1
|
Francis KL, Zheng HB, Suskind DL, Murphree TA, Phan BA, Quah E, Hendrickson AS, Zhou X, Nuding M, Hudson AS, Guttman M, Morton GJ, Schwartz MW, Alonge KM, Scarlett JM. Characterizing the human intestinal chondroitin sulfate glycosaminoglycan sulfation signature in inflammatory bowel disease. Sci Rep 2024; 14:11839. [PMID: 38782973 PMCID: PMC11116513 DOI: 10.1038/s41598-024-60959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The intestinal extracellular matrix (ECM) helps maintain appropriate tissue barrier function and regulate host-microbial interactions. Chondroitin sulfate- and dermatan sulfate-glycosaminoglycans (CS/DS-GAGs) are integral components of the intestinal ECM, and alterations in CS/DS-GAGs have been shown to significantly influence biological functions. Although pathologic ECM remodeling is implicated in inflammatory bowel disease (IBD), it is unknown whether changes in the intestinal CS/DS-GAG composition are also linked to IBD in humans. Our aim was to characterize changes in the intestinal ECM CS/DS-GAG composition in intestinal biopsy samples from patients with IBD using mass spectrometry. We characterized intestinal CS/DS-GAGs in 69 pediatric and young adult patients (n = 13 control, n = 32 active IBD, n = 24 IBD in remission) and 6 adult patients. Here, we report that patients with active IBD exhibit a significant decrease in the relative abundance of CS/DS isomers associated with matrix stability (CS-A and DS) compared to controls, while isomers implicated in matrix instability and inflammation (CS-C and CS-E) were significantly increased. This imbalance of intestinal CS/DS isomers was restored among patients in clinical remission. Moreover, the abundance of pro-stabilizing CS/DS isomers negatively correlated with clinical disease activity scores, whereas both pro-inflammatory CS-C and CS-E content positively correlated with disease activity scores. Thus, pediatric patients with active IBD exhibited increased pro-inflammatory and decreased pro-stabilizing CS/DS isomer composition, and future studies are needed to determine whether changes in the CS/DS-GAG composition play a pathogenic role in IBD.
Collapse
Affiliation(s)
- Kendra L Francis
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Hengqi B Zheng
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - David L Suskind
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Bao Anh Phan
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Emily Quah
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Aarun S Hendrickson
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Xisheng Zhou
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Mason Nuding
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Alexandra S Hudson
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Michael W Schwartz
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
| | - Kimberly M Alonge
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Jarrad M Scarlett
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA, USA.
- Department of Medicine, University of Washington Medicine Diabetes Institute, 750 Republican St, Box 358062, Seattle, WA, 98195, USA.
| |
Collapse
|
2
|
Nakane A, Hirose S, Kawai N, Fujimoto N, Kondo E, Asano K. Salmon nasal cartilage proteoglycan stimulates hair growth. Biosci Biotechnol Biochem 2023; 88:107-110. [PMID: 37881018 DOI: 10.1093/bbb/zbad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Hair loss is a commonly encountered problem. In this study, hair growth was enhanced by daily oral ingestion of salmon nasal cartilage proteoglycan (PG) in mice. Proteoglycan stimulated vesicular endothelial growth factor production in human follicle dermal papilla cells through insulin growth factor-1 receptor signaling, suggesting the possibility of hair loss improvement by PG ingestion.
Collapse
Affiliation(s)
- Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Noriaki Kawai
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Naoki Fujimoto
- Department of Healthcare, DyDo DRINCO, Inc., Osaka, Japan
| | - Eriko Kondo
- Department of Healthcare, DyDo DRINCO, Inc., Osaka, Japan
| | - Krisana Asano
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
3
|
Kudo K, Kobayashi T, Kasai K, Nozaka H, Nakamura T. Chondroitin sulfate is not digested at all in the mouse small intestine but may suppress interleukin 6 expression induced by tumor necrosis factor-α. Biochem Biophys Res Commun 2023; 642:185-191. [PMID: 36586186 DOI: 10.1016/j.bbrc.2022.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Salmon nasal cartilage proteoglycan (PG) was orally administered to mice. The PG digest was recovered from the small intestine, and its sugar chain size and unsaturated disaccharide content were examined. The elution position of the PG digest following Sepharose CL-4B chromatography was consistent with that of actinase-digested PG prior to administration. The PG digest was incubated with chondroitinase ABC, which resulted in the elution pattern of the unsaturated disaccharides being identical to that of the degraded product of actinase-digested PG. The core protein of PG was digested in the mouse small intestine, but chondroitin sulfate, which is the sugar chain of PG, was not degraded at all. Then, the effects of chondroitin 4- and 6-sulfates on human colon cancer cells were examined. These chondroitin sulfates were found to suppress the expression of interleukin-6 induced by TNF-α. Overall, the chondroitin sulfate chain may act on the intestinal epithelium and suppress inflammation of the intestinal tract.
Collapse
Affiliation(s)
- Kai Kudo
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Takashi Kobayashi
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Hiroyuki Nozaka
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Toshiya Nakamura
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| |
Collapse
|
4
|
Chondroitin Sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydr Polym 2022; 286:119305. [PMID: 35337491 DOI: 10.1016/j.carbpol.2022.119305] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
|
5
|
Tondepu C, Karumbaiah L. Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma. Adv Healthc Mater 2022; 11:e2101956. [PMID: 34878733 PMCID: PMC9048137 DOI: 10.1002/adhm.202101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a stage IV astrocytoma that carries a dismal survival rate of ≈10 months postdiagnosis and treatment. The highly invasive capacity of GBM and its ability to escape therapeutic challenges are key factors contributing to the poor overall survival rate. While current treatments aim to target the cancer cell itself, they fail to consider the significant role that the GBM tumor microenvironment (TME) plays in promoting tumor progression and therapeutic resistance. The GBM tumor glycocalyx and glycan-rich extracellular matrix (ECM), which are important constituents of the TME have received little attention as therapeutic targets. A wide array of aberrantly modified glycans in the GBM TME mediate tumor growth, invasion, therapeutic resistance, and immunosuppression. Here, an overview of the landscape of aberrant glycan modifications in GBM is provided, and the design and utility of 3D glycomaterials are discussed as a tool to evaluate glycan-mediated GBM progression and therapeutic efficacy. The development of alternative strategies to target glycans in the TME can potentially unveil broader mechanisms of restricting tumor growth and enhancing the efficacy of tumor-targeting therapeutics.
Collapse
Affiliation(s)
- Chaitanya Tondepu
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
- Division of Neuroscience, Biomedical & Translational Sciences Institute, University of Georgia, Athens, GA, 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
6
|
Hirose S, Asano K, Harada S, Takahashi T, Kondou E, Ito K, Iddamalgoda A, Nakane A. Effects of salmon cartilage proteoglycan on obesity in mice fed with a high-fat diet. Food Sci Nutr 2022; 10:577-583. [PMID: 35154693 PMCID: PMC8825722 DOI: 10.1002/fsn3.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effects of salmon nasal cartilage proteoglycan (PG), which shows anti-inflammatory properties, on obesity induced by high-fat diet (HFD) in a mouse model. Mice were fed either a HFD or normal diet (ND), with or without PG, for 8-12 weeks. After 12 weeks, the body weight of mice fed with PG-free HFD was 54.08 ± 4.67 g, whereas that of mice fed with HFD containing PG was 41.83 ± 4.97 g. The results suggest that the increase in body weight was attenuated in mice fed with HFD containing PG. This effect was not observed in mice fed with ND. The PG administration suppressed the elevation of serum lipids (the level of serum lipids ranged between 54% and 69% compared to 100% in mice fed with PG-free HFD) and the upregulated mRNA expression of sterol regulatory element-binding protein-1c (SREBP-1c), which is a transcription factor that acts as a master regulator of lipogenic gene expression in the liver (the expression level was 77.5% compared to 100% in mice fed with PG-free HFD). High leptin levels in mice fed with PG-free HFD were observed during fasting (average at 14,376 ng/ml), and they did not increase after refeeding (average of 14,263 ng/ml), whereas serum leptin levels in mice fed with HFD containing PG were low during fasting (average of 6481 ng/ml) and increased after refeeding (average 13,382 ng/ml). These results suggest that PG feeding has an anti-obesity effect and that the regulation of SREBP-1c and leptin secretion play a role in this effect.
Collapse
Affiliation(s)
- Shouhei Hirose
- Department of Biopolymer and Health ScienceHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Microbiology and ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
- Present address:
Division of MicrobiologyNational Institute of Health SciencesKawasakiJapan
| | - Krisana Asano
- Department of Biopolymer and Health ScienceHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Microbiology and ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Seiyu Harada
- Department of HealthcareDydo DRINCO, Inc.OsakaJapan
| | - Tatsuji Takahashi
- Department of Biopolymer and Health ScienceHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Research and DevelopmentIchimaru Pharcos Co., Ltd.Motosu CityJapan
| | - Eriko Kondou
- Department of HealthcareDydo DRINCO, Inc.OsakaJapan
| | - Kenichi Ito
- Department of Research and DevelopmentIchimaru Pharcos Co., Ltd.Motosu CityJapan
| | | | - Akio Nakane
- Department of Biopolymer and Health ScienceHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Nursing and School of Health SciencesHirosaki University of Health and WelfareHirosakiJapan
| |
Collapse
|
7
|
Disease-Modifying Adjunctive Therapy (DMAT) in Osteoarthritis-The Biological Effects of a Multi-Mineral Complex, LithoLexal ® Joint-A Review. Clin Pract 2021; 11:901-913. [PMID: 34940003 PMCID: PMC8700461 DOI: 10.3390/clinpract11040104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Modern advances in molecular medicine have led to the reframing of osteoarthritis as a metabolically active, inflammatory disorder with local and systemic contributing factors. According to the ‘inflammatory theory’ of osteoarthritis, immune response to an initial damage is the key trigger that leads to progressive joint destruction. Several intertwined pathways are known to induce and govern articular inflammation, cartilage matrix degradation, and subchondral bone changes. Effective treatments capable of halting or delaying the progression of osteoarthritis remain elusive. As a result, supplements such as glucosamine and chondroitin sulphate are commonly used despite the lack of scientific consensus. A novel option for adjunctive therapy of osteoarthritis is LithoLexal® Joint, a marine-derived, mineral-rich extract, that exhibited significant efficacy in clinical trials. LithoLexal® has a lattice microstructure containing a combination of bioactive rare minerals. Mechanistic research suggests that this novel treatment possesses various potential disease-modifying properties, such as suppression of nuclear factor kappa-B, interleukin 1β, tumor necrosis factor α, and cyclooxygenase-2. Accordingly, LithoLexal® Joint can be considered a disease-modifying adjunctive therapy (DMAT). LithoLexal® Joint monotherapy in patients with knee osteoarthritis has significantly improved symptoms and walking ability with higher efficacy than glucosamine. Preliminary evidence also suggests that LithoLexal® Joint may allow clinicians to reduce the dose of nonsteroidal anti-inflammatory drugs in osteoarthritic patients by up to 50%. In conclusion, the multi-mineral complex, LithoLexal® Joint, appears to be a promising candidate for DMAT of osteoarthritis, which may narrow the existing gap in clinical practice.
Collapse
|
8
|
Integral Roles of Specific Proteoglycans in Hair Growth and Hair Loss: Mechanisms behind the Bioactivity of Proteoglycan Replacement Therapy with Nourkrin® with Marilex® in Pattern Hair Loss and Telogen Effluvium. Dermatol Res Pract 2020; 2020:8125081. [PMID: 32425997 PMCID: PMC7222612 DOI: 10.1155/2020/8125081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022] Open
Abstract
Follicular proteoglycans are key players with structural, functional, and regulatory roles in the growth and cycling behaviour of the hair follicles. The expression pattern of specific proteoglycans is strongly correlated with follicular phase transitions, which further affirms their functional involvement. Research shows that bioactive proteoglycans, e.g., versican and decorin, can actively trigger follicular phase shift by their anagen-inducing, anagen-maintaining, and immunoregulatory properties. This emerging insight has led to the recognition of “dysregulated proteoglycan metabolism” as a plausible causal or mediating pathology in hair growth disorders in both men and women. In support of this, declined expression of proteoglycans has been reported in cases of anagen shortening and follicular miniaturisation. To facilitate scientific communication, we propose designating this pathology “follicular hypoglycania (FHG),” which results from an impaired ability of follicular cells to replenish and maintain a minimum relative concentration of key proteoglycans during anagen. Lasting FHG may advance to structural decay, called proteoglycan follicular atrophy (PFA). This process is suggested to be an integral pathogenetic factor in pattern hair loss (PHL) and telogen effluvium (TE). To address FHG and PFA, a proteoglycan replacement therapy (PRT) program using oral administration of a marine-derived extract (Nourkrin® with Marilex®, produced by Pharma Medico Aps, Aarhus, Denmark) containing specific proteoglycans has been developed. In clinical studies, this treatment significantly reduced hair fall, promoted hair growth, and improved quality of life in patients with male- and female-pattern hair loss. Accordingly, PRT (using Nourkrin® with Marilex®) can be recommended as an add-on treatment or monotherapy in patients with PHL and TE.
Collapse
|
9
|
Hatano S, Watanabe H. Regulation of Macrophage and Dendritic Cell Function by Chondroitin Sulfate in Innate to Antigen-Specific Adaptive Immunity. Front Immunol 2020; 11:232. [PMID: 32194548 PMCID: PMC7063991 DOI: 10.3389/fimmu.2020.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic polysaccharide comprised of repeating disaccharides, modified with sulfate groups at various positions. Except for hyaluronan (HA), GAGs are covalently bound to core proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact with a variety of physiologically active molecules, including cytokines, chemokines, and growth factors, and control cell behavior during development and in the progression of diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another type of GAG, and HA are well reported as regulators for leukocyte migration at sites of inflammation. There have been many reports on the regulation of immune cell function by HS and HA; however, regulation of immune cells by CS has not yet been fully understood. This article focuses on the regulatory function of CS in antigen-presenting cells, including macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan, and the cell surface proteoglycan, syndecan.
Collapse
Affiliation(s)
- Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
10
|
Ono HK, Yoshimura S, Hirose S, Narita K, Tsuboi M, Asano K, Nakane A. Salmon cartilage proteoglycan attenuates allergic responses in mouse model of papain‑induced respiratory inflammation. Mol Med Rep 2018; 18:4058-4064. [PMID: 30106157 DOI: 10.3892/mmr.2018.9364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/13/2018] [Indexed: 11/06/2022] Open
Abstract
Proteoglycan (PG) is a complex glycohydrate, which is widely distributed in the extracellular matrix. It has been reported that daily oral administration of PG (extracted from salmon nasal cartilage) modulates the severity of proinflammatory cytokine responses in mouse experimental colitis, autoimmune encephalomyelitis, collagen‑induced arthritis and obesity‑induced inflammation. The present study investigated the effect of salmon nasal cartilage PG on allergic responses using a mouse model of papain‑induced respiratory inflammation. Low titers of immunoglobulin E were identified in the sera of the PG‑administered mice. Oral administration of PG attenuated eosinophil infiltration in the lung. In the acute model of papain‑induced allergic inflammation, PG‑administered mice exhibited low titers of epithelium‑derived and T helper 2‑associated cytokines. The results of the present study demonstrated that salmon cartilage PG has an immunomodulatory effect on intranasally delivered papain. These results suggest a potential role for PG as a prophylactic agent which may attenuate allergic respiratory inflammation.
Collapse
Affiliation(s)
- Hisaya K Ono
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori 034‑8628, Japan
| | | | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Makoto Tsuboi
- Research and Development Department, Ichimaru Pharcos Co., Ltd., Motosu, Gifu 501‑0475, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| |
Collapse
|
11
|
Stephenson EL, Yong VW. Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol 2018; 71-72:432-442. [PMID: 29702175 DOI: 10.1016/j.matbio.2018.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023]
Abstract
The extracellular matrix of the central nervous system is an interconnected network of proteins and sugars. It is crucial for homeostasis, but its remodeling in neurological diseases impacts both injury and repair. Here we introduce an extracellular matrix family member that participates in immune-matrix interactions, the chondroitin sulfate proteoglycans. Chondroitin sulfate proteoglycans integrate signals from the microenvironment to activate immune cells, and they boost inflammatory responses by binding immunological receptors including toll-like receptors, selectins, CD44, and β1 integrin. Chondroitin sulfate proteoglycans also bind signaling molecules for immune cells such as cytokines and chemokines, and they activate matrix-degrading enzymes. Chondroitin sulfate proteoglycans accumulate in the damaged CNS, including during traumatic brain/spinal cord injury and multiple sclerosis, and they help drive pathogenesis. This Review aims to give new insights into the remodeling of chondroitin sulfate proteoglycans during inflammation, and how these matrix glycoproteins are able to drive neuroinflammation.
Collapse
Affiliation(s)
- Erin L Stephenson
- Hotchkiss Brain Institute and the University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Hirose S, Narita K, Asano K, Nakane A. Salmon cartilage proteoglycan promotes the healing process of Staphylococcus aureus-infected wound. Heliyon 2018; 4:e00587. [PMID: 29862350 PMCID: PMC5968139 DOI: 10.1016/j.heliyon.2018.e00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 11/28/2022] Open
Abstract
Wound healing is the critical event for maintaining skin function and barrier. Inflammatory state in which a variety of cells are activated and accumulated is important for wound healing. Bacterial infection in cutaneous wound is a common problem and causes delay of wound healing. Our previous study demonstrated that the salmon nasal cartilage proteoglycan (PG) has an immunomodulatory effect in various mouse models of inflammatory disease. In this study, we investigated the effect of PG on healing process of Staphylococcus aureus-infected wound. PG accelerated wound closure in the initial phase of both infected and non-infected wound healing. In addition, the bacterial number in wounds of the PG-treated mice was significantly lower than that in the vehicle group. Neutrophil and macrophage infiltration was intensively observed in the PG-treated mice on day 2 after S. aureus inoculation, whereas neutrophil and macrophage influx was highly detected on day 6 in the vehicle control. Moreover, the production of TGF-β and IL-6 in the wound tissue was significantly promoted compared to the vehicle control on day 1. In contrast, the production of IL-1β and TNF-α in PG-treated mice was significantly decreased compared to the vehicle control on day 5. These data suggested that PG modulates the inflammatory state in infected wounds leading to promote wound healing.
Collapse
Affiliation(s)
- Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.,Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
13
|
Asano K, Takahashi E, Yoshimura S, Nakane A. Oral administration of salmon cartilage proteoglycan extends the survival of allografts in mice. Biomed Rep 2018; 8:37-40. [PMID: 29387389 DOI: 10.3892/br.2017.1011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023] Open
Abstract
Proteoglycan (PG) is a complex glycohydrate that is widely distributed in the extracellular matrix. Oral administration of PG extracted from salmon nasal cartilage has been reported to attenuate the severity and proinflammatory cytokine responses in mouse experimental colitis, autoimmune encephalomyelitis, collagen-induced arthritis and obesity-induced inflammation. In the present study, the effects of salmon nasal cartilage PG on skin allografts were investigated in a mouse model. Oral administration of PG prolonged the survival of skin grafts within 10 days of transplantation. Although PG failed to inhibit allograft rejection at the final stage of transplantation, PG attenuated the cell infiltration in the skin under the transplanted site.
Collapse
Affiliation(s)
- Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan.,Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Emiko Takahashi
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sayuri Yoshimura
- Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan.,Tohoku Women's College, Hirosaki, Aomori 036-8503, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan.,Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
14
|
Kakizaki I, Miura A, Mineta T, Hong J, Kato Y. Characterization of Proteoglycan and Hyaluronan in Hot Water Extract from Salmon Cartilage. J Appl Glycosci (1999) 2017; 64:83-90. [PMID: 34354500 PMCID: PMC8056930 DOI: 10.5458/jag.jag.jag-2017_005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/19/2017] [Indexed: 10/31/2022] Open
Abstract
Salmon cartilage proteoglycan fractions have recently gained favor as ingredients of functional food and cosmetics. An optimal hot water method to extract proteoglycan from salmon cartilage has recently been developed. The extracted cartilage includes hyaluronan and collagen in addition to proteoglycan as counterparts that interact with each other. In this study, biochemical analyses and atomic force microscopical analysis revealed global molecular images of proteoglycan in the hot water extract. More than seventy percent of proteoglycans in this extract maintained their whole native structures. Hyaluronan purified from the hot water extract showed a distribution with high molecular weight similar to hyaluronan considered to be native hyaluronan in cartilage. The current data is evidence of the quality of this hot water cartilage extract.
Collapse
Affiliation(s)
- Ikuko Kakizaki
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine
| | - Ayako Miura
- Laboratory of Food Science, Faculty of Education, Hirosaki University
| | - Takashi Mineta
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Jinseo Hong
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoji Kato
- Laboratory of Food Science, Faculty of Education, Hirosaki University
| |
Collapse
|
15
|
Sano M, Shang Y, Nakane A, Saito T. Salmon nasal cartilage proteoglycan enhances growth of normal human dermal fibroblast through Erk1/2 phosphorylation. Biosci Biotechnol Biochem 2017; 81:1379-1385. [PMID: 28463592 DOI: 10.1080/09168451.2017.1318695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Proteoglycan (PG) is a heavily glycosylated protein, localized to cell surface and extracellular matrix, and has various functions. Recently, it has been gradually revealed that PG interacts with various growth factors and morphogens and regulates cellular functions. Although salmon nasal cartilage PG (Salmon-PG) increases proliferation of immortalized cells, its mechanism remains unclear. In this study, we confirmed the effect of Salmon-PG on normal human dermal fibroblast (NHDF) and investigated the mechanism of PG action on NHDF. Salmon-PG dose- and time-dependently increased NHDF proliferation. Receptor tyrosine kinase array revealed that Salmon-PG increased only Erk1/2 signaling. Erk1/2 phosphorylation was significantly increased by Salmon-PG in a time-(10 min) and dose-(400 or 800 μg/mL) dependent manner. MEK inhibitor suppressed the enhancement of NHDF proliferation by Salmon-PG. The overall findings indicate that Salmon-PG plays a role as a growth factor in NHDF via Erk1/2 activation, suggesting that Salmon-PG contributes to the maintenance of skin homeostasis.
Collapse
Affiliation(s)
- Masahiro Sano
- a Aomori Prefectural Industrial Technology Research Center , Hirosaki Industrial Research Institute , Hirosaki , Japan
| | - Yi Shang
- a Aomori Prefectural Industrial Technology Research Center , Hirosaki Industrial Research Institute , Hirosaki , Japan
| | - Akio Nakane
- b Department of Microbiology and Immunology , Hirosaki University Graduate School of Medicine , Hirosaki , Japan
| | - Tomoaki Saito
- a Aomori Prefectural Industrial Technology Research Center , Hirosaki Industrial Research Institute , Hirosaki , Japan
| |
Collapse
|
16
|
Hirose S, Asano K, Nakane A. Attenuation of obesity-induced inflammation in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent. Biochem Biophys Res Commun 2017; 484:480-485. [PMID: 28089867 DOI: 10.1016/j.bbrc.2017.01.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022]
Abstract
Obesity is associated with chronic inflammation of adipose tissue and causes development of type 2 diabetes. M1 macrophage population was increased in adipose tissue of obese mouse. M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines. Our previous studies demonstrated that salmon cartilage proteoglycan (PG) suppresses excess inflammation in various mouse inflammatory diseases. In this study, we examined the effect of PG on type 2 diabetes using high-fat-diet (HFD) induced obese mouse model. Oral PG administration enhanced the population of small adipocytes (area less than 1000 μm2) without body and tissue weight gain. In addition, PG administration suppressed mRNA expression of TNF-α, IL-6 and CXCL2 in adipose tissue. The proportion of M1 macrophages was decreased by PG administration. In addition, PG administration suppressed hyperglycemia after intraperitoneal glucose injection. Fasted serum insulin level was decreased in PG-administered mice. Moreover, insulin-stimulated phosphorylation of Akt was enhanced in the liver and gastrocnemius skeletal muscle of PG-administered mice. These data suggested that PG administration improves hyperglycemia and insulin sensitivity in obese mice by modulation of M1 macrophages which secrete proinflammatory cytokines in adipose tissue and activation of Akt in liver and skeletal muscle.
Collapse
Affiliation(s)
- Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| |
Collapse
|
17
|
Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The Role of IL-17 and Th17 Lymphocytes in Autoimmune Diseases. Arch Immunol Ther Exp (Warsz) 2015; 63:435-49. [PMID: 26062902 PMCID: PMC4633446 DOI: 10.1007/s00005-015-0344-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
The end of twentieth century has introduced some changes into T helper (Th) cells division. The identification of the new subpopulation of T helper cells producing IL-17 modified model of Th1-Th2 paradigm and it was named Th17. High abilities to stimulate acute and chronic inflammation made these cells ideal candidate for crucial player in development of autoimmune disorders. Numerous publications based on animal and human models confirmed their pivotal role in pathogenesis of human systemic and organ-specific autoimmune diseases. These findings made Th17 cells and pathways regulating their development and function a good target for therapy. Therapies based on inhibition of Th17-dependent pathways are associated with clinical benefits, but on the other hand are frequently inducing adverse effects. In this review, we attempt to summarize researches focused on the importance of Th17 cells in development of human autoimmune diseases as well as effectiveness of targeting IL-17 and its pathways in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, Rzeszow, Poland.
| | - Katarzyna Pogoda
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, Rzeszow, Poland
| | | | - Piotr Pozarowski
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
18
|
Ghalamfarsa G, Mahmoudi M, Mohammadnia-Afrouzi M, Yazdani Y, Anvari E, Hadinia A, Ghanbari A, Setayesh M, Yousefi M, Jadidi-Niaragh F. IL-21 and IL-21 receptor in the immunopathogenesis of multiple sclerosis. J Immunotoxicol 2015; 13:274-85. [PMID: 26507681 DOI: 10.3109/1547691x.2015.1089343] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytokines are considered important factors in the modulation of various immune responses. Among them, interleukin (IL)-21 is one of the major immune modulators, adjusting various immune responses by affecting various immune cells. It has been suggested that IL-21 may enhance autoimmunity through different mechanisms, such as development and activation of helper T (TH)-17 and follicular helper T (TFH) cells, activation of natural killer (NK) cells, enhancing B-cell differentiation and antibody secretion and suppression of regulatory T (Treg) cells. Moreover, IL-21 has also been suggested to be an inducer of autoimmunity when following treatment of MS patients with some therapeutics such as alemtuzumab. This review will seek to clarify the precise role of IL-21/IL-21R in the pathogenesis of MS and, in its animal model, experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Ghasem Ghalamfarsa
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mahmoud Mahmoudi
- b Immunology Research Center, Department of Immunology and Allergy , School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mousa Mohammadnia-Afrouzi
- c Department of Immunology and Microbiology , School of Medicine, Babol University of Medical Sciences , Babol , Iran
| | - Yaghoub Yazdani
- d Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Enayat Anvari
- e Department of Physiology , Faculty of Medicine, Ilam University of Medical Sciences , Ilam , Iran
| | - Abolghasem Hadinia
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Amir Ghanbari
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Maryam Setayesh
- f Biology Department , School of Sciences, Shiraz University , Shiraz , Iran
| | - Mehdi Yousefi
- g Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,h Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farhad Jadidi-Niaragh
- i Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
19
|
Kakizaki I, Miura A, Ito S, Mineta T, Jin Seo H, Kato Y. Characterization of Proteoglycan and Hyaluronan in Water-based Delipidated Powder of Salmon Cartilage. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Ikuko Kakizaki
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine
| | - Ayako Miura
- Laboratory of Food Science, Faculty of Education, Hirosaki University
| | - Seiko Ito
- School of Food Nutritional Sciences, University of Shizuoka
| | - Takashi Mineta
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Hong Jin Seo
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Yoji Kato
- Laboratory of Food Science, Faculty of Education, Hirosaki University
| |
Collapse
|
20
|
Ito G, Kobayashi T, Takeda Y, Sokabe M. Proteoglycan from salmon nasal cartridge [corrected] promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor. Biochem Biophys Res Commun 2014; 456:792-8. [PMID: 25514035 DOI: 10.1016/j.bbrc.2014.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/02/2023]
Abstract
Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10μg/ml, but showed much less effect at higher concentrations (100-1000μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.
Collapse
Affiliation(s)
- Gen Ito
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Kobayashi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshie Takeda
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
21
|
Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. "Disease modifying nutricals" for multiple sclerosis. Pharmacol Ther 2014; 148:85-113. [PMID: 25435020 DOI: 10.1016/j.pharmthera.2014.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022]
Abstract
The association between vitamin D and multiple sclerosis has (re)-opened new interest in nutrition and natural compounds in the prevention and treatment of this neuroinflammatory disease. The dietary amount and type of fat, probiotics and biologicals, salmon proteoglycans, phytoestrogens and protease inhibitor of soy, sodium chloride and trace elements, and fat soluble vitamins including D, A and E were all considered as disease-modifying nutraceuticals. Studies in experimental autoimmune encephalomyelitis mice suggest that poly-unsaturated fatty acids and their 'inflammation-resolving' metabolites and the gut microflora may reduce auto-aggressive immune cells and reduce progression or risk of relapse, and infection with whipworm eggs may positively change the gut-brain communication. Encouraged by the recent interest in multiple sclerosis-nutrition nature's pharmacy has been searched for novel compounds with anti-inflammatory, immune-modifying and antioxidative properties, the most interesting being the scorpion toxins that inhibit specific potassium channels of T cells and antioxidative compounds including the green tea flavonoid epigallocatechin-3-gallate, curcumin and the mustard oil glycoside from e.g. broccoli and sulforaphane. They mostly also inhibit pro-inflammatory signaling through NF-κB or toll-like receptors and stabilize the blood brain barrier. Disease modifying functions may also complement analgesic and anti-spastic effects of cannabis, its constituents, and of 'endocannabinoid enhancing' drugs or nutricals like inhibitors of fatty acid amide hydrolase. Nutricals will not solve multiple sclerosis therapeutic challenges but possibly support pharmacological interventions or unearth novel structures.
Collapse
Affiliation(s)
- Katja Schmitz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Julia Barthelmes
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Leonie Stolz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Susanne Beyer
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Olaf Diehl
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Irmgard Tegeder
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany.
| |
Collapse
|
22
|
Attenuation of collagen-induced arthritis in mice by salmon proteoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:406453. [PMID: 25032213 PMCID: PMC4054874 DOI: 10.1155/2014/406453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/04/2014] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a serious autoimmune disease caused by chronic inflammation of connective tissues. The basic principle of RA treatment is aimed to reduce joint inflammation. Our previous studies demonstrated that salmon cartilage proteoglycan (PG) suppresses excess inflammation in different mouse inflammatory diseases. In this study, we investigated the prophylactic effect of PG on the progression of RA using an experimental mouse model, collagen-induced arthritis (CIA). Clinical and histological severity of CIA was attenuated by daily oral administration of PG. In the joints of PG-administered mice, infiltration of macrophages and neutrophils and also osteoclast accumulation were limited. In comparison to nonadministered mice, anti-collagen antibodies in the sera of PG-administered mice did not alter. On the other hand, local expression of interleukin-17A (IL-17A), IL-6, IL-1β, interferon-γ (IFN-γ), C-C chemokine ligand 2 (CCL2), C-X-C chemokine ligand 1 (CXCL1), and CXCL2 in the joints of PG-administered mice decreased. Moreover, in the response of type II collagen- (CII-) restimulation ex vivo, IL-17A and IFN-γ production by splenocytes from PG-administered mice was less than that of control mice. These data suggested that daily ingested PG attenuated CIA pathogenesis by modulating immune response of splenocytes to CII stimulation and local production inflammatory cytokines and chemokines in the joints.
Collapse
|
23
|
Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014; 13:668-77. [PMID: 24418308 DOI: 10.1016/j.autrev.2013.12.004] [Citation(s) in RCA: 681] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/31/2013] [Indexed: 01/01/2023]
Abstract
This review focuses on the biology of T helper 17 (Th17) and regulatory T (Treg) cells and their role in inflammatory diseases, such as rheumatoid arthritis. Th17 cells represent a pro-inflammatory subset whereas Treg cells have an antagonist effect. Their developmental pathways are reciprocally interconnected and there is an important plasticity between Th17 and Treg cells. These features implicate that the Th17/Treg balance plays a major role in the development and the disease outcomes of animal model and human autoimmune/inflammatory diseases. During these diseases, this balance is disturbed and this promotes the maintenance of inflammation. Targeting the Th17/Treg imbalance can be performed at different levels such as inhibition of pro-inflammatory cytokines and their receptors, of pathogenic cells or their specific signaling pathways. Conversely, direct effects include administration or induction of protective cells, or stimulation of their specific pathways. Several clinical trials are underway and some positive results have been obtained.
Collapse
Affiliation(s)
- Mélissa Noack
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Department of Immunology and Rheumatology, Hospital Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon Cedex 03, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Department of Immunology and Rheumatology, Hospital Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon Cedex 03, France.
| |
Collapse
|
24
|
Biochemical and atomic force microscopic characterization of salmon nasal cartilage proteoglycan. Carbohydr Polym 2014; 103:538-49. [PMID: 24528764 DOI: 10.1016/j.carbpol.2013.12.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 11/20/2022]
Abstract
Biological activities of salmon nasal cartilage proteoglycan fractions are known, however, structural information is lacking. Recently, the major proteoglycan of this cartilage was identified as aggrecan. In this study, global molecular images and glycosaminoglycan structure of salmon nasal cartilage aggrecan purified from 4M guanidine hydrochloride extract were analyzed using HPLCs and atomic force microscopy with bovine tracheal cartilage aggrecan as a control. The estimated numbers of sulfates per disaccharide unit of chondroitin sulfate chains of salmon and bovine aggrecans were similar (approximately 0.85). However, the disaccharide composition showed a higher proportion of chondroitin 6-sulfate units in salmon aggrecan, 60%, compared to 40% in bovine. Gel filtration HPLC and monosaccharide analysis showed the salmon aggrecan had a lower number (approximately one-third), but 1.5-3.3 times longer chondroitin sulfate chains than the bovine aggrecan. Atomic force microscopic molecular images of aggrecan supported the images predicted by biochemical analyses.
Collapse
|
25
|
Asano K, Yoshimura S, Nakane A. Alteration of intestinal microbiota in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent. PLoS One 2013; 8:e75008. [PMID: 24040376 PMCID: PMC3767651 DOI: 10.1371/journal.pone.0075008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 08/08/2013] [Indexed: 12/20/2022] Open
Abstract
Proteoglycan (PG) extracted from salmon nasal cartilage has potential to be a prophylactic agent. Daily oral administration of the PG attenuates systemic inflammatory response in the experimental mouse models. In this study, we applied the culture-independent approach to investigate an alteration of intestinal microbiota composition in PG-administered mice. The results indicated that the population level of bacilli increased in the small and large intestine upon PG administration. On the other hand, the population level of clostridia decreased in the large intestine. The proportion of bacteria that are able to ferment saccharides and produce short-chain fatty acids increased in the small intestine and decreased in the large intestine. Importantly, population level of probiotic lactobacilli and bacteria exhibiting the immunomodulatory effect increased in the PG-administered mice. In addition, several disease-associated bacteria decreased upon PG administration. These results provided an understanding of the specific role of PG involved in host immune modulation and supported our hypothesis that daily oral administration of PG improves the overall balance in composition of the intestinal microbial community.
Collapse
Affiliation(s)
- Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Sayuri Yoshimura
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- * E-mail:
| |
Collapse
|