1
|
Hsieh YS, Yu CH, Chu SC, Lin CY, Chen PN. Gossypol Inhibits Metastasis of Lung Cell Carcinoma by Reversing Epithelial to Mesenchymal Transition and Suppressing Proteases Activity. ENVIRONMENTAL TOXICOLOGY 2024; 39:5209-5221. [PMID: 39263880 DOI: 10.1002/tox.24363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 09/13/2024]
Abstract
Gossypol, a natural polyphenolic compound, possesses antivirus activity and induces cell death of different types of tumors. However, the efficacy of gossypol on lung carcinoma metastases and epithelial to mesenchymal transition remains unknown. The aim of the present work was to determine the cellular and molecular mechanism of the anti-cancer and anti-metastatic efficacies of gossypol on human lung carcinoma cells. Gossypol showed a marked suppression of the viability, motility, and invasion in H1299 and A549 cells. Zymography assay showed that gossypol was sufficient to suppress the activities of urokinase-type plasminogen activator and matrix metalloproteinase-2. Gossypol reversed TGF-β-induced epithelial to mesenchymal transition. Gossypol reduced vimentin, p-FAK, p-Src and p-paxillin. In vivo studies of gossypol were performed using subcutaneous inoculation and tail vein injection of A549 into immunodeficient BALB/c nude mice and severe combined immunodeficient mice.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Han Yu
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Sciences and Technology, Taichung, Taiwan
| | - Chin-Yin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Liu Y, Wang L, Zhao L, Zhang Y. Structure, properties of gossypol and its derivatives-from physiological activities to drug discovery and drug design. Nat Prod Rep 2022; 39:1282-1304. [PMID: 35587693 DOI: 10.1039/d1np00080b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering up to 2022Gossypol is a polyphenolic compound isolated from cottonseed. There are two optical enantiomers of gossypol, (-)-gossypol and (+)-gossypol. Gossypol exists as three different tautomers, aldehyde, ketone and lactol. Gossypol is toxic and provides a protective mechanism for cotton plants against pests. Gossypol was used as a male contraceptive in China in the 1970s. It was eventually abandoned due to noticeable side effects, disruption of potassium uptake and incomplete reversibility. Gossypol has gained considerable research interest due to its attractive biological activities, especially antitumor and antivirus. Gossypol derivatives are prepared by a structural modification to reduce toxicity and improve their therapeutic effect. This review depicts the bioactivity and regulation mechanisms of gossypol and its derivatives as drug lead compounds, with emphasis on its antitumor mechanism. The design and synthesis of pharmacologically active derivatives based on the structure of gossypol, such as gossypol Schiff bases, apogossypol, gossypolone, are thoroughly discussed. This review aims to serve as a reference for gossypol-based drug discovery and drug design.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
3
|
Systematic Review of Gossypol/AT-101 in Cancer Clinical Trials. Pharmaceuticals (Basel) 2022; 15:ph15020144. [PMID: 35215257 PMCID: PMC8879263 DOI: 10.3390/ph15020144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
The potential of gossypol and of its R-(−)-enantiomer (R-(−)-gossypol acetic acid, AT-101), has been evaluated for treatment of cancer as an independent agent and in combination with standard chemo-radiation-therapies, respectively. This review assesses the evidence for safety and clinical effectiveness of oral gossypol/AT-101 in treating various types of cancer. The databases PubMed, MEDLINE, Cochrane, and ClinicalTrials.gov were examined. Phase I and II trials as well as single arm and randomized trials were included in this review. Results were screened to determine if they met inclusion criteria and then summarized using a narrative approach. A total of 17 trials involving 759 patients met the inclusion criteria. Overall, orally applied gossypol/AT-101 at low doses (30 mg daily or lower) was determined as well tolerable either as monotherapy or in combination with chemo-radiation. Adverse events should be strictly monitored and were successfully managed by dose-reduction or treating symptoms. There are four randomized trials, two performed in patients with advanced non-small cell lung cancer, one in subjects with head and neck cancer, and one in patients with metastatic castration-resistant prostate cancer. Thereby, standard chemotherapy (either docetaxel (two trials) or docetaxel plus cisplatin or docetaxel plus prednisone) was tested with and without AT-101. Within these trials, a potential benefit was observed in high-risk patients or in some patients with prolongation in progression-free survival or in overall survival. Strikingly, the most recent clinical trial combined low dose AT-101 with docetaxel, fluorouracil, and radiation, achieving complete responses in 11 of 13 patients with gastroesophageal carcinoma (median duration of 12 months) and a median progression-free survival of 52 months. The promising results shown in subsets of patients supports the need of further specification of AT-101 sensitive cancers as well as for the establishment of effective AT-101-based therapy. In addition, the lowest recommended dose of gossypol and its precise toxicity profile need to be confirmed in further studies. Randomized placebo-controlled trials should be performed to validate these data in large cohorts.
Collapse
|
4
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
5
|
Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 2019; 23:314-328. [PMID: 29721785 DOI: 10.1007/s10495-018-1456-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prodigiosin, a secondary metabolite isolated from marine Vibrio sp., has antimicrobial and anticancer properties. This study investigated the cell death mechanism of prodigiosin in glioblastoma. Glioblastoma multiforme (GBM) is an aggressive primary cancer of the central nervous system. Despite treatment, or standard therapy, the median survival of glioblastoma patients is about 14.6 month. The results of the present study clearly showed that prodigiosin significantly reduced the cell viability and neurosphere formation ability of U87MG and GBM8401 human glioblastoma cell lines. Moreover, prodigiosin with fluorescence signals was detected in the endoplasmic reticulum and found to induce excessive levels of autophagy. These findings were confirmed by observation of LC3 puncta formation and acridine orange staining. Furthermore, prodigiosin caused cell death by activating the JNK pathway and decreasing the AKT/mTOR pathway in glioblastoma cells. Moreover, we found that the autophagy inhibitor 3-methyladenine reversed prodigiosin induced autophagic cell death. These findings of this study suggest that prodigiosin induces autophagic cell death and apoptosis in glioblastoma cells.
Collapse
|
6
|
Zeng Y, Ma J, Xu L, Wu D. Natural Product Gossypol and its Derivatives in Precision Cancer Medicine. Curr Med Chem 2019; 26:1849-1873. [PMID: 28545375 DOI: 10.2174/0929867324666170523123655] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023]
Abstract
Gossypol, a natural product extracted from the seed, roots, and stem of cotton, was initially used as a male contraceptive but was subsequently investigated as a novel antitumor agent. This review depicts the current status of gossypol and its derivatives as novel antitumor agents as well as presents their preparation and characteristics, especially of some gossypol Schiff bases, through quantitative and structural analysis. The main attractive target sites of gossypol and its derivatives are Bcl-2 family proteins containing the anti-apoptosis proteins Bcl-2 and Bcl-XL. The molecular mechanism of gossypol analogs not only involves cell apoptosis but also autophagy, cell cycle arrest, and other abnormal cellular phenomena. Gossypol and its derivatives exert antitumor effects on different cancer types in vitro and in vivo, and demonstrate synergistic effects with other chemo- and radio- therapeutic treatments. In addition, several nanocarriers have been designed to load gossypol or its derivatives in order to expand the range of their applications and evaluate their combination effects with other anti-tumor agents. This review may serve as a reference for the rational application of gossypol analogs as anti-tumor agents.
Collapse
Affiliation(s)
- Yun Zeng
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingwen Ma
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States.,Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, Kansas, United States
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Zhang G, Wang Z, Chen W, Cao Y, Wu J, Qiang G, Ji A, Wu J, Jiang C. Dual effects of gossypol on human hepatocellular carcinoma via endoplasmic reticulum stress and autophagy. Int J Biochem Cell Biol 2019; 113:48-57. [PMID: 31128260 DOI: 10.1016/j.biocel.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
Treatment outcomes for hepatocellular carcinoma (HCC) remain unsatisfactory, and effective new therapeutic methods are urgently needed. Gossypol has been shown to have an anti-HCC effect, but the underlying mechanism requires further study. In this study, we found gossypol inhibited HCC cells in vitro and in vivo. Typical apoptosis was induced in HCC cells. Dilated ER and autophagosomes were observed by electron microscopy, and the activation of the unfolded protein response and autophagy markers suggested that gossypol induced both ER stress and autophagy. C/EBP homologous protein was the key factor that led to apoptotic cell death, whereas inositol-requiring enzyme 1α and eukaryotic initiation factor 2α played a protective role. Autophagy protected the cells from ER stress-related apoptosis. Both in vitro and in vivo studies indicated that inhibition of autophagy enhanced the anti-HCC effect of gossypol. Taken together, ER stress is the molecular mechanism underlying gossypol-induced apoptosis and autophagy. Gossypol exhibits anti-HCC activity primarily through the activation of apoptosis. However, gossypol-induced autophagy protects HCC cells from ER stress. Therefore, a combination therapy of gossypol and autophagy inhibitors may lead to an enhanced anti-HCC effect.
Collapse
Affiliation(s)
- Guang Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Weibo Chen
- Department of Hepatobiliary Surgery, Changzhou First People's Hospital, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yin Cao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Junyi Wu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Guanghui Qiang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Anlai Ji
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, 365 Hanjiang Middle Road, Yangzhou, Jiangsu 225000, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
8
|
Benvenuto M, Mattera R, Sticca JI, Rossi P, Cipriani C, Giganti MG, Volpi A, Modesti A, Masuelli L, Bei R. Effect of the BH3 Mimetic Polyphenol (-)-Gossypol (AT-101) on the in vitro and in vivo Growth of Malignant Mesothelioma. Front Pharmacol 2018; 9:1269. [PMID: 30459622 PMCID: PMC6232343 DOI: 10.3389/fphar.2018.01269] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023] Open
Abstract
Malignant mesothelioma (MM) is a primary tumor arising from mesothelial cells. The survival of MM patients following traditional chemotherapy is poor, thus innovative treatments for MM are needed. (-)-gossypol (AT-101) is a BH3 mimetic compound which possesses anti-tumoral activity by targeting multiple signaling transduction pathways. Several clinical trials employing AT-101 have been performed and some of them are still ongoing. Accordingly, we investigated the in vitro effects of AT-101 on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis and autophagy of human (MM-B1, H-Meso-1, and MM-F1) and mouse (#40a) MM cell lines. In addition, we explored the in vivo anti-tumor activities of AT-101 in a mouse model, in which the transplantation of MM cells induces ascites in the peritoneal space. AT-101 inhibited in vitro MM cells survival in a dose- and time-dependent manner and triggered autophagy, but the process was then blocked and was coincident with apoptosis activation. To confirm the effect of AT-101 in inducing the apoptosis of MM cells, MM cells were simultaneously treated with AT-101 and with the caspase inhibitor, Z-VAD-FMK. Z-VAD-FMK was able to significantly reduce the number of cells in the subG1 phase compared to the treatment with AT-101 alone. This result corroborates the induction of cell death by apoptosis following treatment with AT-101. Indeed, Western blotting results showed that AT-101 increases Bax/Bcl-2 ratio, modulates p53 expression, activates caspase 9 and the cleavage of PARP-1. In addition, the treatment with AT-101 was able to: (a) decrease the ErbB2 protein expression; (b) increase the EGFR protein expression; (c) affect the phosphorylation of ERK1/2, p38 and AKT; (d) stimulate JNK1/2 and c-jun phosphorylation. Our in vivo results showed that the intraperitoneal administration of AT-101 increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of developing tumors. Our findings may have important implications for the design of MM therapies by employing AT-101 as an anticancer agent in combination with standard therapies.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Joshua Ismaele Sticca
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Piero Rossi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Volpi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Simbulan-Rosenthal CM, Dakshanamurthy S, Gaur A, Chen YS, Fang HB, Abdussamad M, Zhou H, Zapas J, Calvert V, Petricoin EF, Atkins MB, Byers SW, Rosenthal DS. The repurposed anthelmintic mebendazole in combination with trametinib suppresses refractory NRASQ61K melanoma. Oncotarget 2017; 8:12576-12595. [PMID: 28157711 PMCID: PMC5355037 DOI: 10.18632/oncotarget.14990] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/13/2016] [Indexed: 01/07/2023] Open
Abstract
Structure-based drug repositioning in addition to random chemical screening is now a viable route to rapid drug development. Proteochemometric computational methods coupled with kinase assays showed that mebendazole (MBZ) binds and inhibits kinases important in cancer, especially both BRAFWT and BRAFV600E. We find that MBZ synergizes with the MEK inhibitor trametinib to inhibit growth of BRAFWT-NRASQ61K melanoma cells in culture and in xenografts, and markedly decreased MEK and ERK phosphorylation. Reverse Phase Protein Array (RPPA) and immunoblot analyses show that both trametinib and MBZ inhibit the MAPK pathway, and cluster analysis revealed a protein cluster showing strong MBZ+trametinib - inhibited phosphorylation of MEK and ERK within 10 minutes, and its direct and indirect downstream targets related to stress response and translation, including ElK1 and RSKs within 30 minutes. Downstream ERK targets for cell cycle, including cMYC, were down-regulated, consistent with S- phase suppression by MBZ+trametinib, while apoptosis markers, including cleaved caspase-3, cleaved PARP and a sub-G1 population, were all increased with time. These data suggest that MBZ, a well-tolerated off-patent approved drug, should be considered as a therapeutic option in combination with trametinib, for patients with NRASQ61mut or other non-V600E BRAF mutant melanomas.
Collapse
Affiliation(s)
- Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Sivanesan Dakshanamurthy
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Anirudh Gaur
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - You-Shin Chen
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Hong-Bin Fang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Hengbo Zhou
- MedStar Franklin Square Medical Center, Baltimore, MD, USA
| | - John Zapas
- MedStar Franklin Square Medical Center, Baltimore, MD, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Michael B Atkins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Stephen W Byers
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Dean S Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
10
|
Han BI, Hwang SH, Lee M. A progressive reduction in autophagic capacity contributes to induction of replicative senescence in Hs68 cells. Int J Biochem Cell Biol 2017; 92:18-25. [PMID: 28918366 DOI: 10.1016/j.biocel.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/16/2017] [Accepted: 09/12/2017] [Indexed: 01/20/2023]
Abstract
Autophagy has been implicated in delayed aging and extended longevity. Here, we aimed to study the possible effects of autophagy during the progression of replicative senescence, which is one of the major features of aging. Human foreskin fibroblasts, Hs68 cells, at an initial passage of 15 were serially cultured for several months until they reached cellular senescence. A decrease in cell proliferation was observed during the progression of senescence. Induction of replicative senescence in aged cells (at passage 40) was confirmed by senescence-associated β-galactosidase (SA-β-gal) activity that represents a sensitive and reliable marker for quantifying senescent cells. We detected a significantly increased percentage (%) of SA-β-gal-positive cells at passage 40 (63%) when compared with the younger SA-β-gal-positive cells at passage 15 (0.5%). Notably, the gradual decrease in basal autophagy coincided with replicative senescence induction. However, despite decreased basal autophagic activity in senescent cells, autophagy inducers could induce autophagy in senescent cells. RT-PCR analysis of 11 autophagy-related genes revealed that the decreased basal autophagy in senescent cells might be due to the downregulation of autophagy-regulatory proteins, but not autophagy machinery components. Moreover, the senescence phenotype was not induced in the cells in which rapamycin was added to the culture to continuously induce autophagy from passage 29 until passage 40. Together, our findings suggest that reduced basal autophagy levels due to downregulation of autophagy-regulatory proteins may be the mechanism underlying replicative senescence in Hs68 cells.
Collapse
Affiliation(s)
- Byeal-I Han
- Toxicological Screening and Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheoungju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Sung-Hee Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
11
|
Bai M, Zhang M, Long F, Yu N, Zeng A, Zhao R. Circulating microRNA-194 regulates human melanoma cells via PI3K/AKT/FoxO3a and p53/p21 signaling pathway. Oncol Rep 2017; 37:2702-2710. [PMID: 28358423 PMCID: PMC5428795 DOI: 10.3892/or.2017.5537] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
In the present study, we analyzed the role of microRNA-194 circulating regulated human melanoma cell growth. We found that microRNA-194 expression was markedly suppressed in human melanoma patients, compared with negative control group. Next, disease-free survival (DFS) and overall survival (OS) of high expression in human melanoma patients was higher than those of low expression in human melanoma patients. MicroRNA-194 overexpression inhibited cell proliferation, induced apoptosis, increased caspase-3/-9 activities and promoted Bax/Bcl-2 of human melanoma cells. Furthermore, microRNA-194 overexpression also suppressed PI3K/AKT/FoxO3a signaling pathway and induced p53/p21 signaling pathway. PI3K inhibitor, suppressed PI3K, phosphorylation-AKT, FoxO3a protein expression and increased the effects of microRNA-194 overexpression on cell growth, apoptosis, caspase-3/-9 activities and Bax/Bcl-2 protein expression of human melanoma cells through the induction of p53/p21 signaling pathway. Taken together, these data indicate that circulating microRNA-194 regulated human melanoma cells via PI3K/AKT/FoxO3a and p53/p21 signaling pathway.
Collapse
Affiliation(s)
- Ming Bai
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Mingzi Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Fei Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ru Zhao
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
12
|
Khunsap S, Khow O, Buranapraditkun S, Suntrarachun S, Puthong S, Boonchang S. Anticancer properties of phospholipase A2 from Daboia siamensis venom on human skin melanoma cells. J Venom Anim Toxins Incl Trop Dis 2016; 22:7. [PMID: 26884744 PMCID: PMC4754985 DOI: 10.1186/s40409-016-0061-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/10/2016] [Indexed: 01/07/2023] Open
Abstract
Background Phospholipase A2 (PLA2) is a major component of the Daboia siamensis venom, which is able to hydrolyse the membrane of various cells. For this reason, the activity of PLA2 was investigated regarding its pharmaceutical properties. This study was conducted to explore the pharmacological properties of a PLA2 from Daboia siamensis (dssPLA2) venom on human skin melanoma cell line (SK-MEL-28). Methods dssPLA2 was isolated by ion exchange and gel filtration columns. Various concentrations of dssPLA2 were investigated for cytotoxic activity and inhibition of migration on SK-MEL-28 cells. Cell death analysis, mRNA expression levels of Notch I-III and BRAF V600E genes were also determined. Results dssPLA2 exhibited cytotoxicity on SK-MEL-28 for 24 and 72 h as compared with untreated cells. However, it had no toxic effects on CCD-1064sk cells under the same conditions. dssPLA2 (0.25 and 0.5 μg/mL) induced 17.16 and 30.60 % of apoptosis, while activated 6.53 and 7.05 % of necrotic cells. dssPLA2 at 0.25, 0.5, 1 and 2 μg/mL could inhibit migration on SK-MEL-28 cells for 24 h by 31.06, 41.66, 50 and 68.75 %, respectively. The action of dssPLA2 significantly reduced the levels of Notch I and BRAF V600E genes expression on SK-MEL-28 cells compared with untreated cells at 72 h. Conclusions This study indicates that dssPLA2 had potential effects of apoptosis, necrosis, cytotoxicity and inhibition of migration on SK-MEL-28 cells. dssPLA2 could possibly be a selective agent that targets cancer cells without affecting normal cells. Electronic supplementary material The online version of this article (doi:10.1186/s40409-016-0061-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suchitra Khunsap
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Orawan Khow
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Supranee Buranapraditkun
- Department of Medicine, Faculty of Medicine, Cellular Immunology Laboratory Allergy and Clinical Immunology Unit, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sunutcha Suntrarachun
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University Institute, Building 3, Phayathai Road, Patumwan, Bangkok, 10330 Thailand
| | - Supatsorn Boonchang
- Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330 Thailand
| |
Collapse
|
13
|
Kim NY, Han BI, Lee M. Cytoprotective role of autophagy against BH3 mimetic gossypol in ATG5 knockout cells generated by CRISPR-Cas9 endonuclease. Cancer Lett 2016; 370:19-26. [DOI: 10.1016/j.canlet.2015.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 12/26/2022]
|
14
|
Yang D, Qu J, Qu X, Cao Y, Xu L, Hou K, Feng W, Liu Y. Gossypol sensitizes the antitumor activity of 5-FU through down-regulation of thymidylate synthase in human colon carcinoma cells. Cancer Chemother Pharmacol 2015. [PMID: 26208739 DOI: 10.1007/s00280-015-2749-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE 5-Fluorouracil (5-FU) is the basic chemotherapeutic agent used to treat colon cancer. However, the sensitivity of colon cancer cells to 5-FU is limited. Gossypol is a polyphenolic extract of cottonseeds. The purpose of this study was to investigate the activities and related mechanism of gossypol alone or in combination with 5-FU against human colon carcinoma cells. METHODS The IC50 of gossypol or/and 5-FU in vitro was tested by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the drug interaction was analyzed using the CalcuSyn method. Cell apoptosis was determined using presidium iodide staining and flow cytometric analysis. Western blotting was used to determine the expression of proteins. Transient transfection method was used to silence protein. RESULTS The IC₅₀ at 48 h of gossypol in colon cancer cells was 26.11 ± 1.04 μmol/L in HT-29 cells, 14.11 ± 1.08 μmol/L in HCT116 cells, and 21.83 ± 1.05 μmol/L in RKO cells. When gossypol was combined with 5-FU, a synergistic cytotoxic effect was observed in HT-29 cells, HCT116 cells, and RKO cells compared with treatment with gossypol or 5-FU alone. The Western blotting results indicated that gossypol down-regulated thymidylate synthase (TS) rather than thymidine phosphorylase protein expression. Furthermore, the mTOR/p70S6K1 signaling pathway was inhibited in gossypol-treated colon cancer cells, and consequently, cyclin D1 expression was decreased, suggesting an additional mechanism of the observed antiproliferative synergistic interactions. All the observation was confirmed by silencing TS and inactivating the mTOR/p70S6K1 signaling pathway by rapamycin, both of which increased the chemo-sensitizing efficacy of 5-FU. CONCLUSIONS These findings suggest that gossypol-mediated down-regulation of TS, cyclin D1, and the mTOR/p70S6K1 signaling pathways enhances the anti-tumor effect of 5-FU. Ultimately, our data exposed a new action for gossypol as an enhancer of 5-FU-induced cell growth suppression.
Collapse
Affiliation(s)
- Dan Yang
- Department of Pharmacology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ren T, Shan J, Li M, Qing Y, Qian C, Wang G, Li Q, Lu G, Li C, Peng Y, Luo H, Zhang S, Yang Y, Cheng Y, Wang D, Zhou SF. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer. Drug Des Devel Ther 2015; 9:2887-2910. [PMID: 26089640 PMCID: PMC4467754 DOI: 10.2147/dddt.s82724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AT-101 is a BH3 mimetic and pan-Bcl-2 inhibitor that has shown potent anticancer activity in non-small-cell lung cancer (NSCLC) in murine models, but failed to show clinical efficacy when used in combination with docetaxel in NSCLC patients. Our recent study has demonstrated that AT-101 enhanced the antitumor effect of cisplatin (CDDP) in a murine model of NSCLC via inhibition of the interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway. This study explored the underlying mechanisms for the enhanced anticancer activity of CDDP by AT-101. Our results show that, when compared with monotherapy, AT-101 significantly enhanced the inhibitory effects of CDDP on proliferation and migration of A549 cells and on tube formation and migration in human umbilical vein endothelial cells. AT-101 promoted the proapoptotic activity of CDDP in A549 cells. AT-101 also enhanced the inhibitory effect of CDDP on DNA repair and redox activities of apurinic/apyrimidinic endonuclease 1 (APE1) in A549 cells. In tumor tissues from nude mice treated with AT-101 plus CDDP or monotherapy, the combination therapy resulted in greater inhibition of angiogenesis and tumor cell proliferation than the monotherapy. These results suggest that AT-101 can enhance the antitumor activity of CDDP in NSCLC via inhibition of APE1 DNA repair and redox activities and by angiogenesis and induction of apoptosis, but other mechanisms cannot be excluded. We are now conducting a Phase II trial to examine the clinical efficacy and safety profile of combined use of AT-101 plus CDDP in advanced NSCLC patients.
Collapse
Affiliation(s)
- Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
- Department of Oncology, The Affiliated Hospital, North Sichuan Medical College, Sichuan, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Qing
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengyuan Qian
- Department of Oncology, The 97 Hospital of PLA, Jiangsu, People’s Republic of China
| | - Guangjie Wang
- Cancer Diagnosis and Treatment Center, Military District General Hospital of Chengdu Military Region, Sichuan, People’s Republic of China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Guoshou Lu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chongyi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yu Peng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Hao Luo
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yuxing Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Cheng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
16
|
Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 2015; 94:1-11. [PMID: 25562745 DOI: 10.1016/j.bcp.2014.12.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Cell death plays an essential role in the development of organs, homeostasis, and cancer. Apoptosis and programmed necrosis are two major types of cell death, characterized by different cell morphology and pathways. Accumulating evidence shows autophagy as a new alternative target to treat tumor resistance. Besides its well-known pro-survival role, autophagy can be a physiological cell death process linking apoptosis and programmed necrosis cell death pathways, by various molecular mediators. Here, we summarize the effects of pharmacologically active compounds as modulators of different types of cancer cell death depending on the cellular context. Indeed, current findings show that both natural and synthetic compounds regulate the interplay between apoptosis, autophagy and necroptosis stimulating common molecular mediators and sharing common organelles. In response to specific stimuli, the same death signal can cause cells to switch from one cell death modality to another depending on the cellular setting. The discovery of important interconnections between the different cell death mediators and signaling pathways, regulated by pharmacologically active compounds, presents novel opportunities for the targeted treatment of cancer. The aim of this review is to highlight the potential role of these compounds for context-specific anticancer therapy.
Collapse
Affiliation(s)
- Flavia Radogna
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
17
|
Kim NY, Lee M. The pro-death role of autophagy and apoptosis in cell death induced by the BH3 mimetic gossypol. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.923045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|