1
|
Martins FM, Iglesias BA, Chaves OA, Gutknecht da Silva JL, Leal DBR, Back DF. Vanadium(V) complexes derived from triphenylphosphonium and hydrazides: cytotoxicity evaluation and interaction with biomolecules. Dalton Trans 2024; 53:8315-8327. [PMID: 38666341 DOI: 10.1039/d4dt00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.
Collapse
Affiliation(s)
- Francisco Mainardi Martins
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrin Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Otávio Augusto Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga s/n, Coimbra, 3004-535, Portugal
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, 21040-361, Brazil
| | | | | | - Davi Fernando Back
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Patel K, Bora V, Patel B. Sodium orthovanadate exhibits anti-angiogenic, antiapoptotic and blood glucose-lowering effect on colon cancer associated with diabetes. Cancer Chemother Pharmacol 2024; 93:55-70. [PMID: 37755518 DOI: 10.1007/s00280-023-04596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The presence of type 2 diabetes mellitus increases the risk of developing the colon cancer. The main objective of this study was to determine the role of sodium orthovanadate (SOV) in colon cancer associated with diabetes mellitus by targeting the competitive inhibition of PTP1B. METHODS For in vivo study, high fat diet with low dose streptozotocin model was used for inducing the diabetes mellitus. Colon cancer was induced by injecting 1,2-dimethylhydrazine (25 mg/kg, sc) twice a week. TNM staging and immunohistochemistry (IHC) was carried out for colon cancer tissues. In vitro studies like MTT assay, clonogenic assay, rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry were performed on HCT-116 cell line. CAM assay was performed to examine the anti-angiogenic effect of the drug. RESULTS Sodium orthovanadate reduces the blood glucose level and tumor parameters in the animals. In vitro studies revealed that SOV decreased cell proliferation dose dependently. In addition, SOV induced apoptosis as depicted from rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry as well as p53 IHC staining. SOV showed reduced angiogenesis effect on eggs which was depicted from CAM assay and also from CD34 and E-cadherin IHC staining. CONCLUSIONS Our data suggest that SOV exhibits protective role in colon cancer associated with diabetes mellitus. SOV exhibits anti-proliferative, anti-angiogenic and apoptotic inducing effects hence can be considered for therapeutic switching in diabetic colon cancer.
Collapse
Affiliation(s)
- Kruti Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek Bora
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhoomika Patel
- National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| |
Collapse
|
3
|
Hashmi K, Gupta S, Siddique A, Khan T, Joshi S. Medicinal applications of vanadium complexes with Schiff bases. J Trace Elem Med Biol 2023; 79:127245. [PMID: 37406475 DOI: 10.1016/j.jtemb.2023.127245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.
Collapse
Affiliation(s)
- Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Sakshi Gupta
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Armeen Siddique
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, UP 226026, India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India.
| |
Collapse
|
4
|
Lujerdean C, Zăhan M, Dezmirean DS, Ștefan R, Simedru D, Damian G, Vedeanu NS. In Vitro Studies Demonstrate Antitumor Activity of Vanadium Ions from a CaO-P 2O 5-CaF 2:V 2O 5 Glass System in Human Cancer Cell Lines A375, A2780, and Caco-2. Int J Mol Sci 2023; 24:1149. [PMID: 36674660 PMCID: PMC9860932 DOI: 10.3390/ijms24021149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In this research, we investigated the structural and biological properties of phosphate glasses (PGs) after the addition of V2O5. A xV2O5∙(100 − x)[CaF2∙3P2O5∙CaO] glass system with 0 ≤ x ≤ 16 mol% was synthesized via a conventional melt-quenching technique. Several analysis techniques (dissolution tests, pH, SEM-EDS, FT-IR, and EPR) were used to obtain new experimental data regarding the structural behavior of the system. In vitro tests were conducted to assess the antitumor character of V2O5-doped glass (x = 16 mol%) compared to the matrix (x = 0 mol%) and control (CTRL-) using several tumoral cell lines (A375, A2780, and Caco-2). The characterization of PGs showed an overall dissolution rate of over 90% for all vitreous samples (M and V1−V7) and the high reactivity of this system. EPR revealed a well-resolved hyperfine structure (hfs) typical of vanadyl ions in a C4v symmetry. FT-IR spectra showed the presence of all structural units expected for P2O5, as well as very clear depolymerization of the vitreous network induced by V2O5. The MTT assay indicated that the viability of tumor cells treated with V7-glass extract was reduced to 50% when the highest concentration was used (10 µg/mL) compared to the matrix treatment (which showed no cytotoxic effect at any concentration). Moreover, the matrix treatment (without V2O5) provided an optimal environment for tumor cell attachment and proliferation. In conclusion, the two types of treatment investigated herein were proven to be very different from a statistical point of view (p < 0.01), and the in vitro studies clearly underline the cytotoxic potential of vanadium ions from phosphate glass (V7) as an antitumor agent.
Collapse
Affiliation(s)
- Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Răzvan Ștefan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Dorina Simedru
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation Subsidiary (ICIA) Cluj-Napoca, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Grigore Damian
- Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Nicoleta Simona Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
5
|
De Sousa-Coelho AL, Aureliano M, Fraqueza G, Serrão G, Gonçalves J, Sánchez-Lombardo I, Link W, Ferreira BI. Decavanadate and metformin-decavanadate effects in human melanoma cells. J Inorg Biochem 2022; 235:111915. [PMID: 35834898 DOI: 10.1016/j.jinorgbio.2022.111915] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Decavanadate is a polyoxometalate (POMs) that has shown extensive biological activities, including antidiabetic and anticancer activity. Importantly, vanadium-based compounds as well as antidiabetic biguanide drugs, such as metformin, have shown to exert therapeutic effects in melanoma. A combination of these agents, the metformin-decavanadate complex, was also recognized for its antidiabetic effects and recently described as a better treatment than the monotherapy with metformin enabling lower dosage in rodent models of diabetes. Herein, we compare the effects of decavanadate and metformin-decavanadate on Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from rabbit skeletal muscles and on cell signaling events and viability in human melanoma cells. We show that unlike the decavanadate-mediated non-competitive mechanism, metformin-decavanadate inhibits Ca2+-ATPase by a mixed-type competitive-non-competitive inhibition with an IC50 value about 6 times higher (87 μM) than the previously described for decavanadate (15 μM). We also found that both decavanadate and metformin-decavanadate exert antiproliferative effects on melanoma cells at 10 times lower concentrations than monomeric vanadate. Western blot analysis revealed that both, decavanadate and metformin-decavanadate increased phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine protein kinase AKT signaling proteins upon 24 h drug exposure, suggesting that the anti-proliferative activities of these compounds act independent of growth-factor signaling pathways.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Escola Superior de Saúde (ESS), Universidade do Algarve, Faro, Portugal.
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, Faro, Portugal; Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal.
| | - Gil Fraqueza
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal; Instituto Superior de Engenharia (ISE), Universidade do Algarve, Faro, Portugal
| | - Gisela Serrão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal
| | - João Gonçalves
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Irma Sánchez-Lombardo
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Madrid, Spain
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
6
|
Ghosh N, Chatterjee S, Biswal D, Pramanik NR, Chakrabarti S, Sil PC. Oxidative stress imposed in vivo anticancer therapeutic efficacy of novel imidazole-based oxidovanadium (IV) complex in solid tumor. Life Sci 2022; 301:120606. [PMID: 35508254 DOI: 10.1016/j.lfs.2022.120606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Vanadium is a transitional metal having several therapeutic aspects that can be exploited for its anticancer activity. Herein, we have verified anticancer effectivity of synthesized novel water soluble mononuclear dipicolinic acid-1-allyl imidazole-based oxidovanadium (IV) complex [VOL(1-allylimz)2] with respect to anticancer effectivity of known standard platinum-based anticancer agent cisplatin. In current work, we have verified VOL(1-allylimz)2 as highly potential anticancer agent selectively against human breast cancer cells. VOL(1-allylimz)2 has been noticed to elicit dose dependent cytotoxicity in MCF-7 cell line through induction of intracellular oxidative stress and mitochondrial membrane potential. Apart from in vitro validation, in vivo studies in male Swiss Albino mice also have seen to portray dose-dependent anticancer effect of [VOL(1-allylimz)2], where indications of oxidative stress induction became prominent too. Besides, both mitochondrial as well as extra-mitochondrial apoptosis in tumor cells have been shown to be induced by [VOL(1-allylimz)2] treatment, together enforcing its anticancer potency. In contrast to cisplatin, which shows high chances of nephrotoxicity in cancer patients, [VOL(1-allylimz)2] has been found to be comparatively safe for in vivo studies.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Debanjana Biswal
- Department of Chemistry, University College of Science, 92, Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | | | - Syamal Chakrabarti
- Department of Chemistry, University College of Science, 92, Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
7
|
Abstract
Vanadium is an ultratrace element present in higher plants, animals, algae, and bacteria. In recent years, vanadium complexes have been studied to be considered as a representative of a new class of nonplatinum metal anticancer drugs. Nevertheless, the study of cell signaling pathways related to vanadium compounds has scarcely been reported on and reviewed thus far; this information is highly critical for identifying novel targets that play a key role in the anticancer activity of these compounds. Here, we perform a review of the activity of vanadium compounds over cell signaling pathways on cancer cells and of the underlying mechanisms, thereby providing insight into the role of these proteins as potential new molecular targets of vanadium complexes.
Collapse
|
8
|
Mateos-Nava RA, Rodríguez-Mercado JJ, Álvarez-Barrera L, García-Rodríguez MDC, Altamirano-Lozano MA. Vanadium oxides modify the expression levels of the p21, p53, and Cdc25C proteins in human lymphocytes treated in vitro. ENVIRONMENTAL TOXICOLOGY 2021; 36:1536-1543. [PMID: 33913241 DOI: 10.1002/tox.23150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In vitro assays have demonstrated that vanadium compounds interact with biological molecules similar to protein kinases and phosphatases and have also shown that vanadium oxides decrease the proliferation of cells, including human lymphocytes; however, the mechanism, the phase in which the cell cycle is delayed and the proteins involved in this process are unknown. Therefore, we evaluated the effects of vanadium oxides (V2 O3 , V2 O4 and V2 O5 ) in human lymphocyte cultures (concentrations of 2, 4, 8, or 16 μg/ml) on cellular proliferation and the levels of the p53, p21 and Cdc25C proteins. After 24 h of treatment with the different concentrations of vanadium oxides, the cell cycle phases were determined by evaluating the DNA content using flow cytometry, and the levels of the p21, p53 and Cdc25C proteins were assessed by Western blot analysis. The results revealed that the DNA content remained unchanged in every phase of the cell cycle; however, only at high concentrations did protein levels increase. Although, according to previous reports, vanadium oxides induce a delay in proliferation, DNA analysis did not show this occurring in a specific cell cycle phase. Nevertheless, the increases in p53 protein levels may cause this delay.
Collapse
Affiliation(s)
- Rodrigo Aníbal Mateos-Nava
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | - Juan José Rodríguez-Mercado
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | - Lucila Álvarez-Barrera
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | | | - Mario Agustín Altamirano-Lozano
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
- Laboratorio 2, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| |
Collapse
|
9
|
Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells. Molecules 2020; 25:molecules25071757. [PMID: 32290299 PMCID: PMC7180481 DOI: 10.3390/molecules25071757] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.
Collapse
|
10
|
Pisano M, Arru C, Serra M, Galleri G, Sanna D, Garribba E, Palmieri G, Rozzo C. Antiproliferative activity of vanadium compounds: effects on the major malignant melanoma molecular pathways. Metallomics 2019; 11:1687-1699. [PMID: 31490510 DOI: 10.1039/c9mt00174c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malignant melanoma (MM) is the most fatal skin cancer, whose incidence has critically increased in the last decades. Recent molecular therapies are giving excellent results in the remission of melanoma but often they induce drug resistance in patients limiting their therapeutic efficacy. The search for new compounds able to overcome drug resistance is therefore essential. Vanadium has recently been cited for its anticancer properties against several tumors, but only a few data regard its effect against MM. In a previous work we demonstrated the anticancer activity of four different vanadium species towards MM cell lines. The inorganic anion vanadate(v) (VN) and the oxidovanadium(iv) complex [VO(dhp)2] (VS2), where dhp is 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, showed IC50 values of 4.7 and 2.6 μM, respectively, against the A375 MM cell line, causing apoptosis and cell cycle arrest. Here we demonstrate the involvement of Reactive Oxygen Species (ROS) production in the pro-apoptotic effect of these two V species and evaluate the activation of different cell cycle regulators, to investigate the molecular mechanisms involved in their antitumor activity. We establish that VN and VS2 treatments reduce the phosphorylation of extracellular-signal regulated kinase (ERK) by about 80%, causing the deactivation of the mitogen activated protein kinase (MAPK) pathway in A375 cells. VN and VS2 also induce dephosphorylation of the retinoblastoma protein (Rb) (VN 100% and VS2 90%), together with a pronounced increase of cyclin-dependent kinase inhibitor 1 p21 (p21Cip1) protein expression up to 1800%. Taken together, our results confirm the antitumor properties of vanadium against melanoma cells, highlighting its ability to induce apoptosis through generation of ROS and cell cycle arrest by counteracting MAPK pathway activation and strongly inducing p21Cip1 expression and Rb hypo-phosphorylation.
Collapse
Affiliation(s)
- Marina Pisano
- Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Traversa La Crucca 3, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Crans DC, Barkley NE, Montezinho L, Castro MM. Vanadium Compounds as Enzyme Inhibitors with a Focus on Anticancer Effects. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vanadium salts and coordination compounds have desirable cellular anticancer effects, and although they have been investigated in detail as a potential treatment for diabetes, less attention has been given to the anticancer effects. The inhibition of some signal transduction enzymes is known, and studies of the metabolism and activation pathways both in vitro and in vivo are important for future investigations and development of vanadium's role as a new potential drug. In addition, a new approach has demonstrated that the enhancement of oncolytic viruses using vanadium salts and coordination complexes for immunotherapy is very promising. Some differences exist between this approach and current antidiabetic and anticancer studies because vanadium(iv) complexes have been found to be most potent in the latter approach, but the few compounds investigated with oncolytic viruses show that vanadium(v) systems are more effective. We conclude that recent studies demonstrate effects on signal transduction enzymes and anticancer pathways, thus suggesting potential applications of vanadium as anticancer agents in the future both as standalone treatments as well as combination therapies.
Collapse
Affiliation(s)
- Debbie C. Crans
- Colorado State University, Department of Chemistry Fort Collins CO 80525 USA
- Colorado State University, Cell and Molecular Biology Fort Collins CO 80525 USA
| | - Noah E. Barkley
- Colorado State University, Molecular and Cellular Integrative Neuroscience Program Fort Collins CO 80525 USA
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Medicine, Escola Universitária Vasco da Gama Coimbra Portugal
| | - M. Margarida Castro
- University of Coimbra, Department of Life Sciences, Faculty of Science and Technology 3000-456 Coimbra Portugal
- University of Coimbra, Coimbra Chemistry Center 3000-456 Coimbra Portugal
| |
Collapse
|
12
|
Costa BC, Tokuhara CK, Rocha LA, Oliveira RC, Lisboa-Filho PN, Costa Pessoa J. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:730-739. [DOI: 10.1016/j.msec.2018.11.090] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/21/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022]
|
13
|
Kongot M, Dohare N, Reddy DS, Pereira N, Patel R, Subramanian M, Kumar A. In vitro apoptosis-induction, antiproliferative and BSA binding studies of a oxidovanadium(V) complex. J Trace Elem Med Biol 2019; 51:176-190. [PMID: 30466929 DOI: 10.1016/j.jtemb.2018.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/06/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
In our ongoing efforts to develop novel trace metal complexes with therapeutically interesting properties, a neutral mono nuclear oxidomethoxidovanadium(V) complex, [VVO(OCH3)(hpdbal-sbdt)] (1) and a μ-O bridged dinuclear oxidovanadium(V) complex, [{VVO(hpdbal-sbdt)}2μ-O] (2) [H2hpdbal-sbdt (I) is a tridentate and dibasic ONS2- donor ligand obtained through the Schiff base reaction of 2-hydroxy-5-(phenyldiazenyl)benzaldehyde (Hhpdbal) and S-benzyldithiocarbazate (Hsbdt)] have been synthesized and characterized by various analytical techniques such as TGA, EDS, ATR-IR, UV-Vis, CV, 1H NMR, 13C NMR and 51V NMR. Single-crystal X-ray diffraction analysis of 1 confirms the coordination of phenolate oxygen, imine nitrogen and thioenolate sulfur of the ligand to the vanadium center with a distorted tetragonal-pyramidal geometry. The compound 2 triggered apoptotic and reproductive death of the cancer cells in vitro with 76% and 62% growth inhibition of human breast adenocarcinoma (MCF-7) and human lung carcinoma cells (A549) respectively. The compound 2 was found to be sufficiently stable over a wide window of physiological pH. The complex 2 was studied further for its interaction with a drug carrier protein BSA with the aid of spectroscopic techniques viz. fluorescence, temperature controlled UV-vis and deconvoluted IR techniques.
Collapse
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Jakkasandra Post, Bengaluru, 562112, Karnataka, India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India; Department of Biochemistry, Daulat Ram College, University of Delhi, New Delhi, 110007, India
| | - Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Jakkasandra Post, Bengaluru, 562112, Karnataka, India
| | - Neha Pereira
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Jakkasandra Post, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
14
|
Zhang Y, Wang L, Zeng K, Wang K, Yang X. Vanadyl complexes discriminate between neuroblastoma cells and primary neurons by inducing cell-specific apoptotic pathways. J Inorg Biochem 2018; 188:76-87. [PMID: 30121400 DOI: 10.1016/j.jinorgbio.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Vanadium compounds have arisen as potential therapeutic agent for the treatment of cancers over the past decades. A few studies suggested that vanadyl complexes may discriminate between the cancerous and the normal cells. Here, we reported the investigation on the pro-apoptotic effect and the underlying mechanism of bis(acetylacetonato) oxovanadium(IV) ([VO(acac)2]) on SH-SY5Y neuroblastoma cells in comparison with that of mouse primary cortex neurons. The experimental results revealed that [VO(acac)2] showed about 10-fold higher cytotoxicity (IC50 ~16 μM) on the neuroblastoma cells than on normal neurons (IC50 ~250 μM). Further analysis indicated that the vanadyl complex suppressed the growth of neuroblastoma cells via different pathways depending on its concentration. It induced a special cyclin D-mediated and p53-independent cell apoptosis at <50 μM but cell cycle arrests at >50 μM. In contrast, [VO(acac)2] promoted cell viability of primary neurons in the concentration range of 0-150 μM; while [VO(acac)2] at hundreds of μM would cause neuronal death possibly via the reactive oxygen species (ROS)-mediated signal pathways. The extraordinary discrimination between neuroblastoma cells and primary neurons suggests potential application of vanadyl complexes for therapeutic treatment of neuroblastoma. In addition, the p53-independent apoptotic pathways induced by vanadyl complexes may provide new insights for future discovery of new anticancer drugs overcoming the chemo-resistance due to p53 mutation.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Lichao Wang
- Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Natural Medicines, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China.
| | - Kui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China
| | - Xiaoda Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
15
|
Xu Y, Han YF, Zhu SJ, Dong JD, Ye B. miRNA‑148a inhibits cell growth of papillary thyroid cancer through STAT3 and PI3K/AKT signaling pathways. Oncol Rep 2017; 38:3085-3093. [PMID: 28901486 DOI: 10.3892/or.2017.5947] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/07/2017] [Indexed: 11/05/2022] Open
Abstract
The function of miRNA‑148a in lymphatic metastases of papillary thyroid cancer and its mechanism were tested. In this investigation, miRNA‑148a expression of lymphatic metastases of papillary thyroid cancer patients was inhibited, compared with normal group. We found that miRNA‑148a overexpression was effectively reduced cell cell proliferation and metastases, and induced apoptosis of papillary thyroid cancer in vitro. Overexpression of miRNA‑148a significantly induced Bax protein expression and caspase‑3/9 levels, and suppressed phosphorylation STAT3 (p‑STAT3), PI3K and p‑Akt protein expression of papillary thyroid cancer in vitro. Next, si‑STAT3, could inhibit p‑STAT3 protein expression, reducing cell-cell proliferation and metastases, and inducing apoptosis of papillary thyroid cancer following miRNA‑148a overexpression. Then, the PI3K inhibitor was able to inhibit PI3K and p‑Akt protein expression, reduced cell cell proliferation and metastases, and induced apoptosis of papillary thyroid cancer following miRNA‑148a overexpression. Taken together, our results suggest that miRNA‑148a inhibits lymphatic metastases of papillary thyroid cancer through STAT3 and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Yuan Xu
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yi-Fan Han
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shao-Jun Zhu
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jian-Da Dong
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bing Ye
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
16
|
Rozzo C, Sanna D, Garribba E, Serra M, Cantara A, Palmieri G, Pisano M. Antitumoral effect of vanadium compounds in malignant melanoma cell lines. J Inorg Biochem 2017; 174:14-24. [PMID: 28558258 DOI: 10.1016/j.jinorgbio.2017.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 01/19/2023]
Abstract
In this study we evaluated the anticancer activity against malignant melanoma (MM) of four different vanadium species: the inorganic anion vanadate(V) (indicated with VN), and three oxidovanadium(IV) complexes, [VIVO(dhp)2] where dhp- is the anion 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS2), [VIVO(mpp)2] where mpp- is 1-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS3), and [VIVO(ppp)2] where ppp- is 1-phenyl-2-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS4). The antitumor effects of these compounds were studied against two different MM cell lines (A375 and CN-mel) and a fibroblast cell line (BJ) as normal control. All tested V compounds exert antiproliferative activity on MM cells in a dose dependent manner (IC50 ranges from 2.4μM up to 14μM) being A375 the most sensitive cell line. VN and VS2 were the two most active compounds against A375 (IC50 of 4.7 and 2.6μM, respectively), causing apoptosis and cell cycle block. The experimental data indicate that the cell cycle arrest occurs at different phases for the two V species analyzed (G2 checkpoint for VN and G0/G1 for VS2), showing the importance of the chemical form in determining their mechanism of action. These results add more insights into the landscape of vanadium versatility in biological systems and into its role as a potential cancer therapeutic agent.
Collapse
Affiliation(s)
- Carla Rozzo
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Alessio Cantara
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Giuseppe Palmieri
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Marina Pisano
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07100 Sassari, Italy.
| |
Collapse
|
17
|
Khalil AA, Jameson MJ. Sodium Orthovanadate Inhibits Proliferation and Triggers Apoptosis in Oral Squamous Cell Carcinoma in vitro. BIOCHEMISTRY (MOSCOW) 2017; 82:149-155. [PMID: 28320298 DOI: 10.1134/s0006297917020067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sodium orthovanadate (SOV) is a general inhibitor of tyrosine phosphatases, a large family of enzymes that catalyze the removal of phosphate groups from tyrosine residues. SOV is commonly used in the laboratory to preserve the protein tyrosyl phosphorylation state of proteins under study. It has shown promising antineoplastic activity in some human cancer cell lines; this effect has not been fully investigated in head and neck squamous cell carcinoma. In this study, the effect of SOV on cell growth, proliferation, viability, and apoptosis was assessed in Cal27 cells, an oral squamous cell carcinoma (OSCC) cell line. SOV exhibited dose-dependent inhibition of cell growth and decrease in cell viability and colony formation. The IC50 values for treatment lasting 72 h and 7 days were 25 and 10 µM, respectively. The cytotoxic effect of the drug was associated with poly(ADP-ribose)polymerase cleavage detected by immunoblot. Flow cytometry of Cal27 cells stained with annexin V-FITC and propidium iodide showed a dose-dependent increase in apoptosis that reached approximately 40% at 25 µM SOV. These findings demonstrate that SOV has in vitro antiproliferative and proapoptotic effect on OSCC cells.
Collapse
Affiliation(s)
- A A Khalil
- University of Virginia Health System, Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology, Head and Neck Surgery, Virginia, USA.
| | | |
Collapse
|
18
|
Mateos-Nava RA, Rodríguez-Mercado JJ, Altamirano-Lozano MA. Premature chromatid separation and altered proliferation of human leukocytes treated with vanadium (III) oxide. Drug Chem Toxicol 2016; 40:457-462. [DOI: 10.1080/01480545.2016.1260582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rodrigo Anibal Mateos-Nava
- Facultad de Estudios Superiores-Zaragoza, UNAM, Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN) Laboratorio 5-PA Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Ciudad de México, México and
- Posgrado en Ciencias Biológicas, UNAM, Edificio E, Primer Piso, Circuito de Posgrados, Ciudad Universitaria Del. Coyoacán, Ciudad de México, México
| | - Juan José Rodríguez-Mercado
- Facultad de Estudios Superiores-Zaragoza, UNAM, Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN) Laboratorio 5-PA Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Ciudad de México, México and
| | - Mario Agustín Altamirano-Lozano
- Facultad de Estudios Superiores-Zaragoza, UNAM, Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN) Laboratorio 5-PA Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Ciudad de México, México and
| |
Collapse
|
19
|
|
20
|
León IE, Cadavid-Vargas JF, Tiscornia I, Porro V, Castelli S, Katkar P, Desideri A, Bollati-Fogolin M, Etcheverry SB. Oxidovanadium(IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model. J Biol Inorg Chem 2015; 20:1175-91. [PMID: 26404080 DOI: 10.1007/s00775-015-1298-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022]
Abstract
Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal antitumor agents in combination to its low toxicity. On the other hand, flavonoids are a wide family of polyphenolic compounds synthesized by plants that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, a exhaustive study of the mechanisms of action of two oxidovanadium(IV) complexes with the flavonoids: silibinin Na₂[VO(silibinin)₂2]·6H₂O (VOsil) and chrysin [VO(chrysin)₂EtOH]₂(VOchrys) on human colon adenocarcinoma derived cell line HT-29. The complexes inhibited the cell viability of colon adenocarcinoma cells in a dose dependent manner with a greater potency than that the free ligands and free metal, demonstrating the benefit of complexation. The decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of both complexes. Besides, VOchrys caused cell cycle arrest in G2/M phase while VOsil activated caspase 3 and triggering the cells directly to apoptosis. Moreover, VOsil diminished the NF-kB activation via increasing the sensitivity of cells to apoptosis. On the other hand, VOsil inhibited the topoisomerase IB activity concluding that this is important target involved in the anticancer vanadium effects. As a whole, the results presented herein demonstrate that VOsil has a stronger deleterious action than VOchrys on HT-29 cells, whereby suggesting that Vosil is the potentially best candidate for future use in alternative anti-tumor treatments.
Collapse
Affiliation(s)
- I E León
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - J F Cadavid-Vargas
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - I Tiscornia
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - V Porro
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - S Castelli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - P Katkar
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Desideri
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - M Bollati-Fogolin
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - S B Etcheverry
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina. .,Centro de Química Inorgánica (CEQUINOR-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
21
|
Zhao Q, Chen D, Liu P, Wei T, Zhang F, Ding W. Oxidovanadium(IV) sulfate-induced glucose uptake in HepG2 cells through IR/Akt pathway and hydroxyl radicals. J Inorg Biochem 2015; 149:39-44. [PMID: 26021696 DOI: 10.1016/j.jinorgbio.2015.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
The insulin-mimetic and anti-diabetic properties of vanadium and related compounds have been well documented both in vitro and in vivo. However, the molecular basis of the link between vanadium and the insulin signaling pathway in diabetes mellitus is not fully described. We investigated the effects of reactive oxygen species (ROS) induced by oxidovanadium(IV) sulfate (VOSO4) on glucose uptake and the insulin signaling pathway in human hepatoma cell line HepG2. Exposure of cells to VOSO4 (5-50 μM) resulted in an increase in glucose uptake, insulin receptor (IR) and protein kinase B (Akt) phosphorylation and intracellular ROS generation. Using Western blot, we found that catalase and sodium formate, but not superoxide dismutase, prevented the increase of hydroxyl radical (·OH) generation and significantly decreased VOSO4-induced IR and Akt phosphorylation. These results suggest that VOSO4-induced ·OH radical, which is a signaling species, promotes glucose uptake via the IR/Akt signaling pathway.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A YuQuan Road, Beijing 100049, China
| | - Deliang Chen
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A YuQuan Road, Beijing 100049, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A YuQuan Road, Beijing 100049, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A YuQuan Road, Beijing 100049, China.
| |
Collapse
|
22
|
Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study. Inorg Chem 2015; 54:6707-18. [PMID: 25906315 PMCID: PMC4511291 DOI: 10.1021/ic5028948] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The antidiabetic activities of vanadium(V)
and -(IV) prodrugs are determined by their ability to release active
species upon interactions with components of biological media. The
first X-ray absorption spectroscopic study of the reactivity of typical
vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato)
complex (B), with mammalian cell cultures has been performed
using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1
(mouse adipocytes and preadipocytes) cell lines, as well as the corresponding
cell culture media. X-ray absorption near-edge structure data were
analyzed using empirical correlations with a library of model vanadium(V),
-(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly
five- and six-coordinate VV species (∼75% total
V) in a cell culture medium within 24 h at 310 K. Speciation of V
in intact HepG2 cells also changed with the incubation time (from
∼20% to ∼70% VIV of total V), but it was
largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular
fractionation of A549 cells suggested that VV reduction
to VIV occurred predominantly in the cytoplasm, while accumulation
of VV in the nucleus was likely to have been facilitated
by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately
related to cell death at high concentrations of V, which may be important
in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes)
showed a higher propensity to form VIV species, despite
the prevalence of VV in the medium. The distinct V biochemistry
in these cells is consistent with their crucial role in insulin-dependent
glucose and fat metabolism and may also point to an endogenous role
of V in adipocytes. The first detailed
speciation study of typical antidiabetic vanadium(V/IV) complexes
in mammalian cell culture systems showed that the complexes decomposed
rapidly in cell culture media and were further metabolized by the
cells, which included interconversions of VV and VIV species.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Andrew I McLeod
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anna Pulte
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jade B Aitken
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
23
|
Gallardo-Vera F, Diaz D, Tapia-Rodriguez M, Fortoul van der Goes T, Masso F, Rendon-Huerta E, Montaño LF. Vanadium pentoxide prevents NK-92MI cell proliferation and IFNγ secretion through sustained JAK3 phosphorylation. J Immunotoxicol 2015; 13:27-37. [PMID: 25565016 DOI: 10.3109/1547691x.2014.996681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vanadium is a major air pollutant with toxic and carcinogenic effects; it also exercises immunosuppressive effects on the adaptive immune response. Its effect on the innate immune response is poorly explored. The aim of this study was to identify if vanadium pentoxide (V2O5) impairs the function of immunoregulatory NK cells and to determine possible mechanisms associated with this effect. Interleukin-2-independent NK-92MI cells were exposed to different V2O5 concentrations for 6, 12, or 24 h periods. Cell proliferation was then evaluated using CFSE staining, apoptosis by Annexin V binding, and necrosis by 7-AAD staining. The release of IL-2, -4, -6, -10, -17A, IFNγ, and TNFα by the cells were assessed using a human CBA kit. Expression of CD45, SOCS1, JAK3, pJAK3, STAT5, pSTAT5, IL-2R, IL-15R, Fas, and FasL in/on the cells was determined by flow cytometry; JAK3 and pJAK3 expression were also evaluated via confocal microscopy. The results indicated that V2O5 could inhibit NK-92MI cell proliferation and induce cell apoptosis in a dose- and time-related manner. V2O5 also inhibited IL-2, IL-10, and IFNγ secretion but mostly only after 24 h of exposure and with primarily the higher doses tested. V2O5 had no effect on expression of JAK3 and STAT5, but did cause an increase in pJAK3 and appeared to lead (trend) to reductions in levels of phosphorylated STAT5. V2O5 increased the expression of IL-2R, IL-15R, Fas, and FasL at concentrations above the 50-100 µM range. V2O5 had no effect on expression of the CD45 membrane phosphatase, but it did cause an increase in the expression of SOCS1. These results indicate that a key toxic effect of V2O5 on NK cells is a dysregulation of signaling pathways mediated by IL-2. These effects could help to explain the previously-reported deleterious effects on innate immune responses of hosts exposed to inhaled V2O5.
Collapse
Affiliation(s)
- Francisco Gallardo-Vera
- a Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina
| | - Daniel Diaz
- b Departamento de Biología Celular y Fisiología
| | | | | | - Felipe Masso
- d Departamento de Fisiología , Instituto Nacional de Cardiología 'Ignacio Chávez' , México
| | - Erika Rendon-Huerta
- a Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina
| | - Luis F Montaño
- a Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina
| |
Collapse
|
24
|
Leon IE, Porro V, Di Virgilio AL, Naso LG, Williams PAM, Bollati-Fogolín M, Etcheverry SB. Antiproliferative and apoptosis-inducing activity of an oxidovanadium(IV) complex with the flavonoid silibinin against osteosarcoma cells. J Biol Inorg Chem 2014; 19:59-74. [PMID: 24233155 DOI: 10.1007/s00775-013-1061-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/29/2013] [Indexed: 01/02/2023]
Abstract
Flavonoids are a large family of polyphenolic compounds synthesized by plants. They display interesting biological effects mainly related to their antioxidant properties. On the other hand, vanadium compounds also exhibit different biological and pharmacological effects in cell culture and in animal models. Since coordination of ligands to metals can improve or change the pharmacological properties, we report herein, for the first time, a detailed study of the mechanisms of action of an oxidovanadium(IV) complex with the flavonoid silibinin, Na2[VO(silibinin)2]·6H2O (VOsil), in a model of the human osteosarcoma derived cell line MG-63. The complex inhibited the viability of osteosarcoma cells in a dose-dependent manner with a greater potency than that of silibinin and oxidovanadium(IV) (p < 0.01), demonstrating the benefit of complexation. Cytotoxicity and genotoxicity studies also showed a concentration effect for VOsil. The increase in the levels of reactive oxygen species and the decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of the complex. Besides, the complex caused cell cycle arrest and activated caspase 3, triggering apoptosis as determined by flow cytometry. As a whole, these results show the main mechanisms of the deleterious effects of VOsil in the osteosarcoma cell line, demonstrating that this complex is a promising compound for cancer treatments.
Collapse
|
25
|
Xie M, Chen D, Zhang F, Willsky GR, Crans DC, Ding W. Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. J Inorg Biochem 2014; 136:47-56. [DOI: 10.1016/j.jinorgbio.2014.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 03/23/2014] [Accepted: 03/23/2014] [Indexed: 02/01/2023]
|
26
|
|
27
|
Strianese M, Basile A, Mazzone A, Morello S, Turco MC, Pellecchia C. Therapeutic potential of a pyridoxal-based vanadium(IV) complex showing selective cytotoxicity for cancer versus healthy cells. J Cell Physiol 2013; 228:2202-9. [PMID: 23589029 DOI: 10.1002/jcp.24385] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/08/2013] [Indexed: 01/11/2023]
Abstract
Vanadium compounds can exert anticancer effects, partly due to inhibition of tyrosine phosphatases. Here, we report the effect of N,N'-ethylenebis (pyridoxylideneiminato) vanadium (IV) complex (Pyr2 enV(IV)), that induced 93% and 57% of cell mortality in A375 (human melanoma) and A549 (human lung carcinoma) cells, respectively; the mortality was <24% in other cancer cell lines and in human normal epidermal keratinocytes, lung cells and peripheral blood mononuclear cells. The mechanism of Pyr2 enV(IV) effect relied on apoptosis induction; this was triggered by ROS increase, followed by mitochondrial membrane depolarization. Indeed, the addition of N-acetyl cysteine to cell cultures abated Pyr2 enV(IV)-induced apoptosis. These results disclose the pro-apoptotic activity of Pyr2 enV(IV) and its mechanism, relying on intracellular ROS increase.
Collapse
Affiliation(s)
- Maria Strianese
- Department of Chemistry and Biology, University of Salerno, via Ponte Don Melillo, Fisciano SA, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 2012; 16:1295-322. [PMID: 22117137 PMCID: PMC3324815 DOI: 10.1089/ars.2011.4414] [Citation(s) in RCA: 526] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. RECENT ADVANCES ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. CRITICAL ISSUES These statements suggest both "upside" (cancer-suppressing) and "downside" (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. FUTURE DIRECTIONS the various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
29
|
Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. J Biosci 2011; 36:639-48. [DOI: 10.1007/s12038-011-9100-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|