1
|
Zhao F, Shao M, Li M, Li T, Zheng Y, Sun W, Ni C, Li L. Sphingolipid metabolites involved in the pathogenesis of atherosclerosis: perspectives on sphingolipids in atherosclerosis. Cell Mol Biol Lett 2025; 30:18. [PMID: 39920588 PMCID: PMC11804087 DOI: 10.1186/s11658-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
Atherosclerosis, with its complex pathogenesis, is a leading underlying cause of many cardiovascular diseases, which are increasingly prevalent in the population. Sphingolipids play an important role in the development of atherosclerosis. Key metabolites and enzymes in sphingolipid metabolism influence the pathogenesis of atherosclerosis in a variety of ways, including inflammatory responses and oxidative stress. Thus, an investigation of sphingolipid metabolism-related metabolites and key enzymes may provide novel insights and treatment targets for atherosclerosis. This review discusses various mechanisms and research progress on the relationship between various sphingolipid metabolites, related enzymes, and atherosclerosis. Finally, we look into the future research direction of phytosphingolipids.
Collapse
Affiliation(s)
- Fufangyu Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingyan Shao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingrui Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Cheng Ni
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Brazdis RM, Zoicas I, Kornhuber J, Mühle C. Brain Region-Specific Expression Levels of Synuclein Genes in an Acid Sphingomyelinase Knockout Mouse Model: Correlation with Depression-/Anxiety-Like Behavior and Locomotor Activity in the Absence of Genotypic Variation. Int J Mol Sci 2024; 25:8685. [PMID: 39201372 PMCID: PMC11354454 DOI: 10.3390/ijms25168685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Accumulating evidence suggests an involvement of sphingolipids, vital components of cell membranes and regulators of cellular processes, in the pathophysiology of both Parkinson's disease and major depressive disorder, indicating a potential common pathway in these neuropsychiatric conditions. Based on this interaction of sphingolipids and synuclein proteins, we explored the gene expression patterns of α-, β-, and γ-synuclein in a knockout mouse model deficient for acid sphingomyelinase (ASM), an enzyme catalyzing the hydrolysis of sphingomyelin to ceramide, and studied associations with behavioral parameters. Normalized Snca, Sncb, and Sncg gene expression was determined by quantitative PCR in twelve brain regions of sex-mixed homozygous (ASM-/-, n = 7) and heterozygous (ASM+/-, n = 7) ASM-deficient mice, along with wild-type controls (ASM+/+, n = 5). The expression of all three synuclein genes was brain region-specific but independent of ASM genotype, with β-synuclein showing overall higher levels and the least variation. Moreover, we discovered correlations of gene expression levels between brain regions and depression- and anxiety-like behavior and locomotor activity, such as a positive association between Snca mRNA levels and locomotion. Our results suggest that the analysis of synuclein genes could be valuable in identifying biomarkers and comprehending the common pathological mechanisms underlying various neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (I.Z.); (J.K.)
| |
Collapse
|
3
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Lai Y, Tian Y, You X, Du J, Huang J. Effects of sphingolipid metabolism disorders on endothelial cells. Lipids Health Dis 2022; 21:101. [PMID: 36229882 PMCID: PMC9563846 DOI: 10.1186/s12944-022-01701-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Many cardiovascular disorders, including atherosclerosis, hypertension, coronary heart disease, diabetes, etc., are characterized by endothelial cell dysfunction. Endothelial cell function is closely related to sphingolipid metabolism, and normal sphingolipid metabolism is critical for maintaining endothelial cell homeostasis. Sphingolipid metabolites or key enzymes in abnormal situation, including sphingosine, ceramide (Cer), sphingosine-1-phosphate (S1P), serine, sphingosine kinase (SPHK), ceramide kinase (Cerk), sphingosine-1-phosphate lyase (S1PL) etc., may have a protective or damaging effect on the function of endothelial cells. This review summarizes the effects of sphingolipid metabolites and key enzymes disordering in sphingolipid metabolism on endothelial cells, offering some insights into further research on the pathogenesis of cardiovascular diseases and corresponding therapeutic targets.
Collapse
Affiliation(s)
- Yali Lai
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Tian
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xintong You
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangnan Du
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianmei Huang
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, Cudnoch-Jȩdrzejewska A, Czarzasta K. Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med 2022; 9:915961. [PMID: 36119733 PMCID: PMC9471951 DOI: 10.3389/fcvm.2022.915961] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are a structural component of the cell membrane, derived from sphingosine, an amino alcohol. Its sphingoid base undergoes various types of enzymatic transformations that lead to the formation of biologically active compounds, which play a crucial role in the essential pathways of cellular signaling, proliferation, maturation, and death. The constantly growing number of experimental and clinical studies emphasizes the pivotal role of sphingolipids in the pathophysiology of cardiovascular diseases, including, in particular, ischemic heart disease, hypertension, heart failure, and stroke. It has also been proven that altering the sphingolipid metabolism has cardioprotective properties in cardiac pathologies, including myocardial infarction. Recent studies suggest that selected sphingolipids may serve as valuable biomarkers useful in the prognosis of cardiovascular disorders in clinical practice. This review aims to provide an overview of the current knowledge of sphingolipid metabolism and signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Sonia Borodzicz-Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Wojciech Łysik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jȩdrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Choi RH, Tatum SM, Symons JD, Summers SA, Holland WL. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol 2021; 18:701-711. [PMID: 33772258 PMCID: PMC8978615 DOI: 10.1038/s41569-021-00536-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/03/2023]
Abstract
Increases in calorie consumption and sedentary lifestyles are fuelling a global pandemic of cardiometabolic diseases, including coronary artery disease, diabetes mellitus, cardiomyopathy and heart failure. These lifestyle factors, when combined with genetic predispositions, increase the levels of circulating lipids, which can accumulate in non-adipose tissues, including blood vessel walls and the heart. The metabolism of these lipids produces bioactive intermediates that disrupt cellular function and survival. A compelling body of evidence suggests that sphingolipids, such as ceramides, account for much of the tissue damage in these cardiometabolic diseases. In humans, serum ceramide levels are proving to be accurate biomarkers of adverse cardiovascular disease outcomes. In mice and rats, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of diabetes, atherosclerosis, hypertension and heart failure. In cultured cells and isolated tissues, ceramides perturb mitochondrial function, block fuel usage, disrupt vasodilatation and promote apoptosis. In this Review, we discuss the body of literature suggesting that ceramides are drivers - and not merely passengers - on the road to cardiovascular disease. Moreover, we explore the feasibility of therapeutic strategies to lower ceramide levels to improve cardiovascular health.
Collapse
Affiliation(s)
- Ran Hee Choi
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Song JH, Kim GT, Park KH, Park WJ, Park TS. Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease. Biomol Ther (Seoul) 2021; 29:373-383. [PMID: 33903284 PMCID: PMC8255146 DOI: 10.4062/biomolther.2020.218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is the deposition of plaque in the main arteries. It is an inflammatory condition involving the accumulation of macrophages and various lipids (low-density lipoprotein [LDL] cholesterol, ceramide, S1P). Moreover, endothelial cells, macrophages, leukocytes, and smooth muscle cells are the major players in the atherogenic process. Sphingolipids are now emerging as important regulators in various pathophysiological processes, including the atherogenic process. Various sphingolipids exist, such as the ceramides, ceramide-1-phosphate, sphingosine, sphinganine, sphingosine-1-phosphate (S1P), sphingomyelin, and hundreds of glycosphingolipids. Among these, ceramides, glycosphingolipids, and S1P play important roles in the atherogenic processes. The atherosclerotic plaque consists of higher amounts of ceramide, glycosphingolipids, and sphingomyelin. The inhibition of the de novo ceramide biosynthesis reduces the development of atherosclerosis. S1P regulates atherogenesis via binding to the S1P receptor (S1PR). Among the five S1PRs (S1PR1-5), S1PR1 and S1PR3 mainly exert anti-atherosclerotic properties. This review mainly focuses on the effects of ceramide and S1P via the S1PR in the development of atherosclerosis. Moreover, it discusses the recent findings and potential therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Jae-Hwi Song
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| | - Kyung-Ho Park
- Department of Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam 13120, Republic of Korea
| |
Collapse
|
9
|
Taniguchi M, Okazaki T. Ceramide/Sphingomyelin Rheostat Regulated by Sphingomyelin Synthases and Chronic Diseases in Murine Models. J Lipid Atheroscler 2020; 9:380-405. [PMID: 33024732 PMCID: PMC7521967 DOI: 10.12997/jla.2020.9.3.380] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022] Open
Abstract
Ceramide and sphingomyelin (SM) are major components of the double membrane-bound sphingolipids. Ceramide is an essential bioactive lipid involved in numerous cell processes including apoptosis, necrosis, and autophagy-dependent cell death. Inversely, SM regulates opposite cellular processes such as proliferation and migration by changing receptor-mediated signal transduction in the lipid microdomain. SM is generated through a transfer of phosphocholine from phosphatidylcholine to ceramide by SM synthases (SMSs). Research during the past several decades has revealed that the ceramide/SM balance in cellular membranes regulated by SMSs is important to decide the cell fate, survival, and proliferation. In addition, recent experimental studies utilizing SMS knockout mice and murine disease models provide evidence that SMS-regulated ceramide/SM balance is involved in human diseases. Here, we review the basic structural and functional characteristics of SMSs and focus on their cellular functions through the regulation of ceramide/SM balance in membrane microdomains. In addition, we present the pathological or physiological implications of SMSs by analyzing their role in SMS-knockout mice and human disease models. This review finally presents evidence indicating that the regulation of ceramide/SM balance through SMS could be a therapeutic target for human disorders.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Kanazawa Prefectural University, Nonoichi, Japan
| |
Collapse
|
10
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
11
|
Wang H, Tian Q, Zhang J, Liu H, Zhang X, Cao W, Zhang J, Anto EO, Li X, Wang X, Liu D, Zheng Y, Guo Z, Wu L, Song M, Wang Y, Wang W. Population-based case-control study revealed metabolomic biomarkers of suboptimal health status in Chinese population-potential utility for innovative approach by predictive, preventive, and personalized medicine. EPMA J 2020; 11:147-160. [PMID: 32549914 PMCID: PMC7272523 DOI: 10.1007/s13167-020-00200-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Suboptimal health status (SHS) is a subclinical stage of chronic diseases, and the identification of SHS provides an opportunity for the predictive, preventive, and personalized medicine (PPPM) of chronic diseases. Previous studies have reported the associations between metabolic signatures and early signs of chronic diseases. METHODS This study aimed to detect the metabolic biomarkers for the identification of SHS in a case-control study. SHS questionnaire-25 (SHSQ-25) was used in a population-based health survey to measure the SHS levels of participants. The liquid chromatography-mass spectrometry-based untargeted metabolomics analysis was conducted on plasma samples collected from 50 SHS participants and 50 age- and sex-matched healthy controls. RESULTS After adjusting for the confounders, 24 significantly differential metabolites, such as sphingomyelin, sphingosine, sphinganine, progesterone, pregnanolone, and bilirubin, were identified as the candidate biomarkers for SHS. Pathway analysis revealed that sphingolipid metabolism, taurine metabolism, and steroid hormone biosynthesis are the disturbed metabolic pathways related to SHS. A combination of four metabolic biomarkers (sphingosine, pregnanolone, taurolithocholate sulfate, cervonyl carnitine) can distinguish SHS individuals from the controls with a sensitivity of 94.0%, a specificity of 90.0%, and an area under the receiver operating characteristic curve of 0.977. CONCLUSION Plasma metabolites are valuable biomarkers for SHS identification, and meanwhile, SHSQ-25 can be used as an alternative health screening tool in the population-based health survey. SHS-related metabolic disturbances could be detected at the early onset of SHS, and SHS-related metabolites could create a window opportunity for PPPM of chronic diseases.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Qiuyue Tian
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Jie Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Hongqi Liu
- Student Health Center, Weifang University, Weifang, China
| | - Xiaoyu Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Weijie Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Jinxia Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Enoch Odame Anto
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Xingang Li
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Xueqing Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Di Liu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yulu Zheng
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Zheng Guo
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Lijuan Wu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
- School of Public Health, Shandong First Medical University, Taian, China
| |
Collapse
|
12
|
Wang P, Li Z, Jiang L, Zhou L, Ye D. Design and Synthesis of the Diazirine-based Clickable Photo-affinity Probe Targeting Sphingomyelin Synthase 2. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181106154601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:SMS family plays a very important role in sphingolipids metabolism and is involved in the membrane mobility and signaling transduction.Methods:SMS2 subtype was related to a variety of diseases and could be regarded as a promising potential drug target. However, the uncertainty of the binding sites and the molecular mechanism of action limited the development of SMS2 inhibitors. Herein, we discovered a photo-affinity probe PAL-1 targeting SMS2.Results:The enzyme inhibitory activity and the photo-affinity labeling experiments showed that PAL-1 could be mono-labeled on SMS2.Conclusion:In summary, starting from the N-arylbenzamides core structure and the minimalist terminal alkyne-containing diazirine photo-crosslinker, we designed and synthesized a photoaffinity probe PAL-1 targeting SMS2. The enzymatic inhibitory activity study showed that PAL-1 exhibited superior selectivities for SMS2 with an IC50 of 0.37 µM over SMS1.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhining Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Lulu Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond) 2019; 133:763-776. [PMID: 30890654 PMCID: PMC6422862 DOI: 10.1042/cs20180911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as sphingomyelins, ceramides, glycosphingolipids, and sphingosine-1-phosphates (S1P) are a large group of structurally and functionally diverse molecules. Some specific species are found associated with atherogenesis and provide novel therapeutic targets. Herein, we briefly review how sphingolipids are implicated in the progression of atherosclerosis and related diseases, and then we discuss the potential therapy options by targetting several key enzymes in sphingolipid metabolism.
Collapse
|
14
|
Decreased Count and Dysfunction of Circulating EPCs in Postmenopausal Hypercholesterolemic Females via Reducing NO Production. Stem Cells Int 2018; 2018:2543847. [PMID: 29760721 PMCID: PMC5924981 DOI: 10.1155/2018/2543847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
Endothelial progenitor cells (EPCs) contribute to the endogenous endothelial repair program during hypercholesterolemia. EPC count and migratory and proliferative capacities remain unchanged in the premenopausal female with hypercholesterolemia. However, the changes of count and activity of circulating EPCs in the hypercholesterolemic postmenopausal females are unknown. Here, we find that the migratory and proliferative capacities of circulating EPCs were decreased in patients with hypercholesterolemia versus normocholesterolemia. No significant differences were found between postmenopausal females and age-matched males. NO production showed positive correlation with the activity and count of circulating EPCs in patients with hypercholesterolemia. Flow-mediated dilatation (FMD) is directly interrelated with EPC counts and function. Our findings reveal that decreased EPC count and endothelial dysfunction lead to less NO production in hypercholesterolemic postmenopausal females. Maintaining the EPC numbers and activity might be emerging as a potential therapeutic strategy to reduce the risk of cardiovascular injury in elder women.
Collapse
|
15
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|
16
|
Nakamura Y, Shimizu Y, Horibata Y, Tei R, Koike R, Masawa M, Watanabe T, Shiobara T, Arai R, Chibana K, Takemasa A, Sugimoto H, Ishii Y. Changes of plasmalogen phospholipid levels during differentiation of induced pluripotent stem cells 409B2 to endothelial phenotype cells. Sci Rep 2017; 7:9377. [PMID: 28839272 PMCID: PMC5571164 DOI: 10.1038/s41598-017-09980-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023] Open
Abstract
Endothelial cells (EC) are involved in regulating several aspects of lipid metabolism, with recent research revealing the clinicopathological significance of interactions between EC and lipids. Induced pluripotent stem cells (iPSC) have various possible medical uses, so understanding the metabolism of these cells is important. In this study, endothelial phenotype cells generated from human iPSC formed cell networks in co-culture with fibroblasts. Changes of plasmalogen lipids and sphingomyelins in endothelial phenotype cells generated from human iPSC were investigated by reverse-phase ultra-high-pressure liquid chromatography mass spectrometry (UHPLC-MS/MS) analysis. The levels of plasmalogen phosphatidylethanolamines (38:5) and (38:4) increased during differentiation of EC, while sphingomyelin levels decreased transiently. These changes of plasmalogen lipids and sphingomyelins may have physiological significance for EC and could be used as markers of differentiation.
Collapse
Affiliation(s)
- Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Rinna Tei
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ryosuke Koike
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Meitetsu Masawa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ryo Arai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yoshiki Ishii
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
17
|
Iqbal J, Walsh MT, Hammad SM, Hussain MM. Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol Metab 2017; 28:506-518. [PMID: 28462811 PMCID: PMC5474131 DOI: 10.1016/j.tem.2017.03.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/09/2017] [Accepted: 03/28/2017] [Indexed: 12/28/2022]
Abstract
Sphingolipids are structurally and functionally diverse molecules with significant physiologic functions and are found associated with cellular membranes and plasma lipoproteins. The cellular and plasma concentrations of sphingolipids are altered in several metabolic disorders and may serve as prognostic and diagnostic markers. Here we discuss various sphingolipid transport mechanisms and highlight how changes in cellular and plasma sphingolipid levels contribute to cardiovascular disease, obesity, diabetes, insulin resistance, and nonalcoholic fatty liver disease (NAFLD). Understanding of the mechanisms involved in intracellular transport, secretion, and extracellular transport may provide novel information that might be amenable to therapeutic targeting for the treatment of various metabolic disorders.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, NY 11203, USA; King Abdullah International Medical Research Center, MNGHA, Al Ahsa 31982, Saudi Arabia
| | - Meghan T Walsh
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, NY 11203, USA
| | - Samar M Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, NY 11203, USA; VA New York Harbor Healthcare System, Brooklyn, New York, NY 11209; Center for Diabetes and Obesity Research, NYU Winthrop Hospital, Mineola, NY 11501, USA.
| |
Collapse
|
18
|
Han L, Cao C, Jia Z, Liu S, Liu Z, Xin R, Wang C, Li X, Ren W, Wang X, Li C. Epidermal growth factor gene is a newly identified candidate gene for gout. Sci Rep 2016; 6:31082. [PMID: 27506295 PMCID: PMC4978989 DOI: 10.1038/srep31082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.
Collapse
Affiliation(s)
- Lin Han
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaotong Jia
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shiguo Liu
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhen Liu
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ruosai Xin
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Can Wang
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xinde Li
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wei Ren
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xuefeng Wang
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Changgui Li
- Shandong Gout Clinical Medical Center, Qingdao 266003, China.,Gout laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
19
|
Sphingolipids in High Fat Diet and Obesity-Related Diseases. Mediators Inflamm 2015; 2015:520618. [PMID: 26648664 PMCID: PMC4663345 DOI: 10.1155/2015/520618] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022] Open
Abstract
Nutrient oversupply associated with a high fat diet (HFD) significantly alters cellular metabolism, and specifically including sphingolipid metabolism. Sphingolipids are emerging as bioactive lipids that play key roles in regulating functions, in addition to their traditional roles as membrane structure. HFD enhances de novo sphingolipid synthesis and turnover of sphingolipids via the salvage pathway, resulting in the generation of ceramide, and more specifically long chain ceramide species. Additionally, HFD elevates sphingomyelin and sphingosine-1 phosphate (S1P) levels in several tissues including liver, skeletal muscle, adipose tissue, and cardiovascular tissues. HFD-stimulated sphingolipid generation contributes to systemic insulin resistance, dysregulated lipid accumulation, and cytokine expression and secretion from skeletal muscle and adipose tissues, exacerbating obesity-related conditions. Furthermore, altered sphingolipid levels, particularly ceramide and sphingomyelin, are involved in obesity-induced endothelial dysfunction and atherosclerosis. In this review, HFD-mediated sphingolipid metabolism and its impact on HFD-induced biology and pathobiology will be discussed.
Collapse
|
20
|
Li YF, Ren LN, Guo G, Cannella LA, Chernaya V, Samuel S, Liu SX, Wang H, Yang XF. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J Hematol Oncol 2015; 8:33. [PMID: 25888494 PMCID: PMC4446087 DOI: 10.1186/s13045-015-0130-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
As the population ages and lifestyles change in concordance, the number of patients suffering from ischemic stroke and its associated disabilities is increasing. Studies on determining the relationship between endothelial progenitor cells (EPCs) and ischemic stroke have become a new hot spot and have reported that EPCs may protect the brain against ischemic injury, promote neurovascular repair, and improve long-term neurobehavioral outcomes. More importantly, they introduce a new perspective for prognosis assessment and therapy of ischemic stroke. However, EPCs’ origin, function, influence factors, injury repair mechanisms, and cell-based therapy strategies remain controversial. Particularly, research conducted to date has less clinical studies than pre-clinical experiments on animals. In this review, we summarized and analyzed the current understanding of basic characteristics, influence factors, functions, therapeutic strategies, and disadvantages of EPCs as well as the regulation of inflammatory factors involved in the function and survival of EPCs after ischemic stroke. Identifying potential therapeutic effects of EPCs in ischemic stroke will be a challenging but an incredibly important breakthrough in neurology, which may bring promise for patients with ischemic stroke.
Collapse
Affiliation(s)
- Ya-Feng Li
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Department of Nephrology and Hemodialysis Center, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Li-Na Ren
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Geng Guo
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Lee Anne Cannella
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Valeria Chernaya
- Department of Biology, College of Science and Technology, Temple University, 1801 N. Broad St., Philadelphia, PA, 19122, USA.
| | - Sonia Samuel
- Department of Biology, College of Science and Technology, Temple University, 1801 N. Broad St., Philadelphia, PA, 19122, USA.
| | - Su-Xuan Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
21
|
Gao X, Gong H, Men P, Zhou L, Ye D. Design, Synthesis, and Biological Evaluation of Novel Dual Inhibitors of Secretory Phospholipase A2 and Sphingomyelin Synthase. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|