1
|
Presa MH, da Rocha MJ, Ledebuhr KNB, Zuge NP, Goulart TB, Alves D, Bortolatto CF, Brüning CA. Exploring the contribution of the dopaminergic and noradrenergic systems in the antidepressant-like action of 1-(2-(4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)phenyl)ethanone in mice. Behav Brain Res 2025; 480:115390. [PMID: 39647581 DOI: 10.1016/j.bbr.2024.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
1-(2-(4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)phenyl)ethanone (ETAP) is a novel hybrid compound containing 1,2,3-triazole and acetophenone. It exhibits antidepressant-like effects in male mice, linked to modulation of serotonergic receptors and monoamine oxidase A (MAO-A) inhibition. This study aimed to evaluate the involvement of the dopaminergic and noradrenergic systems, as well as MAO-B activity inhibition, in the antidepressant-like effect of ETAP in male mice, and to evaluate the antidepressant-like effect of ETAP in female mice. Male mice were treated with different dopaminergic and noradrenergic receptors antagonists 15 min before administering ETAP (1 mg/kg, intragastrically, i.g.). The tail suspension test (TST) was performed 30 minutes later. Different male mice were treated with ETAP (1 mg/kg, i.g.), and 30 minutes later, were euthanized to assess MAO-B activity in the prefrontal cortex and hippocampus. To evaluate the antidepressant-like of ETAP in female mice, ETAP (1 mg/kg, i.g.) was administered, followed by the TST and the forced swimming test (FST) 30 minutes later. The dopaminergic antagonists haloperidol (0.05 mg/kg, intraperitoneally, i.p.), SCH23390 (0.01 mg/kg, subcutaneously, s.c.), and sulpiride (50 mg/kg, i.p.), as well the noradrenergic antagonists prazosin (1 mg/kg, i.p.), yohimbine (1 mg/kg, i.p.), and propranolol (2 mg/kg, i.p.), prevented the antidepressant-like effect of ETAP in the TST. MAO-B activity was unaffected by ETAP in both the prefrontal cortex and hippocampus. ETAP (1 mg/kg, i.g.) induced a significant antidepressant-like effect in female mice in the TST and FST. These findings provide valuable insights into the antidepressant-like effect of ETAP, highlighting its potential for developing more effective depression treatments.
Collapse
Affiliation(s)
- Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Kauane Nayara Bahr Ledebuhr
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Taís Barcelos Goulart
- Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), 354, Pelotas RS, 96010-900, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), 354, Pelotas RS, 96010-900, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil.
| |
Collapse
|
2
|
Pires CS, da Rocha MJ, Presa MH, Zuge NP, Besckow EM, Ledebuhr KNB, Kuntz NEB, Godoi B, Bortolatto CF, Brüning CA. Dopaminergic receptors involvement in the antidepressant-like effect of N-(3-((3-(trifluoromethyl)phenyl)selanyl)prop-2-yn-1-yl) benzamide in mice. Neurosci Lett 2025; 849:138144. [PMID: 39889880 DOI: 10.1016/j.neulet.2025.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Major Depressive Disorder (MDD) directly impacts the lives of countless individuals worldwide, yet its causes remain incompletely understood. However, it is recognized that a deficiency in monoamines, including dopamine, may contribute to this disorder. N-(3-((3-(trifluoromethyl)phenyl)selenyl)prop-2-yn-1-yl) (CF3SePB) is an organoselenium compound that presented antidepressant-like effect in mice related to modulation of serotonergic, but not noradrenergic system. To expand the knowledge about CF3SePB mechanisms of action, this study aimed to evaluate the involvement of dopaminergic system in its antidepressant-like effect. Male Swiss mice were pre-treated with the haloperidol (0.05 mg/kg, i.p., a non-selective D2 receptor antagonist), SCH 23390 (0.01 mg/kg, s.c., a D1 receptor antagonist), and sulpiride (50 mg/kg, i.p., a D2 receptor antagonist) 15 min before CF3SePB (50 mg/kg, i.g.), and after 30 min of CF3SePB administration the forced swimming test (FST) was performed. CF3SePB presented an anti-immobility effect in the FST, demonstrated by increase in the latency to first episode of immobility and reduction of total immobility of mice, and the pre-treatment of mice with haloperidol, SCH 23390 and sulpiride prevented these effects, showing that the antidepressant-like effect of CF3SePB is related to the modulation of the dopaminergic system, specifically the D1 and D2 receptors. In addition, in silico pharmacokinetic profiling of CF3SePB predicted its low likelihood of inducing adverse effects and potential to cross the blood-brain barrier. These results expand the understanding of CF3SePB mechanisms for its antidepressant-like effect, reinforcing the potential of this organonoselenium compound for developing new antidepressants.
Collapse
Affiliation(s)
- Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Kauane Nayara Bahr Ledebuhr
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Natália Emanuele Biolosor Kuntz
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo, Cerro Largo, RS, Brazil
| | - Benhur Godoi
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo, Cerro Largo, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil.
| |
Collapse
|
3
|
Mamgain R, Mishra G, Kriti S, Singh FV. Organoselenium compounds beyond antioxidants. Future Med Chem 2024; 16:2663-2685. [PMID: 39711134 PMCID: PMC11734649 DOI: 10.1080/17568919.2024.2435254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties. The review includes synthesis and study of organo-selenium compounds as anticancer, antimicrobial, antiviral, antidiabetic, antithyroid, anti-inflammatory therapies, contributing to disease treatment. This review covers the synthesis and medicinal applications of synthetic organoselenium compounds over the past 10 years, thus making it a valuable resource for researchers in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Ritu Mamgain
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Garima Mishra
- Department of Chemistry, Western Illinois University-Quad Cities, Moline, IL, USA
| | - Saumya Kriti
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| |
Collapse
|
4
|
Ambala S, Thumma V, Mallikanti V, Bathini V, K J, Pochampally J. Synthesis of New Chroman-4-one Based 1,2,3-Triazole Analogues as Antioxidant and Anti-Inflammatory Agents. Chem Biodivers 2024; 21:e202400587. [PMID: 38718104 DOI: 10.1002/cbdv.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/08/2024] [Indexed: 06/19/2024]
Abstract
A library of new chroman-4-one based 1,2,3-triazole analogues were synthesized involving a series of condensation, cyclization, Suzuki coupling and copper catalysed click chemistry protocols. The newly synthesized compounds 8a-l were screened for their invitro antioxidant and anti-inflammatory activities by employing Ascorbic acid and Diclofenac as reference drugs respectively. The compound without any substituent on benzyl ring (8a), compound with -Cl substituent in para position of benzyl ring (8i), and compound with ethoxy substituent in para position of benzyl ring (8k) exhibited potent antioxidant and anti-inflammatory activities with higher percentage of inhibition. To understand their binding affinities, molecular docking study of these three compounds performed against NADPH oxidase with presented outstanding docking scores and promising binding interactions like H-bond and hydrophobic.
Collapse
Affiliation(s)
- Shankaraiah Ambala
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Telangana, India
| | | | - Vineesha Bathini
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Jyothi K
- St. Marys College of Pharmacy, Secunderabad, Hyderabad, 500025, Telangana, India
| | | |
Collapse
|
5
|
da Rocha MJ, Presa MH, Nunes GD, Zuge NP, Pires CS, Besckow EM, Gomes CS, Dapper LH, Lenardão EJ, Penteado F, Bortolatto CF, Brüning CA. 1-(Phenylselanyl)-2-(p-tolyl)indolizine: A selenoindolizine with potential antidepressant-like activity in mice mediated by the modulation of dopaminergic and noradrenergic systems. Brain Res 2024; 1834:148904. [PMID: 38561086 DOI: 10.1016/j.brainres.2024.148904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective β receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and β1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.
Collapse
Affiliation(s)
- Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Gustavo D'Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Caroline Signorini Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Luiz Henrique Dapper
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Filipe Penteado
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil.
| |
Collapse
|
6
|
Vanga MK, Bhukya R, Thumma V, Ambadipudi SSSSS, Nayak VL, Andugulapati SB, Manga V. Design and synthesis of Meldrum's acid based 7-azaindole anchored 1,2,3-triazole hybrids as anticancer agents. RSC Med Chem 2024; 15:1709-1721. [PMID: 38784465 PMCID: PMC11110793 DOI: 10.1039/d4md00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
A series of Meldrum's acid, 7-azaindole and 1,2,3-triazole hybrids were synthesized and evaluated for their in vitro anticancer activity against five different cancer cell lines viz. MCF-7 (breast cancer), HeLa (cervical cancer), DU-145 (prostate cancer), HepG2 (liver cancer) and K562 (myelogenous leukemia cell). Among the series, compound 6b containing a 4-methyl substitution showed potent activity against HeLa cell line. Cell cycle analysis revealed that compound 6b induced cell cycle arrest at the G2/M phase and induced apoptosis. Apoptotic activity was further confirmed by Hoechst staining and Annexin V-FITC assay. Compound 6b has been found to exhibit higher activity in all four cell lines, with IC50 values of 6.67 ± 0.39 μM, 4.44 ± 0.32 μM, 12.38 ± 0.51 μM and 9.97 ± 0.25 μM against MCF-7, HeLa, DU-145 and HepG2 cell lines respectively. Compounds 6m (9.68 ± 0.10 μM) and 6n (9.52 ± 0.38 μM), which have dimethoxy and trimethoxy substitutions, respectively, have demonstrated significant anticancer activity against HeLa cells compared to the other cells. The molecular docking study of ligand 6b against the crystal structure of EGFR and Mcl-1 scored notable binding energy values and displayed important interactions like H-bond, π-cation and other hydrophobic interactions.
Collapse
Affiliation(s)
| | - Rambabu Bhukya
- Department of Chemistry, Osmania University Hyderabad-500007 Telangana India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College Hyderabad-500059 Telangana India
| | - S S S S Sudha Ambadipudi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - V Lakshma Nayak
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Vijjulatha Manga
- Department of Chemistry, Osmania University Hyderabad-500007 Telangana India
- Telangana Mahila Viswavidyalayam Hyderabad - 500095 Telangana India
| |
Collapse
|
7
|
Myakala N, Kandula K, Rayala N, Kuna S, Thumma V, Durga Bhavani Anagani K. Design, Synthesis of Novel 1,2,3-Triazole Pendent Quinazolinones and Their Cytotoxicity against MCF-7 Cell Line. Chem Biodivers 2023; 20:e202300800. [PMID: 37708234 DOI: 10.1002/cbdv.202300800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
A library of 6-(((1-(substitutedphenyl)-1H-1,2,3-triazol-4-yl)methyl) amino)-3-methylquinazolin-4(3H)-one analogues synthesized from Isatin precursor through a series of nitration, reduction, hydrolysis, cyclization and click reaction. The structures of compounds were characterized by spectral data including IR, 1 H-NMR, 13 C NMR and Mass. The novel quinazolinone - 1,2,3-triazoles were screened for their cytotoxicity against the human breast adenocarcinoma cell lines MCF-7 by MTT assay. 4-Isopropyl and 2-bromo substituted analogues executed high activity against MCF-7 cell line with IC50 value of 10.16±0.07 μM and 11.23±0.20 μM compared to the Doxorubicin whose IC50 value is 10.81±0.03 μM. The activity of remaining compounds is good to moderate. Further, the molecular docking studies against the crystal structure of Epidermal Growth Factor Receptor delivered the best binding energies and the interactions such as H-bond and hydrophobic are inevitable. The predicted pharmacokinetic properties results showed that these compounds have more drug likeness properties.
Collapse
Affiliation(s)
- Nagaraju Myakala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Kotaiah Kandula
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Nagamani Rayala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Sateesh Kuna
- Geethanjali College of Engineering and Technology, Keesara, Ranga Reddy, 501301, Telangana, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Telangana, India
| | | |
Collapse
|
8
|
Aitha S, Thumma V, Ambala S, Matta R, Panga S, Pochampally J. Bis 1, 2, 3‐ Triazoles Linked Deoxybenzoin Hybrids as Antimicrobial Agents: Synthesis, In Vitro and In Silico Screening. ChemistrySelect 2023. [DOI: 10.1002/slct.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shalini Aitha
- Department of Chemistry Osmania University Hyderabad 500007 Telangana India
- Government Degree College for Women Karimnagar 505001 Telangana India
| | - Vishnu Thumma
- Department of Sciences and Humanities Matrusri Engineering College Hyderabad 500059 Telangana India
| | | | - Raghavender Matta
- Department of Chemistry Osmania University Hyderabad 500007 Telangana India
| | - Shyam Panga
- Dr. N. J. Paulbudhe College of Pharmacy Ahmednagar 414003 Maharashtra India
| | | |
Collapse
|
9
|
Al Omairi NE, Albrakati A, Alsharif KF, Almalki AS, Alsanie W, Abd Elmageed ZY, Zaafar D, Lokman MS, Bauomy AA, Belal SK, Abdel-Daim MM, Abdel Moneim AE, Alyami H, Kassab RB. Selenium Nanoparticles with Prodigiosin Rescue Hippocampal Damage Associated with Epileptic Seizures Induced by Pentylenetetrazole in Rats. BIOLOGY 2022; 11:354. [PMID: 35336729 PMCID: PMC8945383 DOI: 10.3390/biology11030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Prodigiosin (PDG) is a red pigment synthesized by bacterial species with important pharmaceutical and biological activities. Here, we investigated the neuroprotective and anticonvulsant activities of green biosynthesized selenium formulations with PDG (SeNPs-PDG) versus pentylenetetrazole (PTZ)-induced epileptic seizures. METHODS Rats were assigned into six experimental groups: control; PTZ (60 mg/kg, epileptic model); sodium valproate (200 mg/kg) + PTZ; PDG (300 mg/kg) + PTZ; sodium selenite (0.5 mg/kg) + PTZ; and SeNPs-PDG (0.5 mg/kg) + PTZ. The treatment duration is extended to 28 days. RESULTS SeNPs-PDG pre-treatment delayed seizures onset and reduced duration upon PTZ injection. Additionally, SeNPs-PDG enhanced the antioxidant capacity of hippocampal tissue by activating the expression of nuclear factor erythroid 2-related factor 2 and innate antioxidants (glutathione and glutathione derivatives, in addition to superoxide dismutase and catalase) and decreasing the levels of pro-oxidants (lipoperoxidation products and nitric oxide). SeNPs-PDG administration inhibited inflammatory reactions associated with epileptic seizure development by suppressing the production and activity of glial fibrillary acidic protein and pro-inflammatory mediators, including interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, SeNPs-PDG protected against hippocampal cell loss following PTZ injection by decreasing the levels of cytosolic cytochrome c, Bax, and caspase-3 and enhancing the expression of anti-apoptotic Bcl-2. Interestingly, SeNPs-PDG restored the PTZ-induced imbalance between excitatory and inhibitory amino acids and improved monoaminergic and cholinergic transmission. CONCLUSIONS These promising antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities indicate that SeNPs-PDG might serve as a naturally derived anticonvulsant agent.
Collapse
Affiliation(s)
- Naif E. Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.A.O.); (H.A.)
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (W.A.)
| | | | - Walaa Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (W.A.)
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11311, Egypt;
| | - Maha S. Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
| | - Amira A. Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass 52719, Saudi Arabia;
| | - Saied K. Belal
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
| | - Hussain Alyami
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.A.O.); (H.A.)
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
- Biology Department, Faculty of Science and Arts, Al-Baha University, Al-Mukhwah 65554, Saudi Arabia
| |
Collapse
|
10
|
da Silva Teixeira Rech T, Gonçalves Alves A, Nornberg Strelow D, Devantier Krüger L, Carraro Júnior LR, Dos Santos Neto JS, Braga AL, Brüning CA, Folharini Bortolatto C. 2-Phenyl-3-(phenylselanyl)benzofuran elicits acute antidepressant-like action in male Swiss mice mediated by modulation of the dopaminergic system and reveals therapeutic efficacy in both sexes. Psychopharmacology (Berl) 2021; 238:3013-3024. [PMID: 34312682 DOI: 10.1007/s00213-021-05921-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Depression is a psychiatric disorder that constitutes one of the leading causes of disability worldwide. 2-Phenyl-3-(phenylselanyl)benzofuran (SeBZF1) has been studied as a potential antidepressant drug, but its pharmacological action needs more investigation. OBJECTIVES AND METHODS Our aim was to extend information about the antidepressant-like action of SeBZF1 using the mouse tail suspension test (TST). Initial experiments investigated the mechanisms involved in the acute antidepressant-like action of SeBZF1 in male Swiss mice. For this purpose, males received noradrenergic or dopaminergic receptor antagonists before acute SeBZF1 administration (50 mg/kg, per oral). In parallel, effects of combined treatment with SeBZF1 and bupropion at sub-effective doses (1 and 3 mg/kg, respectively) were tested. The next experiments were designed to determine the acute effects of SeBZF1 in females through a dose-response curve (5-50 mg/kg). Lastly, the efficacy of a 7-day repeated treatment with SeBZF1 (1 and 5 mg/kg) in mice of both sexes and its safety were evaluated. TST and the open-field test (OFT) were employed in all behavioral experiments. RESULTS Pre-administration of dopaminergic antagonists (SCH23390, a selective D1R antagonist; sulpiride, a selective D2/D3R antagonist; and haloperidol, a non-selective antagonist), but not of adrenergic α1, α2, and β-R antagonists, blocked the acute antidepressant-like effects of SeBZF1 in males. Co-administration of sub-effective doses of SeBZF1 and bupropion reduced the depressive phenotype. In addition, acute treatment with SeBZF1 at 50 mg/kg produced a reduction of female immobility. Finally, repeated treatment with SeBZF1 (1 and 5 mg/kg) was effective in causing antidepressant-like effects in both sexes. Locomotor activity, plasma transaminases, and urea levels remained unaltered after SeBZF1 exposure. CONCLUSION Our findings provide evidence of the involvement of the dopaminergic system in the acutely antidepressant-like action of SeBZF1 in male mice and reveal the compound efficacy when acute or repeatedly administered in both sexes.
Collapse
Affiliation(s)
- Taís da Silva Teixeira Rech
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - Dianer Nornberg Strelow
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - Letícia Devantier Krüger
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - Luiz Roberto Carraro Júnior
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil
| | - José Sebastião Dos Santos Neto
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio E Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, CEP 88040-900, Brasil
| | - Antonio Luiz Braga
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio E Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, CEP 88040-900, Brasil
| | - César Augusto Brüning
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brasil.
| |
Collapse
|
11
|
Serotonin 2A receptor function and depression-like behavior in rats model of hypothyroidism. Exp Brain Res 2021; 239:2435-2444. [PMID: 34106297 DOI: 10.1007/s00221-021-06129-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Hypothyroidism causes somatic, psychosocial and affective psychosis, including depression-like behaviors. In this study, (hypothyroidism group; HP group) adult male Sprague Dawley (SD) rats were induced to hypothyroidism after 5 weeks of exposure to 0.05% propylthiouracil (PTU) in potable water, control animals (CON group) were given the same amount of water. The following behavioral experiments were conducted, respectively: open-field test (OFT), forced swimming test (FST), tail suspension test (TST). TT[Formula: see text] and TT[Formula: see text] levels were measured after the behavior tests and the expression levels of 5-HT[Formula: see text] receptor and 5-HT[Formula: see text] receptor proteins were analyzed in the hippocampus and prefrontal cortex. The level of TT[Formula: see text] and TT[Formula: see text] in the HP group rats was much lower than that in the CON group. The hypothyroid rats also showed weight loss, much longer immobility time in tail suspension test and forced swimming test. Besides, 5 weeks of PTU administration was associated with significantly decreased expression levels of 5-HT[Formula: see text] receptor and 5-HT[Formula: see text] receptor proteins compared with control group, which were significantly negatively correlated with immobility time in FST and TST. In conclusion, our results suggest that hypothyroidism induces depressive behaviors through the influence of the serotonin system, and the decreased expression of the 5-HT[Formula: see text] receptor is an important cause of the depressive behaviors in hypothyroidism.
Collapse
|
12
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
13
|
Abbasi-Maleki S, Maleki SG. Antidepressant-like effects of Foeniculum vulgare essential oil and potential involvement of dopaminergic and serotonergic systems on mice in the forced swim test. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2020.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Wang X, Zhang Y, Sun K, Meng J, Zhang B. Study on the Application of Photoelectric Technology in the Synthesis of Selenium-Containing Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Colaço CS, Alves SS, Nolli LM, Pinheiro WO, de Oliveira DGR, Santos BWL, Pic-Taylor A, Mortari MR, Caldas ED. Toxicity of ayahuasca after 28 days daily exposure and effects on monoamines and brain-derived neurotrophic factor (BDNF) in brain of Wistar rats. Metab Brain Dis 2020; 35:739-751. [PMID: 32103409 DOI: 10.1007/s11011-020-00547-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/05/2020] [Indexed: 12/28/2022]
Abstract
Ayahuasca is a hallucinogenic beverage that affects the serotonergic system and have therapeutic potential for many diseases and disorders, including depression and drug addiction. The objectives of this study were to evaluate the potential toxic effects of ayahuasca on rats after chronic exposure, and the levels of monoamines, their metabolites and the brain-derived neurotrophic factor (BDNF) in the brain. Female and male rats were treated orally for 28 days with H2O (control), fluoxetine (FLX), a selective serotonin reuptake inhibitor antidepressant, or ayahuasca (Aya) at doses of 0.5X, 1X and 2X the ritualistic dose (7 to 10 animals/group). Clinical, hematological and macroscopic results showed that ayahuasca was safe to the rats. Behavior tests conducted one hour after the last treatment showed that male rats from the Aya1 group explored the open field central area less than the control group, and the number of entries in the central area compared to total locomotion was also significantly lower in this group and in the FLX group. The hippocampus was removed for BDNF analysis and the remaining brain was used for monoamine analysis by HPLC-FL. Serotonin levels were significantly higher than control only in the Aya2 female group, while a significant reduction of its metabolite 5-HIAA was observed in the FLX group. Dopamine levels were similar among the experimental groups, but the levels of its metabolite DOPAC increased significantly in the Aya1 and Aya2 groups compared to controls, especially in females, and the DOPAC/dopamine turnover was significantly higher in Aya2 group. The levels of HVA, another dopamine metabolite, did not change with the treatments compared to controls, but HVA/DOPAC ratio was significantly lower in all ayahuasca male groups. Norepinephrine was not detected in any brain sample, and the levels of its metabolite MHPG did not change significantly among the groups. BDNF levels in the hippocampus were significantly higher in the FLX and Aya2 female groups compared to controls when expressed in relation to the total brain weight. The mechanisms involved in the increase in serotonin, dopamine turnover and BDNF levels observed in ayahuasca treated animals should be further investigated in specific brain areas.
Collapse
Affiliation(s)
- Camila Schoueri Colaço
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Stefany Sousa Alves
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Luciana Marangni Nolli
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Willie Oliveira Pinheiro
- Laboratory of Embryology and Developmental Biology, Department of Genetic and Morphology, Institute of Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Danilo Gustavo Rodrigues de Oliveira
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Beatriz Werneck Lopes Santos
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Aline Pic-Taylor
- Laboratory of Embryology and Developmental Biology, Department of Genetic and Morphology, Institute of Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Eloisa Dutra Caldas
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
16
|
Martins GM, Meirinho AG, Ahmed N, Braga AL, Mendes SR. Recent Advances in Electrochemical Chalcogen (S/Se)‐Functionalization of Organic Molecules. ChemElectroChem 2019. [DOI: 10.1002/celc.201901525] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guilherme M. Martins
- Labselen, Departamento de QuímicaUniversidade Federal de Santa Catarina Florianópolis 88040-900 SC Brazil
- School of ChemistryCardiff University, Main Building, Park Place Cardiff CF10 3AT United Kingdom
| | - Anne G. Meirinho
- SINCA – Departamento de QuímicaUniversidade do Estado de Santa Catarina Joinville 89219-719 SC Brazil
| | - Nisar Ahmed
- School of ChemistryCardiff University, Main Building, Park Place Cardiff CF10 3AT United Kingdom
| | - Antonio L. Braga
- Labselen, Departamento de QuímicaUniversidade Federal de Santa Catarina Florianópolis 88040-900 SC Brazil
| | - Samuel R. Mendes
- SINCA – Departamento de QuímicaUniversidade do Estado de Santa Catarina Joinville 89219-719 SC Brazil
| |
Collapse
|
17
|
Rutin and Selenium Co-administration Reverse 3-Nitropropionic Acid-Induced Neurochemical and Molecular Impairments in a Mouse Model of Huntington’s Disease. Neurotox Res 2019; 37:77-92. [PMID: 31332714 DOI: 10.1007/s12640-019-00086-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
|
18
|
Soares ATG, Rodrigues LBL, Salgueiro WG, Dal Forno AHDC, Rodrigues CF, Sacramento M, Franco J, Alves D, Oliveira RDP, Pinton S, Ávila DS. Organoselenotriazoles attenuate oxidative damage induced by mitochondrial dysfunction in mev-1 Caenorhabditis elegans mutants. J Trace Elem Med Biol 2019; 53:34-40. [PMID: 30910204 DOI: 10.1016/j.jtemb.2019.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Organic selenium compounds have several pharmacological activities already described, as anti-inflammatory and antitumor activities, which have been attributed to their antioxidant effects. Because they are promising in pharmacology, the synthesis of these compounds has increased significantly. As many new molecules are synthesized the use of a simple model like Caenorhabditis elegans is highly advantageous for initial evaluation of the toxicity and therapeutic potential of these molecules. The objective of this study was to evaluate the toxicity and antioxidant capacity of a series of selenotriazoles compounds in C. elegans. The animals were exposed to the compounds in liquid medium for only 30 min at the first larval stage (L1). The compounds had no toxic effects at the concentrations tested. Treatment with selenotriazoles (10 μM) partially reversed the stress induced by the pesticide paraquat (1 mM). Se-Tz Ia compound partially increased the survival of worms treated with H2O2 (0.5 mM). The compounds also increased the longevity of mev-1 mutants, which have a reduced life span by the production of excessive reactive oxygen species (ROS) in the mitochondria caused by a mutation in complex II of the electron transport chain. In addition, the compounds reduced the levels of ROS determined by the fluorescent probe DCF-DA as well as also reduced catalase enzyme activity in these animals. Based on the results found, it is possible to conclude that the compounds have antioxidant activity mainly in oxidative stress condition generated by a mitochondrial dysfunction in C. elegans.
Collapse
Affiliation(s)
- Ana Thalita Gonçalves Soares
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Luiz Brasil Lopes Rodrigues
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Willian Goulart Salgueiro
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Ana Helena de Castro Dal Forno
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Cristiane Freitas Rodrigues
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Manoela Sacramento
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa-LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Neurobiotecnologia-GPN, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeferson Franco
- Interdisciplinary Center for Biotechnology Research, CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, 97.300-000, São Gabriel, RS, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa-LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Neurobiotecnologia-GPN, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Riva de Paula Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Daiana S Ávila
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXce), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil.
| |
Collapse
|
19
|
Dome P, Tombor L, Lazary J, Gonda X, Rihmer Z. Natural health products, dietary minerals and over-the-counter medications as add-on therapies to antidepressants in the treatment of major depressive disorder: a review. Brain Res Bull 2019; 146:51-78. [DOI: 10.1016/j.brainresbull.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/04/2018] [Accepted: 12/26/2018] [Indexed: 12/23/2022]
|
20
|
Hua G, Du J, Carpenter-Warren CL, Cordes DB, Slawin AMZ, Woollins JD. New insight into the chemistry of selenoureas: synthesis and single crystal structural study of diverse derivatives. NEW J CHEM 2019. [DOI: 10.1039/c9nj01059a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new heteroatom derivatives of N-acylselenoureas was obtained through the reaction of KSeCN with acyl chloride and primary amines, followed by the cyclisation reaction with phenacyl bromides.
Collapse
Affiliation(s)
- Guoxiong Hua
- EaStCHEM School of Chemistry
- University of St Andrews
- UK
| | - Junyi Du
- EaStCHEM School of Chemistry
- University of St Andrews
- UK
| | | | | | | | | |
Collapse
|
21
|
Abstract
AbstractSelenium is a biocompatible element and participates in several biochemical reactions occurring in the human body. Its biocompatibility and minimal toxicity has attracted researchers to develop selenium-based drugs. Hence, recent developments on biomedical applications of selenium-based compounds have been discussed. A structure activity relationship has also been interpreted.
Collapse
Affiliation(s)
- Amna Kamal
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture, Faisalabad 38040, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
22
|
Wang GF, Sun SW, Wang YC. Structural Characterization of Two Copper Complexes with 2-Arylidenebenzocycloalkanone Ligands. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618010249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Bortolotto VC, Pinheiro FC, Araujo SM, Poetini MR, Bertolazi BS, de Paula MT, Meichtry LB, de Almeida FP, de Freitas Couto S, Jesse CR, Prigol M. Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine. Eur J Pharmacol 2018; 822:78-84. [DOI: 10.1016/j.ejphar.2018.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
|
24
|
Alves D, Goldani B, Lenardão EJ, Perin G, Schumacher RF, Paixão MW. Copper Catalysis and Organocatalysis Showing the Way: Synthesis of Selenium-Containing Highly Functionalized 1,2,3-Triazoles. CHEM REC 2017; 18:527-542. [PMID: 29235236 DOI: 10.1002/tcr.201700058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022]
Abstract
This article provides a comprehensive overview of reported methods - particularly copper- and organocatalyzed reactions - for the regioselective syntheses of selenium-containing 1,2,3-triazoles systems. These chemical entities are prevalent cores in biologically active compounds and functional materials. In view of their unique properties, substantial efforts have been paid for the design and development of practical approaches for the synthesis of these scaffolds.
Collapse
Affiliation(s)
- Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Bruna Goldani
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Ricardo F Schumacher
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos - UFSCar, Via Washington Luís, km 235 - SP-310, São Carlos, São Paulo, Brazil-, 13565-905
| |
Collapse
|
25
|
Duarte LFB, Oliveira RL, Rodrigues KC, Voss GT, Godoi B, Schumacher RF, Perin G, Wilhelm EA, Luchese C, Alves D. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg Med Chem 2017; 25:6718-6723. [DOI: 10.1016/j.bmc.2017.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
|
26
|
Computational and biological evidences on the serotonergic involvement of SeTACN antidepressant-like effect in mice. PLoS One 2017; 12:e0187445. [PMID: 29091968 PMCID: PMC5665604 DOI: 10.1371/journal.pone.0187445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
A series of phenylselanyl-1H-1,2,3-triazole-4-carbonitriles with different substituents were screened for their binding affinity with serotonin transporter (SERT) and dopamine transporter (DAT) by docking molecular. 5-(4methoxyphenyl)-1-(2-(phenylselanyl)phenyl)-1H-1,2,3-triazole-4-carbonitrile (SeTACN) exhibited the best conformation with SERT even higher than fluoxetine and serotonin, suggesting a competitive inhibition. SeTACN demonstrated additional affinity to other serotonergic receptors involved in antidepressant effects: 5HT1a, 5HT2a and 5HT3. In another set of experiments, SeTACN led to significant reductions in the immobility time of mice submitted to forced swimming test (FST) in the dose range of 0.1- 20mg/kg, suggesting an antidepressant-like effect. The possible mechanism of action was investigated using serotonergic and dopaminergic antagonists. The antidepressant-like effect of SeTACN (0.1mg/kg i.g.) was prevented by the pretreatment with WAY100635 (a selective 5HT1a antagonist), ketanserin (a 5HT2a/c antagonist) and ondansetron (a selective 5ht3 antagonist), PCPA (an inhibitor of serotonin synthesis) but not with SCH23390 (dopaminergic D1 antagonist) and sulpiride (D2 antagonist). Sub-effective dose of fluoxetine was able to potentiate the effects of a sub-effective dose of SeTACN in FST. None of the treatments affected locomotor activity in open field test (OFT). These results together, suggest that the SeTACN antidepressant-like effect is mediate, at least in parts, by serotonergic system.
Collapse
|
27
|
Selenium and manganese in depression – preclinical and clinical studies. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2017. [DOI: 10.1515/cipms-2017-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
According to the World Health Organization estimates, approximately 10% of the world’s population is affected by depressive disorders. Furthermore, even in high-income countries, many people with depression are not treated, which can lead to serious health consequences and a global economic loss. Unfortunately, the current pharmacotherapy of depressive disorders is characterized by unsatisfactory efficacy and the therapeutic effect is accompanied by many side effects. For this reason, there is still ongoing worldwide research to find new antidepressant therapies. In recent years, many data have been shown that essential elements demonstrate the antidepressant action and increase the effect of antidepressants. In this paper we present the results from the preclinical and clinical studies published over the years which show the involvement of selenium and manganese in depressive disorders. In this article, the relationship between the amount of these microelements in a diet and depression is reviewed and what's more, the association among these elements in different biomaterial and their relations to depressive symptoms is presented. Additionally, we discuss the possible influence of selenium and manganese on modulating neurotransmitter system involved in depression.
Collapse
|
28
|
Duan HY, Li JL, Wu LY, Shu HM, Chen YX, Ding GH, Dong RC, Si HZ, Zhong X, He WY. The evaluation of acute toxicity, antimicrobial activity of 1-phenyl-5-p-tolyl-1H-1, 2, 3-triazole, and binding to human serum albumin. J Biochem Mol Toxicol 2017; 31. [PMID: 28714536 DOI: 10.1002/jbt.21959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 11/08/2022]
Abstract
1-Phenyl-5-p-tolyl-1H-1, 2, 3-triazole (PPTA) was a synthesized compound. The result of acute toxicities to mice of PPTA by intragastric administration indicated that PPTA did not produce any significant acute toxic effect on Kunming strain mice. It exhibited the various potent inhibitory activities against two kinds of bananas pathogenic bacteria, black sigatoka and freckle, when compared with that of control drugs and the inhibitory rates were up to 64.14% and 43.46%, respectively, with the same concentration of 7.06 mM. The interaction of PPTA with human serum albumin (HSA) was studied using fluorescence polarization, absorption spectra, 3D fluorescence, and synchronous spectra in combination with quantum chemistry and molecular modeling. Multiple modes of interaction between PPTA and HSA were suggested to stabilize the PPTA-HSA complex, based on thermodynamic data and molecular modeling. Binding of PPTA to HSA induced perturbation in the microenvironment around HSA as well as secondary structural changes in the protein.
Collapse
Affiliation(s)
- Hong-Ye Duan
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Jian-Ling Li
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Lu-Yong Wu
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Huo-Ming Shu
- Hainan College of Economics and Business, Haikou, 571127, People's Republic of China
| | - Yu-Xue Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Guo-Hua Ding
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Run-Cong Dong
- Research Center for Drug Safety Evaluation of Hainan Province, Haikou, 571158, People's Republic of China
| | - Hong-Zong Si
- Institute for Computational Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xia Zhong
- School of Pharmaceutical Science, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Wen-Ying He
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, People's Republic of China
| |
Collapse
|
29
|
Costa GP, Seus N, Roehrs JA, Jacob RG, Schumacher RF, Barcellos T, Luque R, Alves D. Ultrasound-promoted organocatalytic enamine-azide [3 + 2] cycloaddition reactions for the synthesis of ((arylselanyl)phenyl-1 H-1,2,3-triazol-4-yl)ketones. Beilstein J Org Chem 2017; 13:694-702. [PMID: 28503204 PMCID: PMC5405684 DOI: 10.3762/bjoc.13.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/22/2017] [Indexed: 12/28/2022] Open
Abstract
The use of sonochemistry is described in the organocatalytic enamine-azide [3 + 2] cycloaddition between 1,3-diketones and aryl azidophenyl selenides. These sonochemically promoted reactions were found to be amenable to a range of 1,3-diketones or aryl azidophenyl selenides, providing an efficient access to new ((arylselanyl)phenyl-1H-1,2,3-triazol-4-yl)ketones in good to excellent yields and short reaction times. In addition, this protocol was extended to β-keto esters, β-keto amides and α-cyano ketones. Selanyltriazoyl carboxylates, carboxamides and carbonitriles were synthesized in high yields at short times of reaction under very mild reaction conditions.
Collapse
Affiliation(s)
- Gabriel P Costa
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Natália Seus
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Juliano A Roehrs
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Raquel G Jacob
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Ricardo F Schumacher
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products, Universidade de Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Campus de Rabanales, Cordoba, Spain
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel - P.O. Box 354 - 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
30
|
Pinto Brod LM, Fronza MG, Vargas JP, Lüdtke DS, Brüning CA, Savegnago L. Modulation of PKA, PKC, CAMKII, ERK 1/2 pathways is involved in the acute antidepressant-like effect of (octylseleno)-xylofuranoside (OSX) in mice. Psychopharmacology (Berl) 2017; 234:717-725. [PMID: 27995278 DOI: 10.1007/s00213-016-4505-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE (Octylseleno)-xylofuranoside (OSX) is an organoselenium compound from the class of alkylseleno carbohydrates possessing a C8 alkyl chain. Members of this class of organoselenium compounds have promising pharmacological activities, among them are antioxidant and acute antidepressant-like activities with the involvement of monoaminergic system, as previously presented by our research group. OBJECTIVE The objective of the study was to investigate the possible involvement of cellular signalling pathways in the antidepressant-like effect caused by OSX (0.01 mg/kg, oral route (p.o.) by gavage) in the tail suspension test (TST) in mice. METHODS Mice were treated by intracerebroventricular (i.c.v.) injection either with vehicle or with H-89 (1 μg/site i.c.v., an inhibitor of protein kinase A-PKA), KN-62 (1 μg/site i.c.v., an inhibitor of Ca2+/calmodulin-dependent protein kinase II-CAMKII), chelerythrine (1 μg/site i.c.v., an inhibitor of protein kinase C-PKC) or PD098059 (5 μg/site i.c.v., an inhibitor of extracellular-regulated protein kinase 1/2-ERK1/2). Fifteen minutes after, vehicle or OSX was injected, and 30 min later, the TST and open field tests (OFT) were carried out. RESULTS The antidepressant-like effect of orally administered OSX was blocked by treatment of the mice with H-89, KN-62, chelerythrine and PD098059; all inhibitors of signalling proteins involved with neurotrophic signalling pathways. The number of crossings in the OFT was not altered by treatment with OSX and/or signalling antagonists. CONCLUSIONS The results demonstrated that OSX showed an antidepressant-like effect in the TST in mice through the activation of protein kinases PKA, PKC, CAMKII and ERK1/2 that are involved in intracellular signalling pathways.
Collapse
Affiliation(s)
- Lucimar M Pinto Brod
- Programa de Pós Graduação em Biotecnologia, PPGBiotec, Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Mariana G Fronza
- Programa de Pós Graduação em Biotecnologia, PPGBiotec, Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Jaqueline Pinto Vargas
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - César Augusto Brüning
- Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos, Universidade Federal da Fronteira Sul, Cerro Largo, RS, Brazil
| | - Lucielli Savegnago
- Programa de Pós Graduação em Biotecnologia, PPGBiotec, Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil. .,Programa de Pós Graduação em Bioquímica e Bioprospecção, PPGBBio, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil.
| |
Collapse
|
31
|
Sun SW, Zhang X, Wang GF. Synthesis of 2-arylidenebenzocycloalkanones containing N-donor heterocyclic rings. CRYSTALLOGR REP+ 2016. [DOI: 10.1134/s1063774516070129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
The characterization of 1-(4-bromophenyl)-5-phenyl-1H-1,2,3-triazole on acute toxicity, antimicrobial activities, photophysical property, and binding to two globular proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:191-203. [PMID: 27693762 DOI: 10.1016/j.jphotobiol.2016.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022]
Abstract
1-(4-Bromophenyl)-5-phenyl-1H-1,2,3-triazole (BPT) was a newly synthesized compound. The acute toxicities of BPT to mice by intragastric administration have been determined and the result indicates that the intragastric administration of BPT did not produce any significant toxic effect on Kunming strain mice. It is also evaluated for the antimicrobial activity of BPT against three kinds of plant mycoplasma, Fusarium Wilt (race 4), Colletotrichum gloeosporioides Penz. and Xanthomonas oryzae by different method in vitro. The compound exhibited distinct inhibitory activities against Fusarium Wilt (race 4) and Colletotrichum gloeosporioides Penz. by mycelium growth rate test and the values of EC50 were 29.34 and 12.53μg/mL respectively. And BPT had also the most potent inhibitory activities against Xanthomonas oryzae when compared with that of control drugs by the agar well diffusion method. In addition, the structural and photophysical properties of BPT including ionization energy, electron affinities, and theoretical spectrum was studied by quantum-chemical methods. Then the interaction of BPT with two kinds of globular proteins, human immunoglobulin (HIg) and bovine hemoglobin (BHg) was investigated by using UV-vis absorption spectra, synchronous fluorescence, 3D fluorescence spectra, and fluorescence titration in combination with molecular modeling. UV-vis absorption, 3D and synchronous fluorescence measurements show that BPT has influence on the microenvironment surrounding HIg or BHg in aqueous solution and the fluorescence experiments show that BPT quenches the fluorescence intensity of HIg or BHg through a static mechanism. The binding parameters including the binding constants, the number of binding site and average binding distance between BPT and HIg or BHg at different temperatures were calculated. The thermodynamic parameters suggest that the hydrophobic interaction is the predominant intermolecular forces in stabilizing the BPT-HIg or BPT-BHg complex. Molecular docking was performed to reveal that the BPT moiety binds to the hydrophobic cavity of HIg or BHg and they are in good agreement with the spectroscopic measurements.
Collapse
|
33
|
Zhang HJ, Wang SB, Wen X, Li JZ, Quan ZS. Design, synthesis, and evaluation of the anticonvulsant and antidepressant activities of pyrido[2,3-d]pyrimidine derivatives. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1559-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:201-7. [PMID: 26596986 DOI: 10.1016/j.pnpbp.2015.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/28/2015] [Accepted: 10/23/2015] [Indexed: 11/21/2022]
Abstract
Depression is one of the most commonly diagnosed neuropsychiatric disorders and several studies have demonstrated a role for selenium in mood disorders. For this reason, the present study investigated the role of the monoaminergic system in the antidepressant-like action of (octylseleno)-xylofuranoside (OSX), an organoselenium compound, in the tail suspension test (TST) in mice. For this purpose, OSX (0.001–10 mg/kg) was administered orally (p.o.) 30 min prior to testing, and all of the tested doses reduced the immobility time in the TST without changing the locomotor activity measured in the open field test (OFT). Furthermore, the antidepressant-like effect of OSX (0.01 mg/kg, p.o.) in the TSTwas prevented by pre-treatment in mice with ketanserin (1 mg/kg, intraperitoneal route (i.p.); a 5-HT2A/2C receptor antagonist),WAY100635 (0.1mg/kg, subcutaneous (s.c.); a selective 5-HT1A receptor antagonist), p-chlorophenylalaninemethyl ester-PCPA (100mg/kg, i.p.; a selective inhibitor of tryptophan hydroxylase), prazosin (1 mg/kg, i.p.; an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p.; an α2-adrenoceptor antagonist), SCH233390 (0.05 mg/kg, s.c., a dopaminergic D1 receptor antagonist) and sulpiride (50 mg/kg, i.p., a dopaminergic D2 receptor antagonist), but not with ondansetron (1 mg/kg, i.p.; a selective 5-HT3 receptor antagonist). Taken together, these data demonstrate that OSX has a potent antidepressant like effect in TST at lower doses (0.001–10 mg/kg), which is dependent on its interaction with the serotonergic, noradrenergic and dopaminergic systems.
Collapse
|
35
|
Savegnago L, Sacramento MD, Brod LMP, Fronza MG, Seus N, Lenardão EJ, Paixão MW, Alves D. Phenylselanyl-1H-1,2,3-triazole-4-carbonitriles: synthesis, antioxidant properties and use as precursors to highly functionalized tetrazoles. RSC Adv 2016. [DOI: 10.1039/c5ra22445d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe herein our results on the synthesis, antioxidant properties and chemical diversification of phenylselanyl-1H-1,2,3-triazole-4-carbonitriles.
Collapse
Affiliation(s)
- Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia – GPN
- CDTec
- Universidade Federal de Pelotas
- UFPel
- Pelotas
| | - Manoela do Sacramento
- Laboratório de Síntese Orgânica Limpa – LASOL – CCQFA – Universidade Federal de Pelotas – UFPel
- Pelotas
- Brazil
| | - Lucimar M. P. Brod
- Grupo de Pesquisa em Neurobiotecnologia – GPN
- CDTec
- Universidade Federal de Pelotas
- UFPel
- Pelotas
| | - Mariana G. Fronza
- Grupo de Pesquisa em Neurobiotecnologia – GPN
- CDTec
- Universidade Federal de Pelotas
- UFPel
- Pelotas
| | - Natália Seus
- Laboratório de Síntese Orgânica Limpa – LASOL – CCQFA – Universidade Federal de Pelotas – UFPel
- Pelotas
- Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL – CCQFA – Universidade Federal de Pelotas – UFPel
- Pelotas
- Brazil
| | - Márcio W. Paixão
- Laboratório de Síntese de Produtos Naturais
- Universidade Federal de São Carlos
- São Carlos 13565-905
- Brazil
| | - Diego Alves
- Grupo de Pesquisa em Neurobiotecnologia – GPN
- CDTec
- Universidade Federal de Pelotas
- UFPel
- Pelotas
| |
Collapse
|
36
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
37
|
Nobre PC, Borges EL, Silva CM, Casaril AM, Martinez DM, Lenardão EJ, Alves D, Savegnago L, Perin G. Organochalcogen compounds from glycerol: Synthesis of new antioxidants. Bioorg Med Chem 2014; 22:6242-9. [DOI: 10.1016/j.bmc.2014.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/08/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
|
38
|
Martinez DM, Barcellos A, Casaril AM, Savegnago L, Lernardão EJ. Antidepressant-like activity of dehydrozingerone: involvement of the serotonergic and noradrenergic systems. Pharmacol Biochem Behav 2014; 127:111-7. [PMID: 25449795 DOI: 10.1016/j.pbb.2014.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/07/2014] [Accepted: 10/25/2014] [Indexed: 11/25/2022]
Abstract
Dehydrozingerone (DHZ) is a phenolic compound isolated from ginger rhizomes (Zingiber officinale). It is known for its diverse spectrum of biological activities as an antioxidant, anti-inflammatory and antitumor compound. The present study was designed to assess the antidepressant effect of DHZ and the involvement of the monoaminergic system and to evaluate its in vitro antioxidant activity in the hippocampus, cortex and cerebellum of mice. For this study, the tail suspension test (TST), forced swim test (FST) and yohimbine lethality test were performed. DHZ administered orally 30min prior to testing reduced the immobility time in the TST (1-40mg/kg) and the FST (10-40mg/kg), with no change in locomotor activity in the open field test. The antidepressant-like effect of DHZ (1mg/kg) was prevented by ketanserin (1mg/kg, i.p.; a 5-HT2A/2C receptor antagonist), ondansetron (1mg/kg, i.p.; a 5-HT3 receptor antagonist), prazosin (1mg/kg, i.p., an α1-adrenoceptor antagonist) and yohimbine (1mg/kg, i.p., an α2-adrenoceptor antagonist) pretreatments. Furthermore, DHZ administered at doses of 10 and 20mg/kg increased the lethality of yohimbine (35mg/kg, i.p.). DHZ had antioxidant activity on in vitro lipid peroxidation induced by sodium nitroprusside in all brain regions tested. The results revealed that DHZ has a potent antidepressant effect, which seems to involve the serotonergic and noradrenergic systems.
Collapse
Affiliation(s)
- Débora M Martinez
- Departamento de Ciência e Tecnologia Agroindustrial (DCTA), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Angelita Barcellos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Síntese Orgânica Limpa (LASOL), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Angela M Casaril
- Centro de Desenvolvimento Tecnológico, Unidade Biotecnologia, Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Centro de Desenvolvimento Tecnológico, Unidade Biotecnologia, Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Eder J Lernardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Síntese Orgânica Limpa (LASOL), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
39
|
de Andrade RB, Gemelli T, Guerra RB, Dani C, Wannmacher CMD, Gomez R, Funchal C. Acute exposure to the vinyl chalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one induces oxidative stress in different brain area of rats. Cell Biochem Funct 2014; 32:438-44. [DOI: 10.1002/cbf.3035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/02/2014] [Accepted: 02/03/2014] [Indexed: 12/28/2022]
Affiliation(s)
| | - Tanise Gemelli
- Departamento de Bioquímica; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Robson B. Guerra
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul; Sertão RS Brazil
| | - Caroline Dani
- Centro Universitário Metodista do IPA; Porto Alegre RS Brazil
| | | | - Rosane Gomez
- Departamento de Farmacologia; Universidade Federal do Rio Grande do Sul, ICBS; Porto Alegre RS Brazil
| | - Cláudia Funchal
- Centro Universitário Metodista do IPA; Porto Alegre RS Brazil
| |
Collapse
|
40
|
Soares LK, Lara RG, Jacob RG, Lenardão EJ, Alves D, Perin G. Synthesis of (Z)-N-alkenyl-β-arylselanyl imidazoles via additive-free nucleophilic addition of imidazole to arylselanylalkynes. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|