1
|
Freni J, Pallio G, Marini HR, Micali A, Irrera N, Romeo C, Puzzolo D, Mannino F, Minutoli L, Pirrotta I, Scarfone A, Antonuccio P. Positive Effects of the Nutraceutical Association of Lycopene and Selenium in Experimental Varicocele. Int J Mol Sci 2023; 24:13526. [PMID: 37686330 PMCID: PMC10488142 DOI: 10.3390/ijms241713526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Many natural substances commonly found in healthy diets have been studied for their potential to reduce male infertility associated with varicocele. A positive role of selenium (Se) or lycopene alone was demonstrated in experimental varicocele, while no data are available on their association. One group of male Sprague-Dawley rats was sham operated and daily treated with Se (3 mg/kg, i.p.), lycopene (1 mg/kg, i.p.), or their association. A second group underwent surgery to induce varicocele. Sham and half of the varicocele animals were sacrificed after twenty-eight days, while the residual animals were treated for one more month and then sacrificed. In varicocele animals, testosterone levels and testes weight were reduced, Hypoxia Inducible Factor-1α (HIF-1α) expression was absent in the tubules and increased in Leydig cells, caspare-3 was increased, seminiferous epithelium showed evident structural changes, and many apoptotic germ cells were demonstrated with TUNEL assay. The treatment with lycopene or Se alone significantly increased testis weight and testosterone levels, reduced apoptosis and caspase-3 expression, improved the tubular organization, decreased HIF-1α positivity of Leydig cells, and restored its tubular positivity. Lycopene or Se association showed a better influence on all biochemical and morphological parameters. Therefore, the nutraceutical association of lycopene plus Se might be considered a possible therapeutic tool, together with surgery, in the treatment of male infertility. However, long-term experimental and clinical studies are necessary to evaluate sperm quantity and quality.
Collapse
Affiliation(s)
- Jose Freni
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Antonio Micali
- Department of Human Adult and Childhood Pathology, University of Messina, 98122 Messina, Italy; (A.M.); (C.R.); (P.A.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Carmelo Romeo
- Department of Human Adult and Childhood Pathology, University of Messina, 98122 Messina, Italy; (A.M.); (C.R.); (P.A.)
| | - Domenico Puzzolo
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Igor Pirrotta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Alessandro Scarfone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.P.); (H.R.M.); (N.I.); (F.M.); (I.P.); (A.S.)
| | - Pietro Antonuccio
- Department of Human Adult and Childhood Pathology, University of Messina, 98122 Messina, Italy; (A.M.); (C.R.); (P.A.)
| |
Collapse
|
2
|
Balci CN, Firat T, Acar N, Kukner A. Carvacrol treatment opens Kir6.2 ATP-dependent potassium channels and prevents apoptosis on rat testis following ischemia-reperfusion injury model. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:179-190. [PMID: 34609420 PMCID: PMC8597367 DOI: 10.47162/rjme.62.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Testicular torsion is a urological problem that causes subfertility and testicular damage in males. Testis torsion and detorsion lead to ischemia–reperfusion (IR) injury in the testis. Testicular IR injury causes the increase of reactive oxygen species (ROS), oxidative stress (OS) and germ cell-specific apoptosis. In this study, we aimed to investigate whether Carvacrol has a protective effect on testicular IR injury and its effects on Kir6.2 channels, which is a member of adenosine triphosphate (ATP)-dependent potassium channels. In the study, 2–4 months old 36 albino Wistar rats were used. For experimental testicular IR model, the left testis was rotated counterclockwise at 720° for two hours, and after two hours following torsion, detorsion was performed. Carvacrol was dissolved in 5% Dimethyl Sulfoxide (DMSO) at a dose of 73 mg/kg and half an hour before detorsion, 0.2 mL was administered intraperitoneally. In testicular tissues, caspase 3 and Kir6.2 immunoexpressions were examined. Serum malondialdehyde (MDA) and testosterone levels were measured. Apoptotic cells and serum MDA levels were significantly decreased and Kir6.2 activation was significantly increased in Carvacrol-administrated IR group. As a result of our study, Carvacrol may activates Kir6.2 channels and inhibits apoptosis and may have a protective effect on testicular IR injury.
Collapse
Affiliation(s)
- Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey;
| | | | | | | |
Collapse
|
3
|
Ferlazzo N, Micali A, Marini HR, Freni J, Santoro G, Puzzolo D, Squadrito F, Pallio G, Navarra M, Cirmi S, Minutoli L. A Flavonoid-Rich Extract from Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, Shows Protective Effects in a Murine Model of Cadmium-Induced Testicular Injury. Pharmaceuticals (Basel) 2021; 14:ph14050386. [PMID: 33919028 PMCID: PMC8142973 DOI: 10.3390/ph14050386] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
It is known that cadmium damages testis structure and functionality. We examined the effects of nutraceuticals such as a flavonoid-rich extract of bergamot juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), on mice testicular dysfunction caused by cadmium chloride (CdCl2). Controversial data on the protective effects of Cur and Re are available, while no evidence on the possible role of BJe exists. Adult male C57 BL/6J mice were administered with CdCl2 and treated with Cur, Re, or BJe alone or in combination for 14 days. Then, testes were removed and processed for molecular, structural, and immunohistochemical analyses. CdCl2 increased the mRNA of IL-1β, TNF-α, p53, and BAX while reduced that of Bcl-2 and induced tubular lesions and apoptosis of germinal cells. Cur, Re, and BJe at 40 mg/kg significantly improved all of these parameters and events, although BJe at 20 mg/kg showed a lower protective effect. The association of Cur, Re, and BJe at both doses of 50/20/20 and 100/20/40 mg/kg brought each parameter close to those of the control. Our results indicate that the nutraceuticals employed in this study and their associations exert a positive action against Cd-induced testicular injury, suggesting a possible protection of testis functionality in subjects exposed to environmental toxicants.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Antonio Micali
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Josè Freni
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Giuseppe Santoro
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence:
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| |
Collapse
|
4
|
NLRP3 Inflammasome: A New Pharmacological Target for Reducing Testicular Damage Associated with Varicocele. Int J Mol Sci 2021; 22:ijms22031319. [PMID: 33525681 PMCID: PMC7865407 DOI: 10.3390/ijms22031319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Many bioactive natural compounds are being increasingly used for therapeutics and nutraceutical applications to counteract male infertility, particularly varicocele. The roles of selenium and Polydeoxyribonucleotide (PDRN) were investigated in an experimental model of varicocele, with particular regard to the role of NLRP3 inflammasome. Male rats underwent sham operation and were daily administered with vehicle, seleno-L-methionine (Se), PDRN, and with the association Se-PDRN. Another group of rats were operated for varicocele. After twenty-eight days, sham and varicocele rats were sacrificed and both testes were weighted and analyzed. All the other rats were challenged for one month with the same compounds. In varicocele animals, lower testosterone levels, testes weight, NLRP3 inflammasome, IL-1β and caspase-1 increased gene expression were demonstrated. TUNEL assay showed an increased number of apoptotic cells. Structural and ultrastructural damage to testes was also shown. PDRN alone significantly improved all considered parameters more than Se. The Se-PDRN association significantly improved all morphological parameters, significantly increased testosterone levels, and reduced NLRP3 inflammasome, caspase-1 and IL-1β expression and TUNEL-positive cell numbers. Our results suggest that NLRP3 inflammasome can be considered an interesting target in varicocele and that Se-PDRN may be a new medical approach in support to surgery.
Collapse
|
5
|
Mouithys-Mickalad A, Ceusters J, Charif M, El Moualij B, Schoumacher M, Plyte S, Franck T, Bettendorff L, Pirotte B, Serteyn D, de Tullio P. Modulation of mitochondrial respiration rate and calcium-induced swelling by new cromakalim analogues. Chem Biol Interact 2020; 331:109272. [PMID: 33010220 DOI: 10.1016/j.cbi.2020.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
A cellular model of cardiomyocytes (H9c2 cell line) and mitochondria isolated from mouse liver were used to understand the drug action of BPDZ490 and BPDZ711, two benzopyran analogues of the reference potassium channel opener cromakalim, on mitochondrial respiratory parameters and swelling, by comparing their effects with those of the parent compound cromakalim. For these three compounds, the oxygen consumption rate (OCR) was determined by high-resolution respirometry (HRR) and their impact on adenosine triphosphate (ATP) production and calcium-induced mitochondrial swelling was investigated. Cromakalim did not modify neither the OCR of H9c2 cells and the ATP production nor the Ca-induced swelling. By contrast, the cromakalim analogue BPDZ490 (1) induced a strong increase of OCR, while the other benzopyran analogue BPDZ711 (2) caused a marked slowdown. For both compounds, 1 displayed a biphasic behavior while 2 still showed an inhibitory effect. Both compounds 1 and 2 were also found to decrease the ATP synthesis, with pronounced effect for 2, while cromakalim remained without effect. Overall, these results indicate that cromakalim, as parent molecule, does not induce per se any direct effect on mitochondrial respiratory function neither on whole cells nor on isolated mitochondria whereas both benzopyran analogues 1 and 2 display totally opposite behavior profiles, suggesting that compound 1, by increasing the maximal respiration capacity, might behave as a mild uncoupling agent and compound 2 is taken as an inhibitor of the mitochondrial electron-transfer chain.
Collapse
Affiliation(s)
- Ange Mouithys-Mickalad
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium.
| | - Justine Ceusters
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium
| | - Mounia Charif
- Centre de Recherche sur les Protéines Prions (CRPP), ULiège, Quartier Hôpital, 15, Avenue Hippocrate, B-4000, Liège, Belgium
| | - Benaïssa El Moualij
- Centre de Recherche sur les Protéines Prions (CRPP), ULiège, Quartier Hôpital, 15, Avenue Hippocrate, B-4000, Liège, Belgium
| | - Mathieu Schoumacher
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, 15, Avenue de l'Hospital, B-4000, Liège, Belgium
| | - Simon Plyte
- Merus, Closing in on Cancer, Immuno-Oncology, Yalelaan 62, 3584 CM, Utrecht, the Netherlands
| | - Thierry Franck
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium; Department of Clinical Sciences, Faculty of Veterinary Medicine, Quartier Vallée 2, 5A-5D, Avenue de Cureghem, ULiège, B-4000, Liège, Belgium
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-neurosciences, ULiège, Quartier Hôpital, 15, Avenue Hippocrate, B-4000, Liège, Belgium
| | - Bernard Pirotte
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium; Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, 15, Avenue de l'Hospital, B-4000, Liège, Belgium
| | - Didier Serteyn
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Oxygen, Research & Development (CORD) & Center for Interdisciplinary Research on Medicines (CIRM), Institute of Chemistry, B6a, ULiège, Allée du six Août, 11, B-4000, Liège, Belgium; Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, 15, Avenue de l'Hospital, B-4000, Liège, Belgium
| |
Collapse
|
6
|
Nutraceutical Effects of Lycopene in Experimental Varicocele: An "In Vivo" Model to Study Male Infertility. Nutrients 2020; 12:nu12051536. [PMID: 32466161 PMCID: PMC7284888 DOI: 10.3390/nu12051536] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Varicocele is one of the main causes of infertility in men. Oxidative stress and consequently apoptosis activation contribute to varicocele pathogenesis, worsening its prognosis. Natural products, such as lycopene, showed antioxidant and anti-inflammatory effects in several experimental models, also in testes. In this study we investigated lycopene effects in an experimental model of varicocele. Male rats (n = 14) underwent sham operations and were administered with vehicle (n = 7) or with lycopene (n = 7; 1 mg/kg i.p., daily). Another group of animals (n = 14) underwent surgical varicocele. After 28 days, the sham and 7 varicocele animals were euthanized, and both operated and contralateral testes were weighted and processed. The remaining rats were treated with lycopene (1 mg/kg i.p., daily) for 30 days. Varicocele rats showed reduced testosterone levels, testes weight, Bcl-2 mRNA expression, changes in testes structure and increased malondialdehyde levels and BAX gene expression. TUNEL (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling) assay showed an increased number of apoptotic cells. Treatment with lycopene significantly increased testosterone levels, testes weight, and Bcl-2 mRNA expression, improved tubular structure and decreased malondialdehyde levels, BAX mRNA expression and TUNEL-positive cells. The present results show that lycopene exerts beneficial effects in testes, and suggest that supplementation with the tomato-derived carotenoid might be considered a novel nutraceutical strategy for the treatment of varicocele and male infertility.
Collapse
|
7
|
Squadrito F, Micali A, Rinaldi M, Irrera N, Marini H, Puzzolo D, Pisani A, Lorenzini C, Valenti A, Laurà R, Germanà A, Bitto A, Pizzino G, Pallio G, Altavilla D, Minutoli L. Polydeoxyribonucleotide, an Adenosine-A2 A Receptor Agonist, Preserves Blood Testis Barrier from Cadmium-Induced Injury. Front Pharmacol 2017; 7:537. [PMID: 28119612 PMCID: PMC5222826 DOI: 10.3389/fphar.2016.00537] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) impairs blood-testis barrier (BTB). Polydeoxyribonucleotide (PDRN), an adenosine A2A agonist, has positive effects on male reproductive system. We investigated the effects of PDRN on the morphological and functional changes induced by Cd in mice testes. Adult Swiss mice were divided into four groups: controls administered with 0.9% NaCl (1 ml/kg, i.p., daily) or with PDRN (8 mg/kg, i.p. daily), animals challenged with Cd chloride (CdCl2; 2 mg/kg, i.p, daily) and animals challenged with CdCl2 (2 mg/kg, i.p., daily) and treated with PDRN (8 mg/kg, i.p., daily). Experiments lasted 14 days. Testes were processed for biochemical, structural, and ultrastructural evaluation and hormones were assayed in serum. CdCl2 increased pERK 1/2 expression and Follicle Stimulating Hormone (FSH) and Luteinizing Hormone (LH) levels; it decreased testosterone (TE) and inhibin-B levels and induced structural damages in extratubular compartment and in seminiferous epithelium, with ultrastructural features of BTB disruption. Many TUNEL-positive germ cells were present. CdCl2 increased tubular TGF-β3 immunoreactivity and reduced claudin-11, occludin, and N-cadherin immunoreactivity. PDRN administration reduced pERK 1/2 expression, FSH, and LH levels; it increased TE and inhibin-B levels, ameliorated germinal epithelium changes and protected BTB ultrastructure. Few TUNEL-positive germ cells were present and the extratubular compartment was preserved. Furthermore, PDRN decreased TGF-β3 immunoreactivity and enhanced claudin-11, occludin, and N-cadherin immunoreactivity. We demonstrate a protective effect of PDRN on Cd-induced damages of BTB and suggest that PDRN may play an important role against Cd, particularly against its harmful effects on gametogenesis.
Collapse
Affiliation(s)
- Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina Messina, Italy
| | - Mariagrazia Rinaldi
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Herbert Marini
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina Messina, Italy
| | - Antonina Pisani
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina Messina, Italy
| | - Cesare Lorenzini
- Department of Human Pathology, University of Messina Messina, Italy
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Rosaria Laurà
- Department of Veterinary Sciences, University of Messina Messina, Italy
| | - Antonino Germanà
- Department of Veterinary Sciences, University of Messina Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina Messina, Italy
| |
Collapse
|
8
|
|
9
|
Aktas C, Erboga M, Fidanol Erboga Z, Bozdemir Donmez Y, Topcu B, Gurel A. Protective effects ofUrtica dioicaL. on experimental testicular ischaemia reperfusion injury in rats. Andrologia 2016; 49. [DOI: 10.1111/and.12636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 11/30/2022] Open
Affiliation(s)
- C. Aktas
- Department of Histology and Embryology; Faculty of Medicine; University of Namik Kemal; Tekirdag Turkey
| | - M. Erboga
- Department of Histology and Embryology; Faculty of Medicine; University of Namik Kemal; Tekirdag Turkey
| | - Z. Fidanol Erboga
- Department of Histology and Embryology; Faculty of Medicine; University of Namik Kemal; Tekirdag Turkey
| | - Y. Bozdemir Donmez
- Technology Research and Development Application and Research Center; University of Trakya; Edirne Turkey
| | - B. Topcu
- Department of Biostatistics; Faculty of Medicine; University of Namik Kemal; Tekirdag Turkey
| | - A. Gurel
- Department of Biochemistry; Faculty of Medicine; University of Namik Kemal; Tekirdag Turkey
| |
Collapse
|
10
|
Zhang X, Zhang X, Xiong Y, Xu C, Liu X, Lin J, Mu G, Xu S, Liu W. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis. Int J Mol Med 2016; 38:758-66. [PMID: 27430376 PMCID: PMC4990318 DOI: 10.3892/ijmm.2016.2664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 06/21/2016] [Indexed: 02/01/2023] Open
Abstract
The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Xiaohua Zhang
- Cardiac Signaling Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yiqun Xiong
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Chaoying Xu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Xinliang Liu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Jian Lin
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Guiping Mu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Shaogang Xu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Wenhe Liu
- Central Laboratory, Shenzhen Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
11
|
Shimizu S, Tsounapi P, Dimitriadis F, Higashi Y, Shimizu T, Saito M. Testicular torsion-detorsion and potential therapeutic treatments: A possible role for ischemic postconditioning. Int J Urol 2016; 23:454-63. [DOI: 10.1111/iju.13110] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology; Kochi Medical School; Kochi University; Nankoku Kochi Japan
| | - Panagiota Tsounapi
- Division of Urology; Tottori University School of Medicine; Yonago Tottori Japan
| | - Fotios Dimitriadis
- Department of Urology; School of Medicine; Ioannina University; Ioannina Greece
| | - Youichirou Higashi
- Department of Pharmacology; Kochi Medical School; Kochi University; Nankoku Kochi Japan
| | - Takahiro Shimizu
- Department of Pharmacology; Kochi Medical School; Kochi University; Nankoku Kochi Japan
| | - Motoaki Saito
- Department of Pharmacology; Kochi Medical School; Kochi University; Nankoku Kochi Japan
| |
Collapse
|
12
|
Liu Z, Cai H, Dang Y, Qiu C, Wang J. Adenosine triphosphate-sensitive potassium channels and cardiomyopathies (Review). Mol Med Rep 2015; 13:1447-54. [PMID: 26707080 DOI: 10.3892/mmr.2015.4714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Cardiomyopathies have been indicated to be one of the leading causes of heart failure. Though it was indicated that genetic defects, viral infection and trace element deficiency were among the causes of cardiomyopathy, the etiology has remained to be fully elucidated. Cardiomyocytes require large amounts of energy to maintain their normal biological functions. Adenosine triphosphate-sensitive potassium channels (KATP), composed of inward-rectifier potassium ion channel and sulfonylurea receptor subunits, are present on the cell surface and mitochondrial membrane of cardiac muscle cells. As metabolic sensors sensitive to changes in intracellular energy levels, KATP adapt electrical activities to metabolic challenges, maintaining normal biological functions of myocytes. It is implied that malfunctions, mutations and altered expression of KATP are associated with the pathogenesis of conditions including c hypertrophy, diabetes as well as dilated, ischemic and endemic cardiomyopathy. However, the current knowledge is only the tip of the iceberg and the roles of KATP in cardiomyopathies largely remain to be elucidated in future studies.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Hui Cai
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Chuan Qiu
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112‑2705, LA, USA
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
13
|
Minutoli L, Antonuccio P, Irrera N, Rinaldi M, Bitto A, Marini H, Pizzino G, Romeo C, Pisani A, Santoro G, Puzzolo D, Magno C, Squadrito F, Micali A, Altavilla D. NLRP3 Inflammasome Involvement in the Organ Damage and Impaired Spermatogenesis Induced by Testicular Ischemia and Reperfusion in Mice. J Pharmacol Exp Ther 2015; 355:370-80. [PMID: 26407722 DOI: 10.1124/jpet.115.226936] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023] Open
Abstract
We investigated the role of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome during testis ischemia and reperfusion injury (TI/R) in wild-type (WT) and NLRP3 knock-out (KO) mice. WT and KO mice underwent 1 hour testicular ischemia followed by 4 hours and 1 and 7 days of reperfusion or a sham TI/R. Furthermore, two groups of WT mice were treated at the beginning of reperfusion and up to 7 days with two inflammasome inhibitors, BAY 11-7082 (20 mg/kg i.p.) or Brilliant Blue G (45.5 mg/kg i.p.), or vehicle. Animals were killed with a pentobarbital sodium overdose at 4 hours and 1 and 7 days, and bilateral orchidectomies were performed. Biochemical and morphologic studies were carried out in all groups. TI/R in WT mice significantly increased caspase-1 and interleukin (IL)-1β mRNA after 4 hours and IL-18 mRNA at 1 day of reperfusion (P ≤ 0.05). There was also a significant increase in caspase-3 and terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling-positive cells, marked histologic damage, and altered spermatogenesis in WT mice in both testes after 1 and 7 days of reperfusion. KO TI/R mice, WT TI/R BAY 11-7082, and Brilliant Blue G treated mice showed a significant reduced IL-1β and IL-18 mRNA expression, blunted caspase-1 and -3 expression, minor histologic damages, low terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling activity, and preserved spermatogenesis. These data suggest that the activation of NLRP3 plays a key role in TI/R, and its inhibition might represent a therapeutic target for the management of patients with unilateral testicular torsion.
Collapse
Affiliation(s)
- Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Pietro Antonuccio
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Mariagrazia Rinaldi
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Herbert Marini
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Carmelo Romeo
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Antonina Pisani
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Giuseppe Santoro
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Domenico Puzzolo
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Carlo Magno
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Antonio Micali
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| | - Domenica Altavilla
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (L.M., N.I., M.R., A.B., H.M., G.P., F.S.); Department of Paediatric, Gynaecological, Microbiological, and Biomedical Sciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (P.A., C.R., D.A.); Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (A.P., G.S., D.P., A.M.); and Department of Human Pathology, University of Messina, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy (C.M.)
| |
Collapse
|
14
|
Minutoli L, Micali A, Pisani A, Puzzolo D, Bitto A, Rinaldi M, Pizzino G, Irrera N, Galfo F, Arena S, Pallio G, Mecchio A, Germanà A, Bruschetta D, Laurà R, Magno C, Marini H, Squadrito F, Altavilla D. Flavocoxid Protects Against Cadmium-Induced Disruption of the Blood–Testis Barrier and Improves Testicular Damage and Germ Cell Impairment in Mice [corrected]. Toxicol Sci 2015; 148:311-29. [PMID: 26424772 DOI: 10.1093/toxsci/kfv185] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium (Cd) causes male infertility. There is the need to identify safe treatments counteracting this toxicity. Flavocoxid is a flavonoid that induces a balanced inhibition of cyclooxygenase (COX)-1 and COX-2 peroxidase moieties and of 5-lipoxygenase (LOX) and has efficacy in the male genitourinary system. We investigated flavocoxid effects on Cd-induced testicular toxicity in mice. Swiss mice were divided into 4 groups: 2 control groups received 0.9% NaCl (vehicle; 1 ml/kg/day) or flavocoxid (20 mg/kg/day ip); 2 groups were challenged with cadmium chloride (CdCl2; 2 mg/kg/day ip) and administered with vehicle or flavocoxid. The treatment lasted for 1 or 2 weeks. The testes were processed for biochemical and morphological studies. CdCl2 increased phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2, tumor necrosis factor (TNF)-α, COX-2, 5-LOX, malondialdehyde (MDA), B-cell-lymphoma (Bcl)-2-associated X protein (Bax), follicle-stimulating hormone (FSH), luteinizing hormone (LH), transforming growth factor (TGF) -β3, decreased Bcl-2, testosterone, inhibin-B, occludin, N-Cadherin, induced structural damages in the testis and disrupted the blood-testis barrier. Many TUNEL-positive germ cells and changes in claudin-11, occludin, and N-cadherin localization were present. Flavocoxid administration reduced, in a time-dependent way, p-ERK 1/2, TNF-α, COX-2, 5-LOX, MDA, Bax, FSH, LH, TGF-β3, augmented Bcl-2, testosterone, inhibin B, occludin, N-Cadherin, and improved the structural organization of the testis and the blood-testis barrier. Few TUNEL-positive germ cells were present and a morphological retrieval of the intercellular junctions was observed. In conclusion, flavocoxid has a protective anti-inflammatory, antioxidant, and antiapoptotic function against Cd-induced toxicity in mice testis. We suggest that flavocoxid may play a relevant positive role against environmental levels of Cd, otherwise deleterious to gametogenesis and tubular integrity.
Collapse
Affiliation(s)
| | - Antonio Micali
- Department of Biomedical Sciences and Morphological and Functional Images
| | - Antonina Pisani
- Department of Biomedical Sciences and Morphological and Functional Images
| | - Domenico Puzzolo
- Department of Biomedical Sciences and Morphological and Functional Images
| | | | | | | | | | | | - Salvatore Arena
- Department of Paediatric, Gynaecological Microbiological and Biomedical Sciences
| | | | - Anna Mecchio
- *Department of Clinical and Experimental Medicine
| | | | - Daniele Bruschetta
- Department of Biomedical Sciences and Morphological and Functional Images
| | - Rosaria Laurà
- Department of Biological and Environmental Sciences and
| | - Carlo Magno
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | | | - Domenica Altavilla
- Department of Paediatric, Gynaecological Microbiological and Biomedical Sciences
| |
Collapse
|
15
|
Marques-Neto SR, Ferraz EB, Rodrigues DC, Njaine B, Rondinelli E, Campos de Carvalho AC, Nascimento JHM. AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 2014; 28:125-135. [PMID: 24258356 DOI: 10.1007/s10557-013-6503-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection. METHODS AND RESULTS Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments. CONCLUSION The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.
Collapse
Affiliation(s)
- Silvio Rodrigues Marques-Neto
- Laboratório de Eletrofisiologia Cardíaca Antonio Paes de Carvalho, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco G, 21.941-902, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Shimizu S, Oikawa R, Tsounapi P, Inoue K, Shimizu T, Tanaka K, Martin DT, Honda M, Sejima T, Tomita S, Saito M. Blocking of the ATP sensitive potassium channel ameliorates the ischaemia-reperfusion injury in the rat testis. Andrology 2014; 2:458-65. [PMID: 24604784 DOI: 10.1111/j.2047-2927.2014.00199.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/21/2014] [Accepted: 02/01/2014] [Indexed: 12/17/2022]
Abstract
There is increasing evidence that the effects of administered ATP sensitive potassium (KATP ) channel openers or blockers during ischaemia are still controversial in many organs/tissues. Testicular torsion detorsion which causes ischaemia-reperfusion (IR) injury, cannot be predicted, thus an effective drug should be administered during or after the ischaemia. The aim of this study was to examine whether the administration of KATP channel openers or blockers during ischaemia ameliorates IR injury in the testis. Eight-week-old male Sprague-Dawley rats were subjected to 2 h right testicular ischaemia followed by 24 h reperfusion. The selective mitochondrial (mito) KATP channel blocker, 5-hydroxydecanoate (5-HD) (40 mg/kg), the non-selective KATP channel blocker glibenclamide (5 mg/kg), the selective mito KATP channel opener diazoxide (10 mg/kg) and the non-selective KATP channel opener cromakalim (300 μg/kg) were administered intraperitoneally 15 min prior to the ischaemia or 75 min after the induction of ischaemia. Tissue damage was evaluated by malondialdehyde concentration, myeloperoxidase activity, histological evaluation and TdT-mediated dUTP nick end labelling assay in the testis. There was a significant increase in oxidative stress, neutrophil infiltration, histological damage and apoptosis in the testicular IR model. A significant reduction in the testicular IR injury was observed with the administration of glibenclamide, but not 5-HD, diazoxide or cromakalim during ischaemia. The administration of non-selective KATP channel blocker glibenclamide ameliorated the testicular IR injury. On the other hand, the selective mito KATP channel blocker, 5-HD and KATP channel openers did not reduce the testicular IR injury. These data suggest that blocking of the membrane KATP channel may have a protective effect during the testicular ischaemia. Glibenclamide could be an effective drug to manage the post-ischaemic injury caused by the testicular torsion-detorsion.
Collapse
Affiliation(s)
- S Shimizu
- Division of Molecular Pharmacology, Tottori University School of Medicine, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|