1
|
Uhl FE, Vanherle L, Matthes F, Meissner A. Therapeutic CFTR Correction Normalizes Systemic and Lung-Specific S1P Level Alterations Associated with Heart Failure. Int J Mol Sci 2022; 23:866. [PMID: 35055052 PMCID: PMC8777932 DOI: 10.3390/ijms23020866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) is among the main causes of death worldwide. Alterations of sphingosine-1-phosphate (S1P) signaling have been linked to HF as well as to target organ damage that is often associated with HF. S1P's availability is controlled by the cystic fibrosis transmembrane regulator (CFTR), which acts as a critical bottleneck for intracellular S1P degradation. HF induces CFTR downregulation in cells, tissues and organs, including the lung. Whether CFTR alterations during HF also affect systemic and tissue-specific S1P concentrations has not been investigated. Here, we set out to study the relationship between S1P and CFTR expression in the HF lung. Mice with HF, induced by myocardial infarction, were treated with the CFTR corrector compound C18 starting ten weeks post-myocardial infarction for two consecutive weeks. CFTR expression, S1P concentrations, and immune cell frequencies were determined in vehicle- and C18-treated HF mice and sham controls using Western blotting, flow cytometry, mass spectrometry, and qPCR. HF led to decreased pulmonary CFTR expression, which was accompanied by elevated S1P concentrations and a pro-inflammatory state in the lungs. Systemically, HF associated with higher S1P plasma levels compared to sham-operated controls and presented with higher S1P receptor 1-positive immune cells in the spleen. CFTR correction with C18 attenuated the HF-associated alterations in pulmonary CFTR expression and, hence, led to lower pulmonary S1P levels, which was accompanied by reduced lung inflammation. Collectively, these data suggest an important role for the CFTR-S1P axis in HF-mediated systemic and pulmonary inflammation.
Collapse
Affiliation(s)
- Franziska E. Uhl
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Frank Matthes
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
2
|
Asare PF, Tran HB, Hurtado PR, Perkins GB, Nguyen P, Jersmann H, Roscioli E, Hodge S. Inhibition of LC3-associated phagocytosis in COPD and in response to cigarette smoke. Ther Adv Respir Dis 2021; 15:17534666211039769. [PMID: 34852704 PMCID: PMC8647217 DOI: 10.1177/17534666211039769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION/RATIONALE In chronic obstructive pulmonary disease (COPD), defective macrophage phagocytic clearance of cells undergoing apoptosis by efferocytosis may lead to secondary necrosis of the uncleared cells and contribute to airway inflammation. The precise mechanisms for this phenomenon remain unknown. LC3-associated phagocytosis (LAP) is indispensable for effective efferocytosis. We hypothesized that cigarette smoke inhibits the regulators of LAP pathway, potentially contributing to the chronic airways inflammation associated with COPD. METHODS Bronchoalveolar (BAL)-derived alveolar macrophages, lung tissue macrophages obtained from lung resection surgery, and monocyte-derived macrophages (MDM) were prepared from COPD patients and control participants. Lung/airway samples from mice chronically exposed to cigarette smoke were also investigated. Differentiated THP-1 cells were exposed to cigarette smoke extract (CSE). The LAP pathway including Rubicon, as an essential regulator of LAP, efferocytosis and inflammation was examined using western blot, ELISA, flow cytometry, and/or immunofluorescence. RESULTS Rubicon was significantly depleted in COPD alveolar macrophages compared with non-COPD control macrophages. Rubicon protein in alveolar macrophages of cigarette smoke-exposed mice and cigarette smoke-exposed MDM and THP-1 was decreased with a concomitant impairment of efferocytosis. We also noted increased expression of LC3 which is critical for LAP pathway in COPD and THP-1 macrophages. Furthermore, THP-1 macrophages exposed to cigarette smoke extract exhibited higher levels of other key components of LAP pathway including Atg5 and TIM-4. There was a strong positive correlation between Rubicon protein expression and efferocytosis. CONCLUSION LAP is a requisite for effective efferocytosis and an appropriate inflammatory response, which is impaired by Rubicon deficiency. Our findings suggest dysregulated LAP due to reduced Rubicon as a result of CSE exposure. This phenomenon could lead to a failure of macrophages to effectively process phagosomes containing apoptotic cells during efferocytosis. Restoring Rubicon protein expression has unrecognized therapeutic potential in the context of disease-related modifications caused by exposure to cigarette smoke.
Collapse
Affiliation(s)
- Patrick F Asare
- Department of Thoracic Medicine, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Hai B Tran
- Department of Thoracic Medicine, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Plinio R Hurtado
- Department of Renal Medicine, School of Medicine, The University of Adelaide, Adelaide, SA, Australia.,Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Griffith B Perkins
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Phan Nguyen
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Hubertus Jersmann
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Eugene Roscioli
- Department of Thoracic Medicine, School of Medicine, The University of Adelaide, Adelaide, SA, Australia.,Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Sandra Hodge
- Department of Thoracic Medicine, Faculty of Health and Medical Science, The University of Adelaide, Adelaide, SA 5005, Australia.,School of Medicine, The University of Adelaide, Adelaide, SA, Australia.,Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
3
|
Tran HB, Hamon R, Jersmann H, Ween MP, Asare P, Haberberger R, Pant H, Hodge SJ. AIM2 nuclear exit and inflammasome activation in chronic obstructive pulmonary disease and response to cigarette smoke. JOURNAL OF INFLAMMATION-LONDON 2021; 18:19. [PMID: 34022905 PMCID: PMC8141226 DOI: 10.1186/s12950-021-00286-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/06/2021] [Indexed: 02/08/2023]
Abstract
Introduction The role inflammasomes play in chronic obstructive pulmonary disease (COPD) is unclear. We hypothesised that the AIM2 inflammasome is activated in the airways of COPD patients, and in response to cigarette smoke. Methods Lung tissue, bronchoscopy-derived alveolar macrophages and bronchial epithelial cells from COPD patients and healthy donors; lungs from cigarette smoke-exposed mice; and cigarette smoke extract-stimulated alveolar macrophages from healthy controls and HBEC30KT cell line were investigated. AIM2 inflammasome activation was assessed by multi-fluorescence quantitative confocal microscopy of speck foci positive for AIM2, inflammasome component ASC and cleaved IL-1β. Subcellular AIM2 localization was assessed by confocal microscopy, and immunoblot of fractionated cell lysates. Nuclear localization was supported by in-silico analysis of nuclear localization predicted scores of peptide sequences. Nuclear and cytoplasmic AIM2 was demonstrated by immunoblot in both cellular fractions from HBEC30KT cells. Results Increased cytoplasmic AIM2 speck foci, colocalized with cleaved IL-1β, were demonstrated in COPD lungs (n = 9) vs. control (n = 5), showing significant positive correlations with GOLD stages. AIM2 nuclear-to-cytoplasmic redistribution was demonstrated in bronchiolar epithelium in cigarette-exposed mice and in HBEC30KT cells post 24 h stimulation with 5% cigarette smoke extract. Alveolar macrophages from 8 healthy non-smokers responded to cigarette smoke extract with an > 8-fold increase (p < 0.05) of cytoplasmic AIM2 and > 6-fold increase (p < 0.01) of colocalized cleaved IL-1β speck foci, which were also localized with ASC. Conclusion The AIM2 inflammasome is activated in the airway of COPD patients, and in response to cigarette smoke exposure, associated with a nuclear to cytoplasmic shift in the distribution of AIM2. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-021-00286-4.
Collapse
Affiliation(s)
- Hai B Tran
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Rhys Hamon
- School of Medicine, University of Adelaide, Adelaide, South Australia.,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia
| | - Hubertus Jersmann
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Miranda P Ween
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Patrick Asare
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Rainer Haberberger
- Department of Anatomy and Histology, Flinders University of South Australia, Adelaide, South Australia
| | - Harshita Pant
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia
| | - Sandra J Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia. .,School of Medicine, University of Adelaide, Adelaide, South Australia.
| |
Collapse
|
4
|
Berdyshev EV, Serban KA, Schweitzer KS, Bronova IA, Mikosz A, Petrache I. Ceramide and sphingosine-1 phosphate in COPD lungs. Thorax 2021; 76:thoraxjnl-2020-215892. [PMID: 33514670 PMCID: PMC9004347 DOI: 10.1136/thoraxjnl-2020-215892] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 11/04/2022]
Abstract
Studies of chronic obstructive pulmonary disease (COPD) using animal models and patient plasma indicate dysregulation of sphingolipid metabolism, but data in COPD lungs are sparse. Mass spectrometric and immunostaining measurements of lungs from 69 COPD, 16 smokers without COPD and 13 subjects with interstitial lung disease identified decoupling of lung ceramide and sphingosine-1 phosphate (S1P) levels and decreased sphingosine kinase-1 (SphK1) activity in COPD. The correlation of ceramide abundance in distal COPD lungs with apoptosis and the inverse correlation between SphK1 activity and presence of emphysema suggest that disruption of ceramide-to-S1P metabolism is an important determinant of emphysema phenotype in COPD.
Collapse
Affiliation(s)
- Evgeny V Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Karina A Serban
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
- School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Kelly S Schweitzer
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Irina A Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Andrew Mikosz
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Irina Petrache
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
- School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
5
|
Donati C, Cencetti F, Bernacchioni C, Vannuzzi V, Bruni P. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cell Signal 2020; 78:109861. [PMID: 33253915 DOI: 10.1016/j.cellsig.2020.109861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive accumulation of extracellular matrix components, leading to loss of tissue function in affected organs. Although the majority of fibrotic diseases have different origins, they have in common a persistent inflammatory stimulus and lymphocyte-monocyte interactions that determine the production of numerous fibrogenic cytokines. Treatment to contrast fibrosis is urgently needed, since some fibrotic diseases lead to systemic fibrosis and represent a major cause of death. In this article, the role of the bioactive sphingolipid sphingosine 1-phosphate (S1P) and its signalling pathway in the fibrosis of different tissue contexts is extensively reviewed, highlighting that it may represent an innovative and promising pharmacological therapeutic target for treating this devastating multifaceted disease. In multiple tissues S1P influences different aspects of fibrosis modulating the recruitment of inflammatory cells, as well as cell proliferation, migration and transdifferentiation into myofibroblasts, the cell type mainly involved in fibrosis development. Moreover, at the level of fibrotic lesions, S1P metabolism is profoundly influenced by multiple cross-talk with profibrotic mediators, such as transforming growth factor β, thus finely regulating the development of fibrosis. This article is part of a Special Issue entitled "Physiological and pathological roles of bioactive sphingolipids".
Collapse
Affiliation(s)
- Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
6
|
Hodge S, Macowan M, Liu H, Hamon R, Chen ACH, Marchant JM, Pizzutto SJ, Upham JW, Chang AB. Sphingosine signaling dysfunction in airway cells as a potential contributor to progression from protracted bacterial bronchitis to bronchiectasis in children. Pediatr Pulmonol 2020; 55:1414-1423. [PMID: 32176839 DOI: 10.1002/ppul.24728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/23/2020] [Indexed: 11/11/2022]
Abstract
AIM Protracted bacterial bronchitis (PBB) is considered a potential precursor to bronchiectasis (BE) in some children. We previously showed that alveolar macrophages (AM) from children with PBB or BE have a similar significant defect in phagocytic capacity, with proinflammatory associations. We hypothesized that the mechanisms responsible for this defect involve dysregulation of the sphingosine-1-phosphate (S1P) signaling pathway, as we have found in adult inflammatory lung diseases. METHOD We employed a Custom TaqMan OpenArray to investigate gene expression of S1P-generating enzymes: sphingosine kinases (SPHK) 1/2, S1P phosphatase 2 (SGPP2), S1P lyase 1 (SGPL1), S1P receptors (S1PR) 1/2/4/5; proinflammatory cytokines TNF-α (TNF) and IFNγ (IFNG), the cytotoxic mediator granzyme B (GZMB), and inflammasomes AIM2 and NLRP3, in bronchoalveolar lavage from 15 children with BE, 15 with PBB and 17 age-matched controls, and determined association with clinical/demographic variables and airway inflammation. RESULT Significantly increased expression of S1PR1, S1PR2, and SPHK1 was noted in PBB and BE AM vs controls with increased SGPP2 only in PBB. TNF, IFNG, AIM2, and NLRP3 were significantly increased in both disease groups with increased GZMB only in PBB. There were no significant differences in the expression of any other S1P-related mediator between groups. There were significant positive associations between Haemophilus influenzae growth and expression of S1PR1 and NLRP3; between S1PR1 and S1PR2, NLRP3 and IFNG; between S1PR2 and AIM2, SPHK1, and SPHK2; and between SPHK1 and GZMB, IFNG, AIM2, and NLRP3. CONCLUSION Children with PBB and BE share similar S1P-associated gene expression profiles. AM phagocytic dysfunction and inflammation in these children may occur due to dysregulated S1P signaling.
Collapse
Affiliation(s)
- Sandra Hodge
- Lung Research Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Faculty of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew Macowan
- Lung Research Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Faculty of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hong Liu
- Lung Research Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Faculty of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys Hamon
- Lung Research Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Alice C-H Chen
- Faculty of Medicine, The University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Julie M Marchant
- Department of Respiratory Medicine, Queensland Children's Hospital and Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan J Pizzutto
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - John W Upham
- Faculty of Medicine, The University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Anne B Chang
- Department of Respiratory Medicine, Queensland Children's Hospital and Queensland University of Technology, Brisbane, Queensland, Australia.,Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| |
Collapse
|
7
|
Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21010307. [PMID: 31906427 PMCID: PMC6981703 DOI: 10.3390/ijms21010307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets.
Collapse
|
8
|
Baumgartner T, Zurauskaite G, Steuer C, Bernasconi L, Huber A, Mueller B, Schuetz P. Association of serum sphingomyelin profile with clinical outcomes in patients with lower respiratory tract infections: results of an observational, prospective 6-year follow-up study. Clin Chem Lab Med 2019; 57:679-689. [PMID: 30267624 DOI: 10.1515/cclm-2018-0509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023]
Abstract
Background Sphingolipids - the structural cell membrane components - and their metabolites are involved in signal transduction and participate in the regulation of immunity. We investigated the prognostic implications of sphingolipid metabolic profiling on mortality in a large cohort of patients with lower respiratory tract infections (LRTIs). Methods We measured 15 different sphingomyelin (SM) types in patients with LRTIs from a previous Swiss multicenter trial that examined the impact of procalcitonin-guided antibiotic therapy on total antibiotic use and rates and duration of hospitalization. Primary and secondary end points were adverse outcomes - defined as death or intensive care unit admission within 30 days - and 6-year mortality. Results Of 360 patients, 8.9% experienced an adverse outcome within 30 days and 46% died within 6 years. Levels of all SM types were significantly lower in pneumonia patients vs. those with chronic obstructive pulmonary disease (COPD) exacerbation (p<0.0001 for all comparisons). Sphingomyelin subspecies SM (OH) C22:1 and SM (OH) C22:2 were associated with lower risk for short-term adverse outcomes (sex-, gender- and comorbidity-adjusted odds ratios [OR]: 0.036; 95% confidence interval [CI], 0.002-0.600; p=0.021 and 0.037; 95% CI, 0.001-0.848; p=0.039, respectively). We found no significant associations with 6-year mortality for any SM. Conclusions Circulating sphingolipid levels are lower in inflammatory conditions such as pneumonia and correlate with adverse short-term outcomes. Further characterization of the physiological, pathophysiological and metabolic roles of sphingolipids under inflammatory conditions may facilitate understanding of their roles in infectious disease.
Collapse
Affiliation(s)
- Thomas Baumgartner
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland, Phone: 0041 62 838 68 32, Fax: 0041 62 838 98 73.,University Department of Internal Medicine, Kantonsspital Aarau, Tellstr., 5001 Aarau, Switzerland
| | - Giedre Zurauskaite
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Christian Steuer
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Andreas Huber
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Beat Mueller
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
9
|
Tayebati SK. Phospholipid and Lipid Derivatives as Potential Neuroprotective Compounds. Molecules 2018; 23:molecules23092257. [PMID: 30189584 PMCID: PMC6225353 DOI: 10.3390/molecules23092257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
The worldwide demographical trend is changing towards a more elderly population. In particular, this phenomenon is increasing the number of neurodegenerative disease cases (e.g., Alzheimer’s disease) in advanced countries. Therefore, there is a fertile field for neuroprotective approaches to address this problem. A useful strategy to protect the membrane integrity of cells and reduce inflammatory processes. In this context, the neurons represent particularly vulnerable cells. Thus, a protection strategy should include their membrane preservation and improved anti-inflammatory processes. The contribution of phospholipid derivatives to this issue is crucial and many articles evidence their role in both health and disease. On the other hand, some lipids containing choline actively participate to increase the choline levels in the nervous system. It is acknowledged that the cholinergic system plays a pivotal role both in the central and in the peripheral nervous system. Neurons cannot synthesize choline, which is provided by the diet. The reuptake of ACh and its hydrolysis represent the principal source of choline. Therefore, to cover choline needs, choline-containing lipids may be used. There are different works which demonstrate their neuroprotective features This review article analyzes phospholipid and lipid derivatives that through different mechanisms are involved in these protective processes, although, sometimes the same molecules may behave as neurotoxic elements, therefore, their protective machinery should be detailed better.
Collapse
|
10
|
Nishihara H, Maeda T, Sano Y, Ueno M, Okamoto N, Takeshita Y, Shimizu F, Koga M, Kanda T. Fingolimod promotes blood-nerve barrier properties in vitro. Brain Behav 2018; 8:e00924. [PMID: 29670818 PMCID: PMC5893339 DOI: 10.1002/brb3.924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/02/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The main effect of fingolimod is thought to be functional antagonism of lymphocytic S1P1 receptors and the prevention of lymphocyte egress from lymphoid tissues, thereby reducing lymphocyte infiltration into the nervous system. However, a growing number of reports suggest that fingolimod also has a direct effect on several cell types in the nervous system. Although we previously reported that fingolimod enhances blood-brain barrier (BBB) functions, there have been no investigations regarding the blood-nerve barrier (BNB). In this study, we examine how fingolimod affects the BNB. METHODS An immortalized human peripheral nerve microvascular endothelial cell line (HPnMEC) was used to evaluate BNB barrier properties. We examined tight junction proteins and barrier functions of HPnMECs in conditioned medium with or without fingolimod-phosphate and blood sera from patients with typical chronic inflammatory demyelinating polyneuropathy (CIDP). RESULTS Incubation with fingolimod-phosphate increased levels of claudin-5 mRNA and protein as well as TEER values in HPnMECs. Conversely, typical CIDP sera decreased claudin-5 mRNA/protein levels and TEER values in HPnMECs; however, pretreatment with fingolimod-phosphate inhibited the effects of the typical CIDP sera. CONCLUSIONS Fingolimod-phosphate directly modifies the BNB and enhances barrier properties. This mechanism may be a viable therapeutic target for CIDP, and fingolimod may be useful in patients with typical CIDP who have severe barrier disruption.
Collapse
Affiliation(s)
- Hideaki Nishihara
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| | - Toshihiko Maeda
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| | - Maho Ueno
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| | - Nana Okamoto
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| | - Michiaki Koga
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience Yamaguchi University Graduate School of Medicine Ube Japan
| |
Collapse
|
11
|
Tran HB, Jersmann H, Truong TT, Hamon R, Roscioli E, Ween M, Pitman MR, Pitson SM, Hodge G, Reynolds PN, Hodge S. Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD. PLoS One 2017; 12:e0179577. [PMID: 29112690 PMCID: PMC5675303 DOI: 10.1371/journal.pone.0179577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION We have previously established a link between impaired phagocytic capacity and deregulated S1P signaling in alveolar macrophages from COPD subjects. We hypothesize that this defect may include a disruption of epithelial-macrophage crosstalk via Spns2-mediated intercellular S1P signaling. METHODS Primary alveolar macrophages and bronchial epithelial cells from COPD subjects and controls, cell lines, and a mouse model of chronic cigarette smoke exposure were studied. Cells were exposed to 10% cigarette smoke extract, or vehicle control. Spns2 expression and subcellular localization was studied by immunofluorescence, confocal microscopy and RT-PCR. Phagocytosis was assessed by flow-cytometry. Levels of intra- and extracellular S1P were measured by S1P [3H]-labeling. RESULTS Spns2 expression was significantly increased (p<0.05) in alveolar macrophages from current-smokers/COPD patients (n = 5) compared to healthy nonsmokers (n = 8) and non-smoker lung transplant patients (n = 4). Consistent with this finding, cigarette smoke induced a significant increase in Spns2 expression in both human alveolar and THP-1 macrophages. In contrast, a remarkable Spns2 down-regulation was noted in response to cigarette smoke in 16HBE14o- cell line (p<0.001 in 3 experiments), primary nasal epithelial cells (p<0.01 in 2 experiments), and in smoke-exposed mice (p<0.001, n = 6 animals per group). Spns2 was localized to cilia in primary bronchial epithelial cells. In both macrophage and epithelial cell types, Spns2 was also found localized to cytoplasm and the nucleus, in line with a predicted bipartile Nuclear Localization Signal at the position aa282 of the human Spns2 sequence. In smoke-exposed mice, alveolar macrophage phagocytic function positively correlated with Spns2 protein expression in bronchial epithelial cells. CONCLUSION Our data suggest that the epithelium may be the major source for extracellular S1P in the airway and that there is a possible disruption of epithelial/macrophage cross talk via Spns2-mediated S1P signaling in COPD and in response to cigarette smoke exposure.
Collapse
Affiliation(s)
- Hai B. Tran
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Hubertus Jersmann
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Tung Thanh Truong
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
- Department of TB & Lung Diseases, Hospital 175, Hochiminh City, Vietnam
| | - Rhys Hamon
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Eugene Roscioli
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Miranda Ween
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Melissa R. Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Greg Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Paul N. Reynolds
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Sandra Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
12
|
Roscioli E, Tran HB, Jersmann H, Nguyen PT, Hopkins E, Lester S, Farrow N, Zalewski P, Reynolds PN, Hodge S. The uncoupling of autophagy and zinc homeostasis in airway epithelial cells as a fundamental contributor to COPD. Am J Physiol Lung Cell Mol Physiol 2017; 313:L453-L465. [PMID: 28596293 DOI: 10.1152/ajplung.00083.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/19/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
The proper regulation of zinc (Zn) trafficking proteins and the cellular distribution of Zn are critical for the maintenance of autophagic processes. However, there have been no studies that have examined Zn dyshomeostasis and the disease-related modulation of autophagy observed in the airways afflicted with chronic obstructive pulmonary disease (COPD). We hypothesized that dysregulated autophagy in airway epithelial cells (AECs) is related to Zn dysregulation in cigarette smoke (CS)-induced COPD. We applied a human ex vivo air-liquid interface model, a murine model of smoke exposure, and human lung tissues and investigated Zn, ZIP1, and ZIP2 Zn-influx proteins, autophagy [microtubule-associated 1A/1B-light chain-3 (LC3), Beclin-1], autophagic flux (Sequestosome), apoptosis [Bcl2; X-linked inhibitor of apoptosis (XIAP), poly (ADP)-ribose polymerase (PARP)], and inflammation [thymic stromal lymphopoietin (TSLP), regulated on activation, normal T cell expressed and secreted (RANTES), and IL-1β]. Lung tissues from CS-exposed mice exhibit reduced free-Zn in AECs, with elevated ZIP1 and diminished ZIP2 expression. Interestingly, increased LC3 colocalized with ZIP1, suggesting an autophagic requirement for free-Zn to support its catabolic function. In human AECs, autophagy was initiated but was unable to efficiently degrade cellular debris, as evidenced by stable Beclin-1 and increased LC3-II, but with a concomitant elevation in Sequestosome. Autophagic dysfunction due to CS exposure coupled with Zn depletion also induced apoptosis, with the reduction of antiapoptotic and antiautophagic proteins Bcl2 and XIAP and PARP cleavage. This was accompanied by an increase in RANTES and TSLP, an activator of adaptive immunity. We conclude that the uncoupling of Zn trafficking and autophagy in AECs constitutes a fundamental disease-related mechanism for COPD pathogenesis and could provide a new therapeutic target.
Collapse
Affiliation(s)
- Eugene Roscioli
- Lung Research Unit, Department of Thoracic Medicine, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hai B. Tran
- Lung Research Unit, Department of Thoracic Medicine, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hubertus Jersmann
- Lung Research Unit, Department of Thoracic Medicine, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Phan T. Nguyen
- Lung Research Unit, Department of Thoracic Medicine, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Emily Hopkins
- Lung Research Unit, Department of Thoracic Medicine, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Susan Lester
- Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Rheumatology, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Nigel Farrow
- Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide, South Australia, Australia; and
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Peter Zalewski
- Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- Cardiology Unit, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Paul N. Reynolds
- Lung Research Unit, Department of Thoracic Medicine, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Lung Research Unit, Department of Thoracic Medicine, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Mohammed S, Harikumar KB. Sphingosine 1-Phosphate: A Novel Target for Lung Disorders. Front Immunol 2017; 8:296. [PMID: 28352271 PMCID: PMC5348531 DOI: 10.3389/fimmu.2017.00296] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 01/11/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is involved in a wide range of cellular processes, which include proliferation, apoptosis, lymphocyte egress, endothelial barrier function, angiogenesis, and inflammation. S1P is produced by two isoenzymes, namely, sphingosine kinase 1 and 2 (SphK1 and 2) and once produced, S1P can act both in an autocrine and paracrine manner. S1P can be dephosphorylated back to sphingosine by two phosphatases (SGPP 1 and 2) or can be irreversibly cleaved by S1P lyase. S1P has a diverse range of functions, which is mediated in a receptor dependent, through G-protein coupled receptors (S1PR1-5) or receptor independent manner, through intracellular targets such as HDACs and TRAF2. The involvement of S1P signaling has been confirmed in various disease conditions including lung diseases. The SphK inhibitors and S1PR modulators are currently under clinical trials for different pathophysiological conditions. There is a significant effort in targeting various components of S1P signaling for several diseases. This review focuses on the ways in which S1P signaling can be therapeutically targeted in lung disorders.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| |
Collapse
|
14
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
15
|
Chen MH, Yen CC, Cheng CT, Wu RC, Huang SC, Yu CS, Chung YH, Liu CY, Chang PMH, Chao Y, Chen MH, Chen YF, Chiang KC, Yeh TS, Chen TC, Huang CYF, Yeh CN. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget 2016; 6:23594-608. [PMID: 26090720 PMCID: PMC4695139 DOI: 10.18632/oncotarget.4335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
Cholangiocarcinoma (CCA) is characterized by a uniquely aggressive behavior and lack of effective targeted therapies. After analyzing the gene expression profiles of seven paired intrahepatic CCA microarrays, a novel sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) pathway and a novel target gene, SPHK1, were identified. We hypothesized that therapeutic targeting of this pathway can be used to kill intrahepatic cholangiocarcinoma (CCA) cells. High levels of SPHK1 protein expression, which was evaluated by immunohistochemical staining of samples from 96 patients with intrahepatic CCA, correlated with poor overall survival. The SPHK1 inhibitor SK1-I demonstrated potent antiproliferative activity in vitro and in vivo. SK1-I modulated the balance of ceramide-sphinogosine-S1P and induced CCA apoptosis. Furthermore, SK1-I combined with JTE013, an antagonist of the predominant S1P receptor S1PR2, inhibited the AKT and ERK signaling pathways in CCA cells. Our preclinical data suggest SPHK1/S1P pathway targeting may be an effective treatment option for patients with CCA.
Collapse
Affiliation(s)
- Ming-Huang Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chueh-Chuan Yen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Tung Cheng
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chiang Huang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yu Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Han Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Fen Chen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Chun Chiang
- Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tzu Chi Chen
- Institute of Clinical Medicine and Institute of Biopharmaceutical Sciences National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ying F Huang
- Institute of Clinical Medicine and Institute of Biopharmaceutical Sciences National Yang-Ming University, Taipei, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
16
|
Sun WY, Dimasi DP, Pitman MR, Zhuang Y, Heddle R, Pitson SM, Grimbaldeston MA, Bonder CS. Topical Application of Fingolimod Perturbs Cutaneous Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 196:3854-64. [PMID: 27001955 DOI: 10.4049/jimmunol.1501510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/23/2016] [Indexed: 01/13/2023]
Abstract
The prevalence of allergies, including rhinitis, eczema, and anaphylaxis, is rising dramatically worldwide. This increase is especially problematic in children who bear the greatest burden of this rising trend. Increasing evidence identifies neutrophils as primary perpetrators of the more severe and difficult to manage forms of inflammation. A newly recognized mechanism by which neutrophils are recruited during the early phase of histamine-induced inflammation involves the sphingosine kinase (SK)/sphingosine-1-phosphate axis. This study examines whether topical application of fingolimod, an established SK/sphingosine-1-phosphate antagonist already in clinical use to treat multiple sclerosis, may be repurposed to treat cutaneous inflammation. Using two mouse models of ear skin inflammation (histamine- and IgE-mediated passive cutaneous anaphylaxis) we topically applied fingolimod prophylactically, as well as after establishment of the inflammatory response, and examined ear swelling, SK activity, vascular permeability, leukocyte recruitment, and production of proinflammatory mediators. The present study reveals that when applied topically, fingolimod attenuates both immediate and late-phase responses to histamine with reduced extravasation of fluid, SK-1 activity, proinflammatory cytokine and chemokine production, and neutrophil influx and prevents ear swelling. Intravital microscopy demonstrates that histamine-induced neutrophil rolling and adhesion to the postcapillary venules in the mouse ears is significantly attenuated even after 24 h. More importantly, these effects are achievable even once inflammation is established. Translation into humans was also accomplished with epicutaneous application of fingolimod resolving histamine-induced and allergen-induced inflammatory reactions in forearm skin. Overall, this study demonstrates, to our knowledge for the first time, that fingolimod may be repurposed to treat cutaneous inflammation.
Collapse
Affiliation(s)
- Wai Y Sun
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - David P Dimasi
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - YiZhong Zhuang
- School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Robert Heddle
- School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Clinical Immunology Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia; and Discipline of Pediatrics and Child Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Michele A Grimbaldeston
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia;
| |
Collapse
|
17
|
Tran HB, Barnawi J, Ween M, Hamon R, Roscioli E, Hodge G, Reynolds PN, Pitson SM, Davies LT, Haberberger R, Hodge S. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720. J Leukoc Biol 2016; 100:195-202. [PMID: 26792820 DOI: 10.1189/jlb.3a1015-471r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Alveolar macrophages from chronic obstructive pulmonary disease patients and cigarette smokers are deficient in their ability to phagocytose apoptotic bronchial epithelial cells (efferocytosis). We hypothesized that the defect is mediated via inhibition of sphingosine kinases and/or their subcellular mislocalization in response to cigarette smoke and can be normalized with exogenous sphingosine-1-phosphate or FTY720 (fingolimod), a modulator of sphingosine-1-phosphate signaling, which has been shown to be clinically useful in multiple sclerosis. Measurement of sphingosine kinase 1/2 activities by [(32)P]-labeled sphingosine-1-phosphate revealed a 30% reduction of sphingosine kinase 1 (P < 0.05) and a nonsignificant decrease of sphingosine kinase 2 in THP-1 macrophages after 1 h cigarette smoke extract exposure. By confocal analysis macrophage sphingosine kinase 1 protein was normally localized to the plasma membrane and cytoplasm and sphingosine kinase 2 to the nucleus and cytoplasm but absent at the cell surface. Cigarette smoke extract exposure (24 h) led to a retraction of sphingosine kinase 1 from the plasma membrane and sphingosine kinase 1/2 clumping in the Golgi domain. Selective inhibition of sphingosine kinase 2 with 25 µM ABC294640 led to 36% inhibition of efferocytosis (P < 0.05); 10 µM sphingosine kinase inhibitor/5C (sphingosine kinase 1-selective inhibitor) induced a nonsignificant inhibition of efferocytosis, but its combination with ABC294640 led to 56% inhibition (P < 0.01 vs. control and < 0.05 vs. single inhibitors). Cigarette smoke-inhibited efferocytosis was significantly (P < 0.05) reversed to near-control levels in the presence of 10-100 nM exogenous sphingosine-1-phosphate or FTY720, and FTY720 reduced cigarette smoke-induced clumping of sphingosine kinase 1/2 in the Golgi domain. These data strongly support a role of sphingosine kinase 1/2 in efferocytosis and as novel therapeutic targets in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Hai B Tran
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia;
| | - Jameel Barnawi
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia; Department of Medical Laboratory Technology, University of Tabuk, Saudi Arabia
| | - Miranda Ween
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Rhys Hamon
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Eugene Roscioli
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Greg Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia
| | - Paul N Reynolds
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia
| | - Stuart M Pitson
- Department of Medicine, University of Adelaide, Australia; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia; and
| | - Lorena T Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia; and
| | - Rainer Haberberger
- Centre for Neuroscience Anatomy and Histology, Flinders University, Adelaide, Australia
| | - Sandra Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia;
| |
Collapse
|
18
|
Role of Sphingolipids in the Pathobiology of Lung Inflammation. Mediators Inflamm 2015; 2015:487508. [PMID: 26770018 PMCID: PMC4681829 DOI: 10.1155/2015/487508] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease.
Collapse
|
19
|
Barnawi J, Tran H, Jersmann H, Pitson S, Roscioli E, Hodge G, Meech R, Haberberger R, Hodge S. Potential Link between the Sphingosine-1-Phosphate (S1P) System and Defective Alveolar Macrophage Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD). PLoS One 2015; 10:e0122771. [PMID: 26485657 PMCID: PMC4617901 DOI: 10.1371/journal.pone.0122771] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/19/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction We previously reported that alveolar macrophages from patients with chronic obstructive pulmonary disease (COPD) are defective in their ability to phagocytose apoptotic cells, with a similar defect in response to cigarette smoke. The exact mechanisms for this defect are unknown. Sphingolipids including ceramide, sphingosine and sphingosine-1-phosphate (S1P) are involved in diverse cellular processes and we hypothesised that a comprehensive analysis of this system in alveolar macrophages in COPD may help to delineate the reasons for defective phagocytic function. Methods We compared mRNA expression of sphingosine kinases (SPHK1/2), S1P receptors (S1PR1-5) and S1P-degrading enzymes (SGPP1, SGPP2, SGPL1) in bronchoalveolar lavage-derived alveolar macrophages from 10 healthy controls, 7 healthy smokers and 20 COPD patients (10 current- and 10 ex-smokers) using Real-Time PCR. Phagocytosis of apoptotic cells was investigated using flow cytometry. Functional associations were assessed between sphingosine signalling system components and alveolar macrophage phagocytic ability in COPD. To elucidate functional effects of increased S1PR5 on macrophage phagocytic ability, we performed the phagocytosis assay in the presence of varying concentrations of suramin, an antagonist of S1PR3 and S1PR5. The effects of cigarette smoking on the S1P system were investigated using a THP-1 macrophage cell line model. Results We found significant increases in SPHK1/2 (3.4- and 2.1-fold increases respectively), S1PR2 and 5 (4.3- and 14.6-fold increases respectively), and SGPL1 (4.5-fold increase) in COPD vs. controls. S1PR5 and SGPL1 expression was unaffected by smoking status, suggesting a COPD “disease effect” rather than smoke effect per se. Significant associations were noted between S1PR5 and both lung function and phagocytosis. Cigarette smoke extract significantly increased mRNA expression of SPHK1, SPHK2, S1PR2 and S1PR5 by THP-1 macrophages, confirming the results in patient-derived macrophages. Antagonising SIPR5 significantly improved phagocytosis. Conclusion Our results suggest a potential link between the S1P signalling system and defective macrophage phagocytic function in COPD and advise therapeutic targets.
Collapse
Affiliation(s)
- Jameel Barnawi
- Lung Research, Hanson Institute, Adelaide, Australia
- Dept of Medicine, University of Adelaide, Adelaide, Australia
- Dept Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Hai Tran
- Lung Research, Hanson Institute, Adelaide, Australia
| | - Hubertus Jersmann
- Lung Research, Hanson Institute, Adelaide, Australia
- Dept of Medicine, University of Adelaide, Adelaide, Australia
| | - Stuart Pitson
- Dept of Medicine, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia and SA Pathology, Adelaide, Australia
| | | | - Greg Hodge
- Lung Research, Hanson Institute, Adelaide, Australia
- Dept of Medicine, University of Adelaide, Adelaide, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Adelaide, Australia
| | - Rainer Haberberger
- Centre for Neuroscience, Anatomy & Histology, Flinders University, Adelaide, Australia
| | - Sandra Hodge
- Lung Research, Hanson Institute, Adelaide, Australia
- Dept of Medicine, University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
20
|
Bowler RP, Jacobson S, Cruickshank C, Hughes GJ, Siska C, Ory DS, Petrache I, Schaffer JE, Reisdorph N, Kechris K. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am J Respir Crit Care Med 2015; 191:275-84. [PMID: 25494452 DOI: 10.1164/rccm.201410-1771oc] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) occurs in a minority of smokers and is characterized by intermittent exacerbations and clinical subphenotypes such as emphysema and chronic bronchitis. Although sphingolipids as a class are implicated in the pathogenesis of COPD, the particular sphingolipid species associated with COPD subphenotypes remain unknown. OBJECTIVES To use mass spectrometry to determine which plasma sphingolipids are associated with subphenotypes of COPD. METHODS One hundred twenty-nine current and former smokers from the COPDGene cohort had 69 distinct sphingolipid species detected in plasma by targeted mass spectrometry. Of these, 23 were also measured in 131 plasma samples (117 independent subjects) using an untargeted platform in an independent laboratory. Regression analysis with adjustment for clinical covariates, correction for false discovery rate, and metaanalysis were used to test associations between COPD subphenotypes and sphingolipids. Peripheral blood mononuclear cells were used to test associations between sphingolipid gene expression and plasma sphingolipids. MEASUREMENTS AND MAIN RESULTS Of the measured plasma sphingolipids, five sphingomyelins were associated with emphysema; four trihexosylceramides and three dihexosylceramides were associated with COPD exacerbations. Three sphingolipids were strongly associated with sphingolipid gene expression, and 15 sphingolipid gene/metabolite pairs were differentially regulated between COPD cases and control subjects. CONCLUSIONS There is evidence of systemic dysregulation of sphingolipid metabolism in patients with COPD. Subphenotyping suggests that sphingomyelins are strongly associated with emphysema and glycosphingolipids are associated with COPD exacerbations.
Collapse
|
21
|
Abstract
Hypoxic pulmonary vasoconstriction (HPV) optimizes pulmonary ventilation-perfusion matching in regional hypoxia, but promotes pulmonary hypertension in global hypoxia. Ventilation-perfusion mismatch is a major cause of hypoxemia in cystic fibrosis. We hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) may be critical in HPV, potentially by modulating the response to sphingolipids as mediators of HPV. HPV and ventilation-perfusion mismatch were analyzed in isolated mouse lungs or in vivo. Ca(2+) mobilization and transient receptor potential canonical 6 (TRPC6) translocation were studied in human pulmonary (PASMCs) or coronary (CASMCs) artery smooth muscle cells. CFTR inhibition or deficiency diminished HPV and aggravated ventilation-perfusion mismatch. In PASMCs, hypoxia caused CFTR to interact with TRPC6, whereas CFTR inhibition attenuated hypoxia-induced TRPC6 translocation to caveolae and Ca(2+) mobilization. Ca(2+) mobilization by sphingosine-1-phosphate (S1P) was also attenuated by CFTR inhibition in PASMCs, but amplified in CASMCs. Inhibition of neutral sphingomyelinase (nSMase) blocked HPV, whereas exogenous nSMase caused TRPC6 translocation and vasoconstriction that were blocked by CFTR inhibition. nSMase- and hypoxia-induced vasoconstriction, yet not TRPC6 translocation, were blocked by inhibition or deficiency of sphingosine kinase 1 (SphK1) or antagonism of S1P receptors 2 and 4 (S1P2/4). S1P and nSMase had synergistic effects on pulmonary vasoconstriction that involved TRPC6, phospholipase C, and rho kinase. Our findings demonstrate a central role of CFTR and sphingolipids in HPV. Upon hypoxia, nSMase triggers TRPC6 translocation, which requires its interaction with CFTR. Concomitant SphK1-dependent formation of S1P and activation of S1P2/4 result in phospholipase C-mediated TRPC6 and rho kinase activation, which conjointly trigger vasoconstriction.
Collapse
|
22
|
Hamon R, Homan CC, Tran HB, Mukaro VR, Lester SE, Roscioli E, Bosco MD, Murgia CM, Ackland ML, Jersmann HP, Lang C, Zalewski PD, Hodge SJ. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD. PLoS One 2014; 9:e110056. [PMID: 25350745 PMCID: PMC4211649 DOI: 10.1371/journal.pone.0110056] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD), cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2 transporters responding differently to zinc deficiency signals and that these play important roles in macrophage efferocytosis.
Collapse
Affiliation(s)
- Rhys Hamon
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Claire C. Homan
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Hai B. Tran
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Violet R. Mukaro
- Department of Thoracic Medicine, Royal Adelaide Hospital, Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Susan E. Lester
- Rheumatology Unit, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Eugene Roscioli
- Discipline of Surgery, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Mariea D. Bosco
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | | | - Margaret Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Hubertus P. Jersmann
- Department of Thoracic Medicine, Royal Adelaide Hospital, Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Carol Lang
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Peter D. Zalewski
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
- * E-mail:
| | - Sandra J. Hodge
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
The involvement of sphingolipids in chronic obstructive pulmonary diseases. Handb Exp Pharmacol 2013:247-64. [PMID: 23563660 DOI: 10.1007/978-3-7091-1511-4_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) includes a spectrum of conditions that have in common varying degrees of airflow obstruction, such as chronic bronchitis and emphysema. There is an increasing evidence of involvement of sphingolipids as key molecular mediators or biomarkers of disease in emphysema, chronic bronchitis, and more recently in asthma, another disease characterized by (reversible) airflow obstruction. Given the recognized central role of oxidative stress and inflammatory stimuli along with involvement of immune responses, apoptosis, and tissue remodeling in the development of chronic obstructive lung diseases, it is not surprising that sphingolipids have been shown to play important role in their pathobiology. In particular the pro-apoptotic effects of ceramide were suspected as events in the lung destruction that occurs as a result of apoptotic loss of structural cells comprising the alveolar walls, such as microvascular endothelial cells and alveolar epithelial cells. In addition, the role of ceramide was investigated in models of larger airway epithelial cell stress responses to cigarette smoke, in the context of ensuing airway remodeling and inflammation. This chapter discusses current evidence of sphingolipid perturbations in experimental models of COPD and relevant links to human disease based on translational and epidemiological data.
Collapse
|
24
|
O'Sullivan C, Dev KK. The structure and function of the S1P1 receptor. Trends Pharmacol Sci 2013; 34:401-12. [PMID: 23763867 DOI: 10.1016/j.tips.2013.05.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) receptors (S1PRs) belong to the class A family of G protein-coupled receptors (GPCRs). S1PRs are widely expressed on many cell types, including those of the immune, cardiovascular, and central nervous systems. The S1PR family is rapidly gaining attention as an important mediator of many cellular processes, including cell differentiation, migration, survival, angiogenesis, calcium homeostasis, inflammation and immunity. Importantly, S1PRs are known drug targets for multiple sclerosis (MS), for which the newly developed oral therapy fingolimod, an S1PR modulator, has recently been approved for clinical use. Much progress has also recently been made in the field of structural biology and in the modeling of heterotrimeric GPCRs allowing the crystal structure of the S1PR1 subtype to be elucidated and key interactions defined. Here, we outline the structure and function of S1PR1, highlighting the key residues involved in receptor activation, signaling, transmembrane interactions, ligand binding, post-translational modification, and protein-protein interactions.
Collapse
Affiliation(s)
- Catherine O'Sullivan
- Molecular Neuropharmacology, Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
25
|
Alberg AJ, Armeson K, Pierce JS, Bielawski J, Bielawska A, Visvanathan K, Hill EG, Ogretmen B. Plasma sphingolipids and lung cancer: a population-based, nested case-control study. Cancer Epidemiol Biomarkers Prev 2013; 22:1374-82. [PMID: 23749868 DOI: 10.1158/1055-9965.epi-12-1424] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) and ceramides are bioactive signaling sphingolipids that regulate pathways that are central to cancer pathogenesis. METHODS A nested case-control study was implemented to test whether prediagnostic circulating concentrations of S1P and ceramides were associated with future lung cancer risk. In the community-based CLUE II cohort study in Washington County, Maryland, the study consisted of 100 incident lung cancer cases, each matched to two cancer-free controls on age, sex, race, and cigarette smoking status. Plasma stored at -70°C at the beginning of follow-up in 1989 was assayed for sphingolipids using liquid chromatography/tandem mass spectrometry methodology (LC/MS-MS). RESULTS Compared with controls, geometric mean plasma concentrations of S1P and total ceramides were 2.9% (P = 0.10) and 5.1% (P = 0.02), respectively, greater in lung cancer cases. For S1P, the ORs and 95% confidence intervals (CI) for lung cancer risk were 2.7 (1.2-5.9), 2.7 (1.1-6.4), and 1.9 (0.8-4.5) for the second, third, and highest fourth, respectively, compared with the lowest fourth (overall P = 0.006). Compared with those with total ceramide concentrations in the lowest fourth, the ORs (and 95% CI) for lung cancer risk were 1.6 (0.7-3.3), 1.5 (0.7-3.4), and 2.1 (0.9-4.7) for the second, third, and highest fourth, respectively (P(trend) = 0.01). CONCLUSIONS Higher concentrations of S1P and total ceramide in plasma were associated with increased future risk of lung cancer. IMPACT These novel findings suggest that perturbation of sphingolipid metabolism and S1P generation may either contribute to the etiology of lung cancer or be a marker of latent lung cancer.
Collapse
Affiliation(s)
- Anthony J Alberg
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dehle FC, Mukaro VR, Jurisevic C, Moffat D, Ahern J, Hodge G, Jersmann H, Reynolds PN, Hodge S. Defective lung macrophage function in lung cancer ± chronic obstructive pulmonary disease (COPD/emphysema)-mediated by cancer cell production of PGE2? PLoS One 2013; 8:e61573. [PMID: 23637858 PMCID: PMC3637201 DOI: 10.1371/journal.pone.0061573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/11/2013] [Indexed: 11/30/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD/emphysema) we have shown a reduced ability of lung and alveolar (AM) macrophages to phagocytose apoptotic cells (defective ‘efferocytosis’), associated with evidence of secondary cellular necrosis and a resultant inflammatory response in the airway. It is unknown whether this defect is present in cancer (no COPD) and if so, whether this results from soluble mediators produced by cancer cells. We investigated efferocytosis in AM (26 controls, 15 healthy smokers, 37 COPD, 20 COPD+ non small cell lung cancer (NSCLC) and 8 patients with NSCLC without COPD) and tumor and tumor-free lung tissue macrophages (21 NSCLC with/13 without COPD). To investigate the effects of soluble mediators produced by lung cancer cells we then treated AM or U937 macrophages with cancer cell line supernatant and assessed their efferocytosis ability. We qualitatively identified Arachidonic Acid (AA) metabolites in cancer cells by LC-ESI-MSMS, and assessed the effects of COX inhibition (using indomethacin) on efferocytosis. Decreased efferocytosis was noted in all cancer/COPD groups in all compartments. Conditioned media from cancer cell cultures decreased the efferocytosis ability of both AM and U937 macrophages with the most pronounced effects occurring with supernatant from SCLC (an aggressive lung cancer type). AA metabolites identified in cancer cells included PGE2. The inhibitory effect of PGE2 on efferocytosis, and the involvement of the COX-2 pathway were shown. Efferocytosis is decreased in COPD/emphysema and lung cancer; the latter at least partially a result of inhibition by soluble mediators produced by cancer cells that include PGE2.
Collapse
Affiliation(s)
- Francis C. Dehle
- Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Violet R. Mukaro
- Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Craig Jurisevic
- Department of Cardiothoracic Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - David Moffat
- Department of Surgical Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Jessica Ahern
- Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Greg Hodge
- Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hubertus Jersmann
- Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul N. Reynolds
- Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
27
|
Sphingolipids: a potential molecular approach to treat allergic inflammation. J Allergy (Cairo) 2012; 2012:154174. [PMID: 23316248 PMCID: PMC3536436 DOI: 10.1155/2012/154174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 01/02/2023] Open
Abstract
Allergic inflammation is an immune response to foreign antigens, which begins within minutes of exposure to the allergen followed by a late phase leading to chronic inflammation. Prolonged allergic inflammation manifests in diseases such as urticaria and rhino-conjunctivitis, as well as chronic asthma and life-threatening anaphylaxis. The prevalence of allergic diseases is profound with 25% of the worldwide population affected and a rising trend across all ages, gender, and racial groups. The identification and avoidance of allergens can manage this disease, but this is not always possible with triggers being common foods, prevalent air-borne particles and only extremely low levels of allergen exposure required for sensitization. Patients who are sensitive to multiple allergens require prophylactic and symptomatic treatments. Current treatments are often suboptimal and associated with adverse effects, such as the interruption of cognition, sleep cycles, and endocrine homeostasis, all of which affect quality of life and are a financial burden to society. Clearly, a better therapeutic approach for allergic diseases is required. Herein, we review the current knowledge of allergic inflammation and discuss the role of sphingolipids as potential targets to regulate inflammatory development in vivo and in humans. We also discuss the benefits and risks of using sphingolipid inhibitors.
Collapse
|