposure caused histopathological and ultrastructural damage and apoptosis of the kidneys. Cd administration significantly increased the accumulation of Cd, the malondialdehyde (MDA) content, NO production, iNOS activity, iNOS expression levels, expression levels of ER stress-related genes (GRP78, GRP94, ATF4, ATF6, and IRE) and the pro-apoptosis gene caspase 3, and the rate of apoptosis. Cd administration markedly decreased the Se content, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, and anti-apoptosis gene Bcl-2 expression levels. Co-treatment with Se and Cd obviously reduced the accumulation of Cd, Cd-induced histopathological and ultrastructural changes, oxidative stress, iNOS-NO system activity, ER stress, caspase 3 expression levels, and the rate of apoptosis in the kidneys. These results suggested that Cd exposure caused renal injury and that Se ameliorated Cd-induced nephrotoxicity in chickens.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur J Pharmacol 2015; 748:54-60. [DOI: 10.1016/j.ejphar.2014.12.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
|
25
|
Olmesartan attenuates tacrolimus-induced biochemical and ultrastructural changes in rat kidney tissue. BIOMED RESEARCH INTERNATIONAL 2014; 2014:607246. [PMID: 24987695 PMCID: PMC4058524 DOI: 10.1155/2014/607246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/10/2014] [Indexed: 01/25/2023]
Abstract
Tacrolimus, a calcineurin inhibitor, is clinically used as an immunosuppressive agent in organ transplantation, but its use is limited due to its marked nephrotoxicity. The present study investigated the effect of olmesartan (angiotensin receptor blocker) on tacrolimus-induced nephrotoxicity in rats. A total of 24 rats were divided into four groups, which included control, tacrolimus, tacrolimus + olmesartan, and olmesartan groups. Tacrolimus-induced nephrotoxicity was assessed biochemically and histopathologically. Tacrolimus significantly increased BUN and creatinine level. Treatment with olmesartan reversed tacrolimus-induced changes in the biochemical markers (BUN and creatinine) of nephrotoxicity. Tacrolimus significantly decreased GSH level and catalase activity while increasing MDA level. Olmesartan also attenuated the effects of tacrolimus on MDA, GSH, and catalase. In tacrolimus group histological examination showed marked changes in renal tubule, mitochondria, and podocyte processes. Histopathological and ultrastructural studies showed that treatment with olmesartan prevented tacrolimus-induced renal damage. These results suggest that olmesartan has protective effects on tacrolimus-induced nephrotoxicity, implying that RAS might be playing role in tacrolimus-induced nephrotoxicity.
Collapse
|
26
|
Hagar H, Al Malki W. Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:803-811. [PMID: 24632105 DOI: 10.1016/j.etap.2014.02.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/02/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd) is an environmental and industrial pollutant that can induce a broad spectrum of toxicological effects that affect various organs in humans and experimental animals. This study aims to investigate the effect of betaine supplementation on cadmium-induced oxidative impairment in rat kidney. The animals were divided into four groups (n=10 per group): control, cadmium, betaine and betaine+cadmium (1) saline control group; (2) cadmium group in which cadmium chloride (CdCl2) was given orally at a daily dose of 5 mg/kg body weight for four weeks; (3) betaine group, in which betaine was given to rats at a dose of 250 mg/kg/day, orally via gavage for six weeks; (4) cadmium+betaine group in which betaine was given at a dose of 250 mg/kg/day, orally via gavage for two weeks prior to cadmium administration and concurrently during cadmium administration for four weeks. Cadmium nephrotoxicity was indicated by elevated blood urea nitrogen (BUN) and serum creatinine levels. Kidneys from cadmium-treated rats showed an increase in lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) concentration and reductions in total antioxidant status (TAS), reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px) activity, superoxide dismutase concentration (SOD) and catalase activity. Caspase-3 activity, a marker of DNA damage was also elevated in renal tissues of cadmium-treated rats. Pre-treatment of rats with betaine substantially attenuated the increase in BUN and serum creatinine levels. Betaine also inhibited the increase in TBARS concentration and reversed the cadmium-induced depletion in total antioxidant status, GSH, GSH-Px, SOD and catalase concentrations in renal tissues. Renal caspase-3 activity was also reduced with betaine supplementation. These data emphasize the importance of oxidative stress and caspase signaling cascade in cadmium nephrotoxicity and suggest that betaine pretreatment reduces severity of cadmium nephrotoxicity probably via antioxidant action and suppression of apoptosis.
Collapse
Affiliation(s)
- Hanan Hagar
- Department of physiology and Pharmacology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
| | - Waleed Al Malki
- Department of Pharmacology, College of Pharmacy Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
27
|
Chen Q, Zhang R, Li WM, Niu YJ, Guo HC, Liu XH, Hou YC, Zhao LJ. The protective effect of grape seed procyanidin extract against cadmium-induced renal oxidative damage in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:759-768. [PMID: 23958968 DOI: 10.1016/j.etap.2013.07.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
As an important environmental pollutant, cadmium (Cd) can lead to serious renal damage. Grape seed procyanidins extract (GSPE), a biological active component of grape seed, has been shown to possess antioxidative effects. Here, we assessed the protective effect of GSPE on Cd-induced renal damage using animal experiment. After 30 days, the oxidative damage of kidney was evaluated through measurement of superoxide dismutase (SOD), glutathione peroxidation (GSH-Px) and malondialdehyde (MDA). Since, oxidative stress could lead to apoptosis, the renal apoptosis was measured using flow cytometer. Moreover, the expression of apoptosis-related protein Bax and Bcl-2 was analyzed by immunohistochemistry and Western blot. The results showed that Cd led to the decrease of SOD and GSH-Px activities, and the increase of MDA level, induced renal apoptosis. However, the coadministration of GSPE attenuated Cd-induced lipid peroxidation, and antagonized renal apoptosis, probably associated with the expression of Bax and Bcl-2. These data suggested that GSPE has protective effect against renal oxidative damage induced by Cd, which provide a potential natural chemopreventive agent against Cd-poisoning.
Collapse
Affiliation(s)
- Qing Chen
- Department of Reproductive Medicine, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shanxi, PR China; Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Yanta West Road 76, Xi'an, 710061 Shanxi, PR China; Department of Toxicology, School of Public Health, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017 Hebei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Santoyo-Sánchez MP, Pedraza-Chaverri J, Molina-Jijón E, Arreola-Mendoza L, Rodríguez-Muñoz R, Barbier OC. Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors. BMC Nephrol 2013; 14:211. [PMID: 24093454 PMCID: PMC3851428 DOI: 10.1186/1471-2369-14-211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic exposure to low cadmium (Cd) levels produces urinary excretion of low molecular weight proteins, which is considered the critical effect of Cd exposure. However, the mechanisms involved in Cd-induced proteinuria are not entirely clear. Therefore, the present study was designed to evaluate the possible role of megalin and cubilin (important endocytic receptors in proximal tubule cells) and angiotensin II type 1 (AT1) receptor on Cd-induced microalbuminuria. METHODS Four groups of female Wistar rats were studied. Control (CT) group, vehicle-treated rats; LOS group, rats treated with losartan (an AT1 antagonist) from weeks 5 to 8 (10 mg/kg/day by gavage); Cd group, rats subchronically exposed to Cd (3 mg/kg/day by gavage) during 8 weeks, and Cd + LOS group, rats treated with Cd for 8 weeks and LOS from weeks 5-8. Kidney Cd content, glomerular function (evaluated by creatinine clearance and plasma creatinine), kidney injury and tubular function (evaluated by Kim-1 expression, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and glucose, and microalbuminuria), oxidative stress (measured by lipid peroxidation and NAD(P)H oxidase activity), mRNA levels of megalin, expressions of megalin and cubilin (by confocal microscopy) and AT1 receptor (by Western blot), were measured in the different experimental groups. Data were analyzed by one-way ANOVA or Kruskal-Wallis test using GraphPad Prism 5 software (Version 5.00). P < 0.05 was considered statistically significant. RESULTS Administration of Cd (Cd and Cd + LOS groups) increased renal Cd content. LOS-treatment decreased Cd-induced microalbuminuria without changes in: plasma creatinine, creatinine clearance, urinary NAG and glucose, oxidative stress, mRNA levels of megalin and cubilin, neither protein expression of megalin nor AT1 receptor, in the different experimental groups studied. However, Cd exposure did induce the expression of the tubular injury marker Kim-1 and decreased cubilin protein levels in proximal tubule cells whereas LOS-treatment restored cubilin levels and suppressed Kim-1 expression. CONCLUSION LOS treatment decreased microalbuminuria induced by Cd apparently through a cubilin receptor-dependent mechanism but independent of megalin.
Collapse
Affiliation(s)
- Mitzi Paola Santoyo-Sánchez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México.
| | | | | | | | | | | |
Collapse
|
29
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
30
|
Telmisartan ameliorates germ cell toxicity in the STZ-induced diabetic rat: Studies on possible molecular mechanisms. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:11-23. [DOI: 10.1016/j.mrgentox.2013.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/27/2013] [Accepted: 04/21/2013] [Indexed: 11/20/2022]
|
31
|
Ivanova J, Gluhcheva Y, Tsanova D, Piskova A, Djaleva R, Mokresheva S, Kamenova D, Mitewa M. On the effect of chelating agents and antioxidants on cadmium-induced organ toxicity. An overview. ACTA ACUST UNITED AC 2013. [DOI: 10.5155/eurjchem.4.1.74-84.739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Napolitano JR, Liu MJ, Bao S, Crawford M, Nana-Sinkam P, Cormet-Boyaka E, Knoell DL. Cadmium-mediated toxicity of lung epithelia is enhanced through NF-κB-mediated transcriptional activation of the human zinc transporter ZIP8. Am J Physiol Lung Cell Mol Physiol 2012; 302:L909-18. [PMID: 22345571 DOI: 10.1152/ajplung.00351.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cadmium (Cd), a toxic heavy metal and carcinogen that is abundantly present in cigarette smoke, is a cause of smoking-induced lung disease. SLC39A8 (ZIP8), a zinc transporter, is a major portal for Cd uptake into cells. We have recently identified that ZIP8 expression is under the transcriptional control of the NF-κB pathway. On the basis of this, we hypothesized that cigarette-smoke induced inflammation would increase ZIP8 expression in lung epithelia, thereby enhancing Cd uptake and cell toxicity. Herein we report that ZIP8 is a central mediator of Cd-mediated toxicity. TNF-α treatment of primary human lung epithelia and A549 cells induced ZIP8 expression, resulting in significantly higher cell death attributable to both apoptosis and necrosis following Cd exposure. Inhibition of the NF-κB pathway and ZIP8 expression significantly reduced cell toxicity. Zinc (Zn), a known cytoprotectant, prevented Cd-mediated cell toxicity via ZIP8 uptake. Consistent with cell culture findings, a significant increase in ZIP8 mRNA and protein expression was observed in the lung of chronic smokers compared with nonsmokers. From these studies, we conclude that ZIP8 expression is induced in lung epithelia in an NF-κB-dependent manner, thereby resulting in increased cell death in the presence of Cd. From this we contend that ZIP8 plays a critical role at the interface between micronutrient (Zn) metabolism and toxic metal exposure (Cd) in the lung microenvironment following cigarette smoke exposure. Furthermore, dietary Zn intake, or a lack thereof, may be a contributing factor in smoking-induced lung disease.
Collapse
Affiliation(s)
- Jessica R Napolitano
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|