1
|
Chelini G, Pangrazzi L, Bozzi Y. At the Crossroad Between Resiliency and Fragility: A Neurodevelopmental Perspective on Early-Life Experiences. Front Cell Neurosci 2022; 16:863866. [PMID: 35465609 PMCID: PMC9023311 DOI: 10.3389/fncel.2022.863866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal development of the brain is characterized by sensitive windows during which, local circuitry are drastically reshaped by life experiences. These critical periods (CPs) occur at different time points for different brain functions, presenting redundant physiological changes in the underlying brain regions. Although circuits malleability during CPs provides a valuable window of opportunity for adaptive fine-tuning to the living environment, this aspect of neurodevelopment also represents a phase of increased vulnerability for the development of a variety of disorders. Consistently, accumulating epidemiological studies point to adverse childhood experience as a major risk factor for many medical conditions, especially stress- and anxiety-related conditions. Thanks to creative approaches to manipulate rodents’ rearing environment, neurobiologist have uncovered a pivotal interaction between CPs and early-life experiences, offering an interesting landscape to improve our understanding of brain disorders. In this short review, we discuss how early-life experience impacts cellular and molecular players involved in CPs of development, translating into long-lasting behavioral consequences in rodents. Bringing together findings from multiple laboratories, we delineate a unifying theory in which systemic factors dynamically target the maturation of brain functions based on adaptive needs, shifting the balance between resilience and vulnerability in response to the quality of the rearing environment.
Collapse
Affiliation(s)
- Gabriele Chelini
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Gabriele Chelini,
| | - Luca Pangrazzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Bozzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Consiglio Nazionale delle Ricerche (CNR) Neuroscience Institute, Pisa, Italy
| |
Collapse
|
2
|
Stoneham ET, McHail DG, Samipour-Biel S, Liehr N, Lee CM, Evans JC, Boggs K, Dumas TC. Spatial Learning Is Impaired in Male Pubertal Rats Following Neonatal Daily but Not Randomly Spaced Maternal Deprivation. Front Cell Dev Biol 2021; 9:621308. [PMID: 33816470 PMCID: PMC8012507 DOI: 10.3389/fcell.2021.621308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Severe early life stress has long been associated with neuropsychological disorders in adulthood, including depression, schizophrenia, post-traumatic stress disorder, and memory dysfunction. To some extent, all of these conditions involve dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and reduced negative feedback inhibition of cortisol release in adulthood. However, the time course for mental health and hormonal outcomes across life stages and the attributes of early life stress that direct the behavioral and biological alterations is not fully understood. We designed our studies to compare outcomes of the two most common maternal deprivation schedules on cognitive ability prior to adulthood. We exposed rat pups to daily or randomly spaced maternal separation bouts within the first 3 weeks of life and examined cognitive performance, neurotrophic signaling, and stress and immune system markers during puberty. We found that the daily separation schedule impaired spatial learning while the randomly spaced schedule did not alter maze performance relative to normally reared control animals. Animals that underwent daily separation showed a tendency for reduced body weight compared to the randomly spaced condition, but there were no differences in adrenal weight. Thymus weight normalized by body weight was increased following daily separation compared to random separation and control conditions. Plasma corticosterone levels measured after behavior testing did not differ amongst experimental groups and there was no impact of TrKB receptor inhibition. Combined, the results show that different early life stress schedules produce different behavioral and biological outcomes when measured at puberty. Combined with prior findings from more mature animals, the results presented here suggest that daily neonatal stress produces varied alterations in spatial cognition at different life stages with a transient learning deficit at puberty preceding a more persistent and a progressive memory impairment through adulthood and into aging.
Collapse
Affiliation(s)
- Emily T Stoneham
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | - Daniel G McHail
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | | | - Nicole Liehr
- George Mason University, Fairfax, VA, United States
| | | | | | | | - Theodore C Dumas
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| |
Collapse
|
3
|
Lee J, Lee KH, Kim SH, Han JY, Hong SB, Cho SC, Kim JW, Brent D. Early changes of serum BDNF and SSRI response in adolescents with major depressive disorder. J Affect Disord 2020; 265:325-332. [PMID: 32090756 DOI: 10.1016/j.jad.2020.01.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/11/2019] [Accepted: 01/12/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Recent evidence suggests that brain-derived neurotrophic factor (BDNF) levels and their early changes may predict antidepressant response in adults with major depressive disorder (MDD). However, in adolescents, BDNF levels in depression and their changes during antidepressant treatment are relatively unknown. We aimed to investigate whether pre-treatment BDNF levels and their early changes predict antidepressant response in depressed adolescents. METHODS The study included 83 MDD adolescents and 52 healthy controls aged 12 to 17 years. All depressed adolescents were treated with escitalopram in an 8 week, open-label trial. Depression severity and serum BDNF level at baseline, and weeks 2 and 8 were measured with the Children's Depression Rating Scale-Revised (CDRS-R) and ELISA, respectively. RESULTS Responders showed a significant decrease in BDNF levels at week 2 but non-responders and healthy controls had no changes in BDNF levels at week 2. The early decrease (baseline - week 2) of BDNF levels predicted SSRI response with moderate sensitivity and specificity. Logistic regression analysis revealed that early BDNF decrease predicted SSRI response at week 8 after controlling for other demographic and clinical variables. LIMITATIONS The follow-up duration of the study was limited in 8 weeks. It remains possible that serum BDNF levels would have changed with longer treatment. CONCLUSIONS This is the first longitudinal study to investigate the effect of antidepressants on BDNF levels in adolescents with MDD. Our findings suggest that a decrease of serum BDNF levels in early phase of SSRI treatment may be associated later SSRI response in adolescents with MDD.
Collapse
Affiliation(s)
- Jung Lee
- Integrative Care Hub, Children's Hospital, Seoul National University Hospital, Seoul, South Korea
| | - Kyung Hwa Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong Hae Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Youn Han
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Soon-Beom Hong
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Soo-Churl Cho
- Department of Psychiatry, Korea Armed Forces Capital Hospital, Gyenggi-do, South Korea
| | - Jae-Won Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.
| | - David Brent
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Miao Z, Wang Y, Sun Z. The Relationships Between Stress, Mental Disorders, and Epigenetic Regulation of BDNF. Int J Mol Sci 2020; 21:ijms21041375. [PMID: 32085670 PMCID: PMC7073021 DOI: 10.3390/ijms21041375] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a critical member of the neurotrophic family, plays an important role in multiple stress-related mental disorders. Although alterations in BDNF in multiple brain regions of individuals experiencing stress have been demonstrated in previous studies, it appears that a set of elements are involved in the complex regulation. In this review, we summarize the specific brain regions with altered BDNF expression during stress exposure. How various environmental factors, including both physical and psychological stress, affect the expression of BDNF in specific brain regions are further summarized. Moreover, epigenetic regulation of BDNF, including DNA methylation, histone modification, and noncoding RNA, in response to diverse types of stress, as well as sex differences in the sensitivity of BDNF to the stress response, is also summarized. Clarification of the underlying role of BDNF in the stress process will promote our understanding of the pathology of stress-linked mental disorders and provide a potent target for the future treatment of stress-related illness.
Collapse
Affiliation(s)
- Zhuang Miao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China;
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- School of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China;
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- School of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
5
|
Repeated three-hour maternal deprivation as a model of early-life stress alters maternal behavior, olfactory learning and neural development. Neurobiol Learn Mem 2019; 163:107040. [DOI: 10.1016/j.nlm.2019.107040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022]
|
6
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
7
|
Sukhanova YA, Volodina MA, Sebentsova EA, Glazova NY, Manchenko DM, Inozemtseva LS, Andreeva LA, Dolotov OV, Levitskaya NG. Long-Term Changes in Behavior and the Content of BDNF in the Rat Brain Caused by Neonatal Isolation: The Effects of an Analog of ACTH(4-10) Semax. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Towards a multi protein and mRNA expression of biological predictive and distinguish model for post stroke depression. Oncotarget 2018; 7:54329-54338. [PMID: 27527872 PMCID: PMC5342345 DOI: 10.18632/oncotarget.11105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 01/19/2023] Open
Abstract
Previous studies suggest that neurotrophic factors participate in the development of stroke and depression. So we investigated the utility of these biomarkers as predictive and distinguish model for post stroke depression (PSD). 159 individuals including PSD, stroke without depression (Non-PSD), major depressive disorder (MDD) and normal control groups were recruited and examined the protein and mRNA expression levels of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptors (VEGFR2), placental growth factor (PIGF), insulin-like growth factor (IGF-1) and insulin-like growth factor receptors (IGF-1R). The chi-square test was used to evaluate categorical variable, while nonparametric test and one-way analysis of variance were applied to continuous variables of general characteristics, clinical and biological changes. In order to explore the predictive and distinguish role of these factors in PSD, discriminant analysis and receiver operating characteristic curve were calculated. The four groups had statistical differences in these neurotrophic factors (all P < 0.05) except VEGF concentration and IGF-1R mRNA (P = 0.776, P = 0.102 respectively). We identified these mRNA expression and protein analytes with general predictive performance for PSD and Non-PSD groups [area under the curve (AUC): 0.805, 95% CI, 0.704-0.907, P < 0.001]. Importantly, there is an excellent predictive performance (AUC: 0.984, 95% CI, 0.964-1.000, P < 0.001) to differentiate PSD patients from MDD patients. This was the first study to explore the changes of neurotrophic factors family in PSD patients, the results intriguingly demonstrated that the combination of protein and mRNA expression of biological factors could use as a predictive and discriminant model for PSD.
Collapse
|
9
|
Zegarra-Valdivia JA. Insulin-like growth factor type 1 and its relation with neuropsychiatric disorders. Medwave 2017; 17:e7031. [DOI: 10.5867/medwave.2017.07.7031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/06/2017] [Indexed: 11/27/2022] Open
|
10
|
Bondar NP, Merkulova TI. Brain-derived neurotrophic factor and early-life stress: Multifaceted interplay. J Biosci 2017; 41:751-758. [PMID: 27966494 DOI: 10.1007/s12038-016-9648-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and plasticity. Longterm changes in the BDNF pathway are associated with childhood adversity and adult depression symptoms. Initially, stress-induced decreases in the BDNF pathway were found in some studies, but subsequent reports indicated the relationship between stress and BDNF to be much more complex, and the concept was significantly revised. In the present mini-review, we focus on the structure and regulation of the Bbnf gene as well as on the stress-BDNF interactions under early-life adverse conditions.
Collapse
Affiliation(s)
- Natalya P Bondar
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,
| | | |
Collapse
|
11
|
Tabbaa M, Lei K, Liu Y, Wang Z. Paternal deprivation affects social behaviors and neurochemical systems in the offspring of socially monogamous prairie voles. Neuroscience 2017; 343:284-297. [PMID: 27998780 PMCID: PMC5266501 DOI: 10.1016/j.neuroscience.2016.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
Abstract
Early life experiences, particularly the experience with parents, are crucial to phenotypic outcomes in both humans and animals. Although the effects of maternal deprivation on offspring well-being have been studied, paternal deprivation (PD) has received little attention despite documented associations between father absence and children health problems in humans. In the present study, we utilized the socially monogamous prairie vole (Microtus ochrogaster), which displays male-female pair bonding and bi-parental care, to examine the effects of PD on adult behaviors and neurochemical expression in the hippocampus. Male and female subjects were randomly assigned into one of two experimental groups that grew up with both the mother and father (MF) or with the mother-only (MO, to generate PD experience). Our data show that MO subjects received less parental licking/grooming and carrying and were left alone in the nest more frequently than MF subjects. At adulthood (∼75days of age), MO subjects displayed increased social affiliation (SOA) toward a conspecific compared to MF subjects, but the two groups did not differ in social recognition (SOR) and anxiety-like behavior. Interestingly, MO subjects showed consistent increases in both gene and protein expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) as well as the levels of total histone 3 and histone 3 acetylation in the hippocampus compared to MF subjects. Further, PD experience increased glucocorticoid receptor beta (GRβ) protein expression in the hippocampus of females as well as increased corticotrophin receptor 2 (CRHR2) protein expression in the hippocampus of males, but decreased CRHR2 mRNA in both sexes. Together, our data suggest that PD has a long-lasting, behavior-specific effect on SOA and alters hippocampal neurochemical systems in the vole brain. The functional role of such altered neurochemical systems in social behaviors and the potential involvement of epigenetic events should be further studied.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Kelly Lei
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
12
|
Xu H, Zhang Y, Zhang F, Yuan SN, Shao F, Wang W. Effects of Duloxetine Treatment on Cognitive Flexibility and BDNF Expression in the mPFC of Adult Male Mice Exposed to Social Stress during Adolescence. Front Mol Neurosci 2016; 9:95. [PMID: 27757074 PMCID: PMC5048779 DOI: 10.3389/fnmol.2016.00095] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
Early stress is a significant risk factor for the onset of mood disorders such as depression during adulthood. Impairments in cognitive flexibility mediated by prefrontal cortex (PFC) dysfunction are increasingly recognized as important etiological and pathological factors in the development of depression. Our previous study demonstrated that social defeat stress during early adolescence produced delayed deficits in cognitive flexibility in adult mice. The potential molecular mechanisms underlying these long-term consequences remain unclear. One candidate molecule is brain-derived neurotrophic factor (BDNF), which plays a vital role in neural development and synaptic plasticity. In this study, we initially examined the effects of adolescent social stress on cognitive flexibility and PFC BDNF expression within a week after the last stress exposure and 6 weeks later during adulthood. Adolescent (PND 28) male mice were subjected to stress or control manipulation for 10 days. The attentional set-shifting task (AST) was used to assess cognitive flexibility. Levels of BDNF mRNA and protein in the PFC were examined after behavioral testing. The results demonstrated that previously stressed mice exhibited delayed extra-dimensional set-shifting deficits in AST when tested as adults but not when tested as adolescents. Consistent with the cognitive alterations, adolescent stress induced dynamic alterations in BDNF expression in the medial PFC (mPFC), with a transient increase observed shortly after the stress, followed by a decrease 6 weeks later during adulthood. Next, we further determined the effects of chronic treatment with the antidepressant duloxetine during early adulthood on cognitive and molecular alterations induced by adolescent stress. Compared with the controls, duloxetine treatment reversed the cognitive deficits and increased the BDNF protein expression in the mPFC during adulthood in previously stressed mice. These findings demonstrated that BDNF expression in the mPFC was sensitive to adolescent social stress, which may contribute to the disturbance of the development and later functioning of this brain region.
Collapse
Affiliation(s)
- Hang Xu
- CAS Key Laboratory of Mental Health, Institute of PsychologyBeijing, China; School of Humanities, The University of Chinese Academy of SciencesBeijing, China
| | - Yu Zhang
- CAS Key Laboratory of Mental Health, Institute of PsychologyBeijing, China; School of Humanities, The University of Chinese Academy of SciencesBeijing, China; School of Nursing, Binzhou Medical UniversityYantai, China
| | - Fan Zhang
- CAS Key Laboratory of Mental Health, Institute of PsychologyBeijing, China; School of Humanities, The University of Chinese Academy of SciencesBeijing, China
| | - San-Na Yuan
- CAS Key Laboratory of Mental Health, Institute of PsychologyBeijing, China; School of Humanities, The University of Chinese Academy of SciencesBeijing, China
| | - Feng Shao
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing, China
| |
Collapse
|
13
|
Maternal alterations in the proteome of the medial prefrontal cortex in rat. J Proteomics 2016; 153:65-77. [PMID: 27233742 DOI: 10.1016/j.jprot.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/14/2022]
Abstract
Proteomic differences between rat dams and control mothers deprived of their pups immediately after delivery were investigated in the medial prefrontal cortex (mPFC). A 2-D DIGE minimal dye technique combined with LC-MS/MS identified 32 different proteins that showed significant changes in expression in the mPFC, of which, 25 were upregulated and 7 were downregulated in dams. The identity of one significantly increased protein, the small heat-shock protein alpha-crystallin B chain (Cryab), was confirmed via Western blot analysis. Alpha-crystallin B chain was distributed in scattered cells in the mPFC, as demonstrated by immunohistochemistry. Furthermore, it was found to be localized in parvalbumin-containing neurons using double labeling. The elevation of its mRNA level in rat dams was also demonstrated via RT-PCR. The functional classification of the altered proteins was conducted using the UniProt and Gene Ontology protein databases. The identified proteins predominantly participate in synaptic transport and plasticity, neuron development, oxidative stress and apoptosis, and cytoskeleton organization. A common regulator and target analysis of these proteins determined using the Elsevier Pathway Studio Platform suggests that protein level changes associated with pup nursing are driven by growth factors and cytokines, while the MAP kinase pathway was identified as a common target. A high proportion of the proteins that were found to be altered in the mPFC are associated with depression. BIOLOGICAL SIGNIFICANCE The behavior and emotional state of females change robustly when they become mothers. The brain, which governs these changes, may also undergo molecular alterations in mothers. As no proteomics approaches have been applied regarding maternal changes in the brain, we addressed this issue in the mPFC as this brain area is the uppermost cortical center of maternal control and the associated mood changes. The high number of protein-level alterations found between mothers taking care of their litter and those without pups indicates that pup nursing is associated with cortical protein-level changes. Alterations in proteins participating in synaptic transport, plasticity and neuron development suggest neuroplastic changes in the maternal brain. In turn, the relatively high number of altered proteins in the mPFC associated with depression suggests that the physiological effects of the protein-level alterations in the maternal mPFC could promote the incidence of postpartum depression. Cryab, a protein confirmed to be increased during maternal behaviors, was selectively found in parvalbumin cells, which, as fast-spiking interneurons, are associated with depression. The function of Cryab should be further investigated to establish whether it can be used to identify drug targets for future drug development.
Collapse
|
14
|
Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D, Kranz TM. Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus. Front Mol Neurosci 2015; 8:68. [PMID: 26635521 PMCID: PMC4644789 DOI: 10.3389/fnmol.2015.00068] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA
| | - Edo Ronald De Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research Leiden, Netherlands ; Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden University Leiden, Netherlands
| | - Rachel Yehuda
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Dolores Malaspina
- Department of Psychiatry, New York University School of Medicine New York, NY, USA
| | - Thorsten M Kranz
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University New York, NY, USA
| |
Collapse
|
15
|
De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, Denou E, Silva MA, Santacruz A, Sanz Y, Surette MG, Verdu EF, Collins SM, Bercik P. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 2015. [DOI: 10.1038/ncomms8735] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Basta-Kaim A, Szczesny E, Glombik K, Stachowicz K, Slusarczyk J, Nalepa I, Zelek-Molik A, Rafa-Zablocka K, Budziszewska B, Kubera M, Leskiewicz M, Lason W. Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats. Eur Neuropsychopharmacol 2014; 24:1546-56. [PMID: 25106693 DOI: 10.1016/j.euroneuro.2014.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 06/11/2014] [Accepted: 07/11/2014] [Indexed: 02/09/2023]
Abstract
It has been shown that stressful events occurring in early life have a powerful influence on the development of the central nervous system. Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation and survival of both neurons and glial cells and is thought to exert antidepressant-like activity. Thus, it is possible that disturbances in the function of the IGF-1 system may be responsible for disturbances observed over the course of depression. Prenatal stress was used as a valid model of depression. Adult male offspring of control and stressed rat dams were subjected to behavioural testing (forced swim test). The level of IGF-1 in the blood and the expression of IGF-1, IGF-1R, and IRS-1/2 in the hippocampus and frontal cortex using RT-PCR, ELISA and western blotting were measured. In addition the effect of intracerebroventricularly administered IGF-1 and/or the IGF-1R receptor antagonist JB1 in the forced swim test was studied. Prenatally stressed rats showed depressive like behaviour, including increased immobility time as well as decreased mobility and climbing. Intracerebroventricular administration of IGF-1 reversed these effects in stressed animals, whereas concomitant administration of the IGF-1R antagonist JB1 completely blocked the effects. Biochemical analysis of homogenates from the hippocampus and frontal cortex revealed decreases in IGF-1 level and IGF-1R phosphorylation along with disturbances in IRS-1 phosphorylation. These findings reveal that prenatal stress alters IGF-1 signalling, which may contribute to the behavioural changes observed in depression.
Collapse
Affiliation(s)
- Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Ewa Szczesny
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Glombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Stachowicz
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Joanna Slusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Rafa-Zablocka
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Boguslawa Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Monika Leskiewicz
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Wladyslaw Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| |
Collapse
|
17
|
Hill RA, Kiss Von Soly S, Ratnayake U, Klug M, Binder MD, Hannan AJ, van den Buuse M. Long-term effects of combined neonatal and adolescent stress on brain-derived neurotrophic factor and dopamine receptor expression in the rat forebrain. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2126-35. [PMID: 25159716 DOI: 10.1016/j.bbadis.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022]
Abstract
Altered brain-derived neurotrophic factor (BDNF) signalling and dopaminergic neurotransmission have been shown in the forebrain in schizophrenia. The 'two hit' hypothesis proposes that two major disruptions during development are involved in the pathophysiology of this illness. We therefore used a 'two hit' rat model of combined neonatal and young-adult stress to assess effects on BDNF signalling and dopamine receptor expression. Wistar rats were exposed to neonatal maternal separation (MS) stress and/or adolescent/young-adult corticosterone (CORT) treatment. At adulthood the medial prefrontal cortex (mPFC), caudate putamen (CPu) and nucleus accumbens (NAc) were analysed by qPCR and Western blot. The 'two hit' combination of MS and CORT treatment caused significant increases in BDNF mRNA and protein levels in the mPFC of male, but not female rats. BDNF mRNA expression was unchanged in the CPu but was significantly reduced by CORT in the NAc. DR3 and DR2 mRNA were significantly up-regulated in the mPFC of two-hit rats and a positive correlation was found between BDNF and DR3 expression in male, but not female rats. DR2 and DR3 expression were significantly increased following CORT treatment in the NAc and a significant negative correlation between BDNF and DR3 and DR2 mRNA levels was found. Our data demonstrate male-specific two-hit effects of developmental stress on BDNF and DR3 expression in the mPFC. Furthermore, following chronic adolescent CORT treatment, the relationship between BDNF and dopamine receptor expression was significantly altered in the NAc. These results elucidate the long-term effects of 'two hit' developmental stress on behaviour.
Collapse
Affiliation(s)
- Rachel A Hill
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Szerenke Kiss Von Soly
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Udani Ratnayake
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Maren Klug
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Department of Psychology, Swinburne University, Hawthorn, Australia
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Maarten van den Buuse
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia; School of Psychological Science, La Trobe University, Melbourne, Australia.
| |
Collapse
|
18
|
Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932757. [PMID: 24999483 PMCID: PMC4066721 DOI: 10.1155/2014/932757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states.
Collapse
|
19
|
Irles C, Nava-Kopp AT, Morán J, Zhang L. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus. Stress 2014; 17:275-84. [PMID: 24730533 DOI: 10.3109/10253890.2014.913017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.
Collapse
|
20
|
Miki T, Yokoyama T, Kusaka T, Suzuki S, Ohta KI, Warita K, Wang ZY, Ueki M, Sumitani K, Bellinger FP, Tamai M, Liu JQ, Yakura T, Takeuchi Y. Early postnatal repeated maternal deprivation causes a transient increase in OMpg and BDNF in rat cerebellum suggesting precocious myelination. J Neurol Sci 2014; 336:62-7. [DOI: 10.1016/j.jns.2013.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/20/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
21
|
Miki T, Liu JQ, Ohta KI, Suzuki S, Kusaka T, Warita K, Yokoyama T, Jamal M, Ueki M, Yakura T, Tamai M, Sumitani K, Hosomi N, Takeuchi Y. Early postnatal maternal separation causes alterations in the expression of β3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity. Biochem Biophys Res Commun 2013; 442:68-71. [PMID: 24220331 DOI: 10.1016/j.bbrc.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/02/2013] [Indexed: 01/11/2023]
Abstract
The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague-Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved by separating the rat pups from their mothers for 3h each day during the 10-15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), β3-adrenergic receptor (β3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through β3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the β3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.
Collapse
Affiliation(s)
- Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Oliveira S, Fontanelli BAF, Stefanini M, Chuffa L, Teixeira G, Lizarte F, Tirapelli L, Quitete V, Matheus S, Padovani C, Martinez M, Martinez F. Interaction of maternal separation on the UCh rat Cerebellum. Microsc Res Tech 2013; 77:44-51. [DOI: 10.1002/jemt.22311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022]
Affiliation(s)
- S.A. Oliveira
- Department of Anatomy, Biosciences Institute; UNESP-Univ. Estadual Paulista; Botucatu SP Brazil
| | - B. A. F. Fontanelli
- Department of Anatomy, Biosciences Institute; UNESP-Univ. Estadual Paulista; Botucatu SP Brazil
| | - M.A. Stefanini
- Department of Morphology and Pathology; UFSCar-Federal University of São Carlos; São Carlos SP Brazil
| | - L.G.A. Chuffa
- Department of Anatomy, Biosciences Institute; UNESP-Univ. Estadual Paulista; Botucatu SP Brazil
| | - G.R. Teixeira
- Department of Anatomy, Biosciences Institute; UNESP-Univ. Estadual Paulista; Botucatu SP Brazil
| | - F.S.N. Lizarte
- Department of Surgery and Anatomy; USP-University of São Paulo; Ribeirão Preto SP Brazil
| | - L.F. Tirapelli
- Department of Surgery and Anatomy; USP-University of São Paulo; Ribeirão Preto SP Brazil
| | - V.H.A. Quitete
- Department of Structural and Functional Biology, Institute of Biology; State University of Campinas (UNICAMP); Campinas, São Paulo Brazil
| | - S.M.M. Matheus
- Department of Anatomy, Biosciences Institute; UNESP-Univ. Estadual Paulista; Botucatu SP Brazil
| | - C.R. Padovani
- Department of Biostatistics, Biosciences Institute; UNESP-Univ. Estadual Paulista; Botucatu SP Brazil
| | - M. Martinez
- Department of Morphology and Pathology; UFSCar-Federal University of São Carlos; São Carlos SP Brazil
| | - F.E. Martinez
- Department of Anatomy, Biosciences Institute; UNESP-Univ. Estadual Paulista; Botucatu SP Brazil
| |
Collapse
|
23
|
Possible contribution of IGF-1 to depressive disorder. Pharmacol Rep 2013; 65:1622-31. [DOI: 10.1016/s1734-1140(13)71523-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/13/2013] [Indexed: 11/20/2022]
|
24
|
Bath KG, Schilit A, Lee FS. Stress effects on BDNF expression: Effects of age, sex, and form of stress. Neuroscience 2013; 239:149-56. [PMID: 23402850 DOI: 10.1016/j.neuroscience.2013.01.074] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/17/2012] [Accepted: 01/31/2013] [Indexed: 12/14/2022]
Affiliation(s)
- K G Bath
- Department of Neuroscience, Brown University, Box GL-N, 185 Meeting Street, Providence, RI 02912, USA.
| | | | | |
Collapse
|
25
|
Miki T, Lee KY, Yokoyama T, Liu JQ, Kusaka T, Suzuki S, Ohta KI, Warita K, Jamal M, Ueki M, Yakura T, Hosomi N, Takeuchi Y. Differential effects of neonatal maternal separation on the expression of neurotrophic factors in rat brain. II: Regional differences in the cerebellum versus the cerebral cortex. Okajimas Folia Anat Jpn 2013; 90:53-8. [PMID: 24670490 DOI: 10.2535/ofaj.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study was conducted in order to examine the effects of early postnatal maternal separation stress on the age-dependent fluctuations in the expression levels of neurotrophic factor ligands and receptors in the developing cerebellum. Wistar rats were separated from their mothers for 3 h each day during postnatal days (PND) 10 to 15. The expression level of mRNA for brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB), insulin-like growth factor-1 (IGF-1), and type-1 IGF receptor (IGF-1R) were evaluated in the cerebellum on PND16, 20, 30, and 60 with real-time RT-PCR. The mRNA levels of cerebellar BDNF in maternally separated rats were increased on PND16, while the other variables showed no significant alterations at any of the time points examined. However, the effects of an identical maternal separation on the cerebral cortex were previously reported to be completely different. These results indicate regional differences in the responses of neurotrophic factor ligands/receptors between the cerebellum and cerebral cortex. Given that neurotrophic factors play important roles in brain development, alterations in these factors may interrupt normal brain development and ultimately, lead to functional disruptions.
Collapse
Affiliation(s)
- Takanori Miki
- Departments of Anatomy and Neurobiology, Kagawa University
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|