1
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Martínez-Fernández J, Almengló C, Babarro B, Iglesias-Rey R, García-Caballero T, Fernández ÁL, Souto-Bayarri M, González-Juanatey JR, Álvarez E. Edoxaban treatment in a post-infarction experimental model. Eur J Pharmacol 2024; 962:176216. [PMID: 38040081 DOI: 10.1016/j.ejphar.2023.176216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The sequelae of myocardial infarction (MI) require specific pharmacological therapy to minimise the post-MI remodelling, which in many cases evolves into cardiovascular complications. The aim of this study was to analyse the effect of edoxaban, an oral anticoagulant, on cardiac recovery in a rat model of permanent coronary artery ligation. METHODS An experimental method to assess the post-MI remodelling in rats for 4 weeks, based on cardiac magnetic resonance imaging (MRI) and final histological analysis of the hearts was performed. The influence of daily oral treatment with edoxaban (20 mg/kg/day) for 28 days post-MI was analysed in comparison to vehicle. RESULTS In our model, edoxaban was shown to be safe and bleeding was observed in 1 of 10 animals. General physical recovery of the treated animals was shown by higher body weight recovery compared with non-treated animals (38.6 ± 2.9 vs. 29.9 ± 3.1 g, respectively, after 28 days). There was not a pronounced effect of edoxaban in post-MI cardiac remodelling, but mitigated fibrosis was observed by the reduced expression of vascular endothelial growth factor and tumour growth factor β1 in the peri-infarct zone. CONCLUSIONS Our analysis provided the experimental basis to support the feasibility of MRI to study cardiac function and characterise myocardial scarring in a rat model. Overall data suggested the safety of edoxaban in the model, and compared to placebo, it showed a better post-MI recovery, probably by reducing fibrosis of the heart. Further research on mid-term cardiac recovery with edoxaban after MI is justified.
Collapse
Affiliation(s)
- Javier Martínez-Fernández
- Servicio de Radiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS). SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain
| | - Cristina Almengló
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS). SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain
| | - Borja Babarro
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS). SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain
| | - Tomás García-Caballero
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS). SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain; Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela and University Clinical Hospital, 15782, Santiago de Compostela, Spain
| | - Ángel L Fernández
- Heart Surgery Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain; CIBERCV, Madrid, Spain
| | - Miguel Souto-Bayarri
- Servicio de Radiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS). SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain
| | - José R González-Juanatey
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS). SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain; Departamento de Medicina, Universidad de Santiago de Compostela, 15782, A Coruña, Spain; CIBERCV, Madrid, Spain; Servicio de Cardiología y Unidad de Hemodinámica. Complexo Hospitalario Universitario de Santiago de Compostela (CHUS). SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain
| | - Ezequiel Álvarez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS). SERGAS, Travesía da Choupana s/n, A Coruña, Santiago de Compostela, 15706, Spain; CIBERCV, Madrid, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
3
|
Advanced Glycation End Product Blocker Drugs Have a Great Potential to Prevent Diabetic Cardiomyopathy in an Animal Model of Diabetes Mellitus Type-2. Cardiovasc Ther 2022; 2022:7014680. [PMID: 35414826 PMCID: PMC8977315 DOI: 10.1155/2022/7014680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Sphingosine 1 phosphate (S1P) is a product of the sphingosine kinase 1 (SphK1) enzyme. Increased S1P can lead to tissue fibrosis that is also one of the pathways for developing diabetic cardiomyopathy. Advanced glycation end products (AGEs) increase S1P in cells. The study is aimed at using aminoguanidine (AG) as an AGEs blocker drug to prevent diabetic cardiomyopathy. Materials and methods. 210 rats were enrolled in the study. Diabetes mellitus type-2 was induced, and rats were divided into AG treated diabetic and nondiabetic groups. The heart histology was assessed with Masson's trichrome and hematoxylin-eosin staining. Cardiac function was measured with transthoracic echocardiography. S1P level and SphK1 gene expression were measured by western-blot and RT-qPCR, respectively. Results Results showed that S1P level increases in diabetes, and its augmentation in cardiac tissue with K6PC-5 leads to cardiac fibrosis. 50 and 200 mg/kg of AG prevented cardiac fibrosis, but 100 mg/kg had no significant preventive effect. AG suppressed the SphK1 gene expression and reduced the fibrotic effect of S1P. AG preserved cardiac function by keeping ejection fraction and fractional shortening within the normal range in diabetic rats. Conclusion AG has a suppressor effect on SphK1 gene expression besides its AGEs blocker role. AG is a potential drug to use in diabetic patients for preventing the development of diabetic cardiomyopathy. Other drugs that have AGEs or S1P blocker effects are a good choice for diabetic cardiomyopathy prevention.
Collapse
|
4
|
Xue Y, Zhang M, Liu M, Liu Y, Li L, Han X, Sun Z, Chu L. 8-Gingerol Ameliorates Myocardial Fibrosis by Attenuating Reactive Oxygen Species, Apoptosis, and Autophagy via the PI3K/Akt/mTOR Signaling Pathway. Front Pharmacol 2021; 12:711701. [PMID: 34393792 PMCID: PMC8355601 DOI: 10.3389/fphar.2021.711701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
8-gingerol (8-Gin) is the series of phenolic substance that is extracted from ginger. Although many studies have revealed that 8-Gin has multiple pharmacological properties, the possible underlying mechanisms of 8-Gin against myocardial fibrosis (MF) remains unclear. The study examined the exact role and potential mechanisms of 8-Gin against isoproterenol (ISO)-induced MF. Male mice were intraperitoneally injected with 8-Gin (10 and 20 mg/kg/d) and concurrently subcutaneously injected with ISO (10 mg/kg/d) for 2 weeks. Electrocardiography, pathological heart morphology, myocardial enzymes, reactive oxygen species (ROS) generation, degree of apoptosis, and autophagy pathway-related proteins were measured. Our study observed 8-Gin significantly reduced J-point elevation and heart rate. Besides, 8-Gin caused a marked decrease in cardiac weight index and left ventricle weight index, serum levels of creatine kinase and lactate dehydrogenase (CK and LDH, respectively), ROS generation, and attenuated ISO-induced pathological heart damage. Moreover, treatment with 8-Gin resulted in a marked decrease in the levels of collagen types I and III and TGF-β in the heart tissue. Our results showed 8-Gin exposure significantly suppressed ISO-induced autophagosome formation. 8-Gin also could lead to down-regulation of the activities of matrix metalloproteinases-9 (MMP-9), Caspase-9, and Bax protein, up-regulation of the activity of Bcl-2 protein, and alleviation of cardiomyocyte apoptosis. Furthermore, 8-Gin produced an obvious increase in the expressions of the PI3K/Akt/mTOR signaling pathway-related proteins. Our data showed that 8-Gin exerted cardioprotective effects on ISO-induced MF, which possibly occurred in connection with inhibition of ROS generation, apoptosis, and autophagy via modulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yucong Xue
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Miaomiao Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Zhenqing Sun
- Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
5
|
Viswanadha VP, Dhivya V, Beeraka NM, Huang CY, Gavryushova LV, Minyaeva NN, Chubarev VN, Mikhaleva LM, Tarasov VV, Aliev G. The protective effect of piperine against isoproterenol-induced inflammation in experimental models of myocardial toxicity. Eur J Pharmacol 2020; 885:173524. [PMID: 32882215 DOI: 10.1016/j.ejphar.2020.173524] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) eventually exacerbates inflammatory response due to the release of inflammatory and pro-inflammatory factors. The aim of this study is to explore the protective efficacy of piperine supplementation against the inflammatory response in isoproterenol (ISO)-induced MI. Masson Trichome staining was executed to determine myocardial tissue architecture. Immunohistochemistry was performed for IL-6, TNF-α. RT-PCR studies were performed to ascertain the gene expression of IL-6, TNF-α, iNOS, eNOS, MMP-2, MMP-9, and collagen-III. Western blotting was performed to determine expression of HIF-1α, VEGF, Nrf-2, NF-ƙB, Cox-2, p-38, phospho-p38, ERK-1/2, phospho-ERK-1/2, and collagen-I. HIF-1α, VEGF, and iNOS expression were significantly upregulated with concomitant decline in eNOS expression in the heart myocardial tissue of rats received ISO alone whereas piperine pretreatment prevented these changes in ISO administered rats. Current results revealed ROS-mediated activation of MAPKs, namely, p-p38, p-ERK1/2 in the heart tissue of ISO administered group. Piperine pretreatment significantly prevented these changes in ISO treated group. NF-κB is involved in the modulation of gene expressions responsible for tissue repair. ISO-induced NF-κB-p65 expression was significantly reduced in the group pretreated with piperine and mitigated extent of myocardial inflammation. A significant increase in cardiac fibrosis upon ISO treatment was reported due to the increased hydroxyproline content, MMP-2 & 9 and upregulation of collagen-I protein compared to control group. All these cardiac hypertrophy markers were decreased in 'piperine pretreated ISO administered group' compared to group received ISO injection. Current findings concluded that piperine as a nutritional intervention could prevent inflammation of myocardium in ISO-induced MI.
Collapse
Affiliation(s)
- Vijaya Padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India; China Medical University, Lifu Teaching Building 12F, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Velumani Dhivya
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Narasimha Murthy Beeraka
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- China Medical University, Lifu Teaching Building 12F, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Liliya V Gavryushova
- Department of Therapeutic Dentistry, Saratov State Medical University named after V.I. Razumovsky, 410012, Saratov, Russia
| | - Nina N Minyaeva
- National Research University Higher School of Economics, 20 Myasnitskaya Street, Moscow, 101000, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, Moscow, 117418, Russia
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia; Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, Moscow, 117418, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
6
|
Ma Y, Song X, Ma T, Li Y, Bai H, Zhang Z, Hu H, Yuan R, Wen Y, Gao L. Aminoguanidine inhibits IL-1β-induced protein expression of iNOS and COX-2 by blocking the NF-κB signaling pathway in rat articular chondrocytes. Exp Ther Med 2020; 20:2623-2630. [PMID: 32765755 PMCID: PMC7401635 DOI: 10.3892/etm.2020.9021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/29/2020] [Indexed: 01/21/2023] Open
Abstract
Osteoarthritis is a chronic joint disease which has a serious impact on the health and quality of life of affected humans and animals. As an inhibitor of inducible nitric oxide synthase (iNOS), aminoguanidine (AG) displays anti-inflammatory effects. The purpose of the present study was to investigate the effect of AG on the expression of iNOS and cyclooxygenase-2 (COX-2), and the activity of the NF-κB signaling pathway in rat chondrocytes stimulated by interleukin-1β (IL-1β). The viability of chondrocytes treated with AG (0.3, 1 or 3 mM) alone was determined using a Cell Counting Kit-8 assay. Subsequently, the chondrocytes were treated with either 10 ng/ml IL-1β alone, or co-treated with increasing concentrations of AG (0.3, 1 or 3 mM) and 10 ng/ml IL-1β. The protein levels of COX-2, iNOS, phosphorylated (p)-p65, p65, p-NF-κβ inhibitor α (IκBα), IκBα, p-inhibitor of NF-κβ-β (IKKβ) and IKKβ were evaluated by western blotting. NF-κB translocation was determined by immunofluorescence analysis. Western blotting and reverse transcription-quantitative PCR were used to detect expression levels of relevant proteins/genes. The results suggested that the inhibitory effect of AG on the protein and gene expression levels of iNOS and COX-2 in IL-1β-treated chondrocytes was dose-dependent. In addition, AG decreased the level of phosphorylation of IKKβ, IκBα and NF-κB p65, the degradation of IKKβ, IκBα and p65, and the translocation of NF-κB in IL-1β-stimulated chondrocytes. The most significant inhibitory effect of AG was observed at a concentration of 1 mM. Therefore, the present study suggested that AG may serve as a potential agent to reduce the inflammatory response of chondrocytes stimulated by IL-1β.
Collapse
Affiliation(s)
- Yuanqiang Ma
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Xiaopeng Song
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Tianwen Ma
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Yue Li
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Hui Bai
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Zhiheng Zhang
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Hailong Hu
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Rui Yuan
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Yajing Wen
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| | - Li Gao
- Department of Clinical Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
7
|
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, Knezl V, Egan Benova T, Weismann P, Slezak J, Tribulova N. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9060546. [PMID: 32580481 PMCID: PMC7346184 DOI: 10.3390/antiox9060546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Barbara Szeiffova Bacova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Csilla Viczenczova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Katarina Andelova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | | | - Miroslav Barancik
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Vladimir Knezl
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Peter Weismann
- Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia;
| | - Jan Slezak
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Correspondence: ; Tel.: +00421-2-32295423
| |
Collapse
|
8
|
Li W, Yang J, Lyu Q, Wu G, Lin S, Yang Q, Hu J. Taurine attenuates isoproterenol-induced H9c2 cardiomyocytes hypertrophy by improving antioxidative ability and inhibiting calpain-1-mediated apoptosis. Mol Cell Biochem 2020; 469:119-132. [PMID: 32304004 DOI: 10.1007/s11010-020-03733-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Pathological cardiac hypertrophy is ultimately accompanied by cardiomyocyte apoptosis. Apoptosis mainly related to calpain-1-mediated apoptotic pathways. Studies had proved that taurine can maintain heart health through antioxidation and antiapoptotic functions, but the effect of taurine on cardiac hypertrophy is still unclear. This study aimed to determine whether taurine could inhibit calpain-1-mediated mitochondria-dependent apoptotic pathways in isoproterenol (ISO)-induced hypertrophic cardiomyocytes. We found that taurine could inhibit the increase in cell surface area and reduce the protein expression levels of the hypertrophic markers atrial natriuretic peptide, brain natriuretic polypeptide, and β-myosin heavy chain. Taurine also reduced ROS, intracellular Ca2+ overload and mitochondrial membrane potential. Moreover, taurine inhibited cardiomyocyte apoptosis by decreasing the protein expression of calpain-1, Bax, t-Bid, cytosolic cytochrome c, Apaf-1, cleaved caspase-9 and cleaved caspase-3 and by enhancing calpastatin and Bcl-2 protein expression. Calpain-1 small interfering RNA transfection results showed similar antiapoptotic effects as the taurine prevention group. However, compared with the two treatments, taurine inhibited the expression of cleaved caspase-9 more significantly. Therefore, we believe that taurine prevents ISO-induced H9c2 cardiomyocyte hypertrophy by inhibiting oxidative stress, intracellular Ca2+ overload, the calpain-1-mediated mitochondria-dependent apoptotic pathway and cleaved caspase-9 levels.
Collapse
Affiliation(s)
- Weiwei Li
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Qiufeng Lyu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Ilić S, Stojiljković N, Sokolović D, Jovanović I, Stojanović N. Morphometric analysis of structural renal alterations and beneficial effects of aminoguanidine in acute kidney injury induced by cisplatin in rats. Can J Physiol Pharmacol 2020; 98:117-123. [PMID: 31995714 DOI: 10.1139/cjpp-2019-0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Since cisplatin-induced nephrotoxicity has very important clinical consequences, the purpose of this study was to determine the potential protective effect of aminoguanidine on the acute kidney injury caused by cisplatin. Experiments were done on 40 Wistar rats divided into four groups. The CIS group received cisplatin in a single dose of 8 mg/kg, while the CISAG group received the same dose of cisplatin and aminoguanidine (100 mg/kg) by intraperitoneal injections. Animals in the AG group received only aminoguanidine (100 mg/kg) and those in the C group received saline. Quantitative evaluation of structural and functional alterations in the kidneys was performed by analysis of biochemical and parameters of oxidative stress and by histological and morphometric analysis of renal sections. Histological sections of kidney showed structural damage of proximal tubules and glomeruli that were induced by cisplatin. Morphometric analysis revealed statistically significant differences in the area of proximal tubules and the size and cellularity of glomeruli between the CIS and CISAG groups. Glomerular basement membrane thickness was increased in the CIS group, while aminoguanidine attenuated these changes in the CISAG group of rats. Our results suggest that aminoguanidine acts protectively and repairs structural and functional damage of kidney by engaging the existent antioxidative potential at the level of renal tissue.
Collapse
Affiliation(s)
- Sonja Ilić
- Department of Physiology, University of Nis, Faculty of Medicine, Bulevar Dr. Zoran Djindjic 81, Nis, Serbia
| | - Nenad Stojiljković
- Department of Physiology, University of Nis, Faculty of Medicine, Bulevar Dr. Zoran Djindjic 81, Nis, Serbia
| | - Dusan Sokolović
- Department of Biochemistry, University of Nis, Faculty of Medicine, Bulevar Dr. Zoran Djindjic 81, Nis, Serbia
| | - Ivan Jovanović
- Department of Anatomy, University of Nis, Faculty of Medicine, Bulevar Dr. Zoran Djindjic 81, Nis, Serbia
| | - Nikola Stojanović
- University of Nis, Faculty of Medicine, Bulevar Dr. Zoran Djindjic 81, Nis, Serbia
| |
Collapse
|
10
|
Magdaleno F, Blajszczak CC, Charles-Niño CL, Guadrón-Llanos AM, Vázquez-Álvarez AO, Miranda-Díaz AG, Nieto N, Islas-Carbajal MC, Rincón-Sánchez AR. Aminoguanidine reduces diabetes-associated cardiac fibrosis. Exp Ther Med 2019; 18:3125-3138. [PMID: 31572553 DOI: 10.3892/etm.2019.7921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Aminoguanidine (AG) inhibits advanced glycation end products (AGEs) and advanced oxidation protein products (AOPP) accumulated as a result of excessive oxidative stress in diabetes. However, the molecular mechanism by which AG reduces AGE-associated damage in diabetes is not well understood. Thus, we investigated whether AG supplementation mitigates oxidative-associated cardiac fibrosis in rats with type 2 diabetes mellitus (T2DM). Forty-five male Wistar rats were divided into three groups: Control, T2DM and T2DM+AG. Rats were fed with a high-fat, high-carbohydrate diet (HFCD) for 2 weeks and rendered diabetic using low-dose streptozotocin (STZ) (20 mg/kg), and one group was treated with AG (20 mg/kg) up to 25 weeks. In vitro experiments were performed in primary rat myofibroblasts to confirm the antioxidant and antifibrotic effects of AG and to determine if blocking the receptor for AGEs (RAGE) prevents the fibrogenic response in myofibroblasts. Diabetic rats exhibited an increase in cardiac fibrosis resulting from HFCD and STZ injections. By contrast, AG treatment significantly reduced cardiac fibrosis, α-smooth muscle actin (αSMA) and oxidative-associated Nox4 and Nos2 mRNA expression. In vitro challenge of myofibroblasts with AG under T2DM conditions reduced intra- and extracellular collagen type I expression and Pdgfb, Tgfβ1 and Col1a1 mRNAs, albeit with similar expression of Tnfα and Il6 mRNAs. This was accompanied by reduced phosphorylation of ERK1/2 and SMAD2/3 but not of AKT1/2/3 and STAT pathways. RAGE blockade further attenuated collagen type I expression in AG-treated myofibroblasts. Thus, AG reduces oxidative stress-associated cardiac fibrosis by reducing pERK1/2, pSMAD2/3 and collagen type I expression via AGE/RAGE signaling in T2DM.
Collapse
Affiliation(s)
- Fernando Magdaleno
- Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico.,Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | | | - Claudia Lisette Charles-Niño
- Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico.,Department of Microbiology and Pathology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Alma Marlene Guadrón-Llanos
- Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Alan Omar Vázquez-Álvarez
- Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Natalia Nieto
- Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - María Cristina Islas-Carbajal
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Ana Rosa Rincón-Sánchez
- Institute of Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
11
|
Radhiga T, Senthil S, Sundaresan A, Pugalendi KV. Ursolic acid modulates MMPs, collagen-I, α-SMA, and TGF-β expression in isoproterenol-induced myocardial infarction in rats. Hum Exp Toxicol 2019; 38:785-793. [PMID: 30977399 DOI: 10.1177/0960327119842620] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In the present study, the modulatory effect of ursolic acid (UA) on cardiac fibrosis and mitochondrial and lysosomal enzymes activity in isoproterenol-induced myocardial infarction (MI) in rats were examined. Isoproterenol hydrochloride (ISO; 85 mg/kg body weight) was administered subcutaneously for first two consecutive days. ISO-induced MI in rats significantly decreased the activities of mitochondrial tricarboxylic acid cycle enzymes and respiratory chain enzymes while increased the activities of lysosomal glycohydrolases and cathepsins. The expression of matrix metalloproteinase 2 (MMP-2), MMP-9, collagen type I, α-smooth muscle actin (α-SMA), and transforming growth factor-β (TGF-β) were upregulated in ISO-induced MI in rats. UA administration to rats showed increased activities of mitochondrial tricarboxylic acid cycle enzymes and respiratory chain enzymes and decreased activities of lysosomal glycohydrolases and cathepsins in ISO-induced rats. Furthermore, expression of MMP-2, MMP-9, collagen type I, α-SMA, and TGF-β downregulated in UA-administered rats. Thus, our results demonstrate that UA has an anti-fibrotic effect and attenuates the mitochondrial and lysosomal dysfunction in ISO-induced MI in rats.
Collapse
Affiliation(s)
- T Radhiga
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - S Senthil
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - A Sundaresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| | - K V Pugalendi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, India
| |
Collapse
|
12
|
Gao JP, Wei KZ, Cui XH, Feng JH, Yao PA. Effects of Atractylodes macrocephala rhizoma on isoproterenol-induced myocardial hypertrophy in mice. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_617_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
MicroRNA-135a inhibits cardiac fibrosis induced by isoproterenol via TRPM7 channel. Biomed Pharmacother 2018; 104:252-260. [PMID: 29775892 DOI: 10.1016/j.biopha.2018.04.157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cardiac fibrosis is a crucial factor of heart failure. It has been reported that several microRNAs (miRNAs, miRs) were involved in cardiac fibrosis, however, the role and possible regulatory mechanism of microRNA-135a (miR-135a) in cardiac fibrosis have not been investigated. Here, we explored the regulation mechanism of miR-135a on cardiac fibrosis. METHODS AND RESULTS In vitro, cardiac fibroblasts (CFs) from neonatal rats were treated by isoproterenol (ISO) at the final concentration of 10 μM for 24 h and miR-135a expression was decreased obviously. A miR-135a mimic inhibited CFs proliferation and differentiation by down-regulating transient receptor potential melastatin 7 (TRPM7) expression and current, whose effects were reversed by either the addition of miR-135a mimic or silencing TRPM7. In vivo, adult SD rat cardiac fibrosis was induced by subcutaneous administration of ISO (5 mg/kg/day) for 10 days. The expression of Collagen I, α-smooth muscle actin (α-SMA) and TRPM7 were up-regulated while miR-135a was down-regulated. In summary, our results illustrated that TRPM7 channel played an essential role in regulating fibrosis and that miR-135a protected against ISO-induced cardiac fibrosis via TRPM7 channel. CONCLUSION MiR-135a inhibits cardiac fibrosis via miR-135a- TRPM7-collagen production pathway.
Collapse
|
14
|
Ma Q, Liu Q, Yuan L, Zhuang Y. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity. Nutrients 2018; 10:nu10040420. [PMID: 29597313 PMCID: PMC5946205 DOI: 10.3390/nu10040420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/13/2023] Open
Abstract
A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.
Collapse
Affiliation(s)
- Qingyu Ma
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Qiuming Liu
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Ling Yuan
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| |
Collapse
|
15
|
Liping S, Qiuming L, Jian F, Xiao L, Yongliang Z. Purification and Characterization of Peptides Inhibiting MMP-1 Activity with C Terminate of Gly-Leu from Simulated Gastrointestinal Digestion Hydrolysates of Tilapia (Oreochromis niloticus) Skin Gelatin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:593-601. [PMID: 29272917 DOI: 10.1021/acs.jafc.7b04196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tilapia skin gelatin hydrolysates (TSGHs) were prepared by simulated gastrointestinal digestion and separated by gel filtration and semi-preparative reversed-phase high-performance liquid chromatography. The anti-photoaging effects were evaluated using an ultraviolet radiation B (UVB)-induced mouse embryonic fibroblast (MEF) photoaging model in vitro. Three fractions from TSGHs with high inhibitory intercellular matrix metalloproteinase-1 (MMP-1) activities and reactive oxygen species (ROS) production were obtained. Three key peptides, GYTGL, LGATGL, and VLGL, were identified, and their C terminate was Gly-Leu. Three peptides were synthesized and exhibited a significant inhibition of intercellular MMP-1 activity and ROS production. Furthermore, three peptides inhibiting MMP-1 activities were evaluated through their docking of S1' and S3' active pockets of MMP-1. Hydrogen bonds and C terminate Gly-Leu played important roles. Finally, the protective effects of three peptides on intercellular collagen in UVB-induced MEFs were compared. Our results indicated that tilapia gelatin peptides exhibited potential activities to prevent and regulate photoaging.
Collapse
Affiliation(s)
- Sun Liping
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Liu Qiuming
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Fan Jian
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Li Xiao
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| | - Zhuang Yongliang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology , 727 South Jingming Road, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
16
|
Secretoneurin suppresses cardiac hypertrophy through suppression of oxidant stress. Eur J Pharmacol 2018; 822:13-24. [PMID: 29337195 DOI: 10.1016/j.ejphar.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/25/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
The neuropeptide secretoneurin (SN) plays protective roles in myocardial ischemia. In the present study, the effect of SN in cardiac hypertrophy was investigated. We observed that, in isoproterenol (ISO) treatment induced cardiac or cardiomyocytes hypertrophy, a marked increase in the expression of endogenous SN in mouse plasma, myocardium and primary-cultured cardiomyocytes occurs. In hypertrophic mice, the heart size, heart weight/body weight (HW/BW) ratio, cardiomyocyte size, and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) expression were significantly higher than those in controls but were effectively suppressed by SN gene therapy. Similarly, the protective effects of SN were also observed in cultured cardiomyocytes following ISO treatment. SN significantly increased the activity of catalase and superoxide dismutase (SOD) in parallel with the decrease in reactive oxygen species levels in cardiomyocytes. We observed that SN evoked the activation of all of the AMPK, P38/MAPK and ERK/MAPK pathways in cardiomyocytes, but pretreatment with only AMPK inhibitor (compound C) and ERK1/2/MAPK inhibitor (PD98059) counteracted the protective effects of SN against cardiomyocyte hypertrophy and the suppressive effects of SN on oxidant stress in cardiomyocytes. These results indicated that endogenous SN is induced in hypertrophic cardiomyocytes, and may play a protective role in the pathogenesis of cardiac hypertrophy. These results suggest that exogenous SN supplementation protects the cardiac hypertrophy induced by ISO treatment through the activation of AMPK and ERK/MAPK pathways, thus upregulating antioxidants and suppressing oxidative stress.
Collapse
|
17
|
Cui XH, Wang HL, Wu R, Yao PA, Wei KZ, Gao JP. Effect of Atractylodes macrocephala rhizoma on isoproterenol‑induced ventricular remodeling in rats. Mol Med Rep 2017; 17:2607-2613. [PMID: 29207045 DOI: 10.3892/mmr.2017.8121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
Myocardial infarction (MI) is the primary cause of ventricular remodeling (VR). The aim of the present study was to determine the effect of Atractylodis macrocephalae rhizoma (AMR) on VR induced by isoproterenol (ISO) in rats. Male Sprague Dawley rats were randomly divided into the normal control, ISO‑induced and AMR groups. Rats in the ISO‑induced and AMR groups were subcutaneously injected with 85 mg/kg/day ISO for two consecutive days. Compared with the ISO‑induced group, AMR normalized the levels of hemodynamic parameters, markedly attenuated myocardial pathological damage, decreased the level of N‑terminal prohormone of brain natriuretic peptide, and inhibited cardiac hypertrophy and myocardial fibrosis. In addition, AMR inhibited oxidative stress and activation of the rennin‑angiotensin‑aldosterone system (RAAS) when compared with the ISO‑induced group. The results of the present study suggest that AMR may reverse VR via its antioxidative effect and inhibition of RAAS activation.
Collapse
Affiliation(s)
- Xiao-Hua Cui
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hui-Lin Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Rong Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ping-An Yao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ke-Zhao Wei
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jian-Ping Gao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
18
|
Dhivya V, Priya LB, Chirayil HT, Sathiskumar S, Huang CY, Padma VV. Piperine modulates isoproterenol induced myocardial ischemia through antioxidant and anti-dyslipidemic effect in male Wistar rats. Biomed Pharmacother 2017; 87:705-713. [DOI: 10.1016/j.biopha.2017.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/19/2016] [Accepted: 01/01/2017] [Indexed: 12/30/2022] Open
|
19
|
Syed AA, Lahiri S, Mohan D, Valicherla GR, Gupta AP, Kumar S, Maurya R, Bora HK, Hanif K, Gayen JR. Cardioprotective Effect of Ulmus wallichiana Planchon in β-Adrenergic Agonist Induced Cardiac Hypertrophy. Front Pharmacol 2016; 7:510. [PMID: 28066255 PMCID: PMC5174112 DOI: 10.3389/fphar.2016.00510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023] Open
Abstract
Ulmus wallichiana Planchon (Family: Ulmaceae), a traditional medicinal plant, was used in fracture healing in the folk tradition of Uttarakhand, Himalaya, India. The present study investigated the cardioprotective effect of ethanolic extract (EE) and butanolic fraction (BF) of U. wallichiana in isoprenaline (ISO) induced cardiac hypertrophy in Wistar rats. Cardiac hypertrophy was induced by ISO (5 mg/kg/day, subcutaneously) in rats. Treatment was performed by oral administration of EE and BF of U. wallichiana (500 and 50 mg/kg/day). The blood pressure (BP) and heart rate (HR) were measured by non-invasive blood pressure measurement technique. Plasma renin, Ang II, NO, and cGMP level were estimated using an ELISA kit. Angiotensin converting enzyme activity was estimated. BP and HR were significantly increased in ISO group (130.33 ± 1.67 mmHg vs. 111.78 ± 1.62 mmHg, p < 0.001 and 450.51 ± 4.90 beats/min vs. 347.82 ± 6.91 beats/min, respectively, p < 0.001). The BP and HR were significantly reduced (EE: 117.53 ± 2.27 mmHg vs. 130.33 ± 1.67 mmHg, p < 0.001, BF: 119.74 ± 3.32 mmHg vs. 130.33 ± 1.67 mmHg, p < 0.001); HR: (EE: 390.22 ± 8.24 beats/min vs. 450.51 ± 4.90 beats/min, p < 0.001, BF: 345.38 ± 6.79 beats/min vs. 450.51 ± 4.90 beats/min, p < 0.001) after the treatment of EE and BF of U. wallichiana, respectively. Plasma renin, Ang II, ACE activity was decreased and NO, cGMP level were increased. The EE and BF of U. wallichiana down regulated the expression of ANP, BNP, TNF-α, IL-6, MMP9, β1-AR, TGFβ1 and up regulated NOS3, ACE2 and Mas expression level, respectively. Thus, this study demonstrated that U. wallichiana has cardioprotective effect against ISO induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Anees A Syed
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Shibani Lahiri
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Divya Mohan
- Division of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Guru R Valicherla
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Anand P Gupta
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Sudhir Kumar
- Division of Medicinal and Process Chemistry, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rakesh Maurya
- Academy of Scientific and Innovative ResearchNew Delhi, India; Division of Medicinal and Process Chemistry, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India
| | - Himanshu K Bora
- Division of Laboratory Animals, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Kashif Hanif
- Division of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Jiaur R Gayen
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
20
|
Wang J, Li J, Liu J, Xu M, Tong X, Wang J. Chlorogenic acid prevents isoproterenol-induced DNA damage in vascular smooth muscle cells. Mol Med Rep 2016; 14:4063-4068. [PMID: 27634104 PMCID: PMC5101879 DOI: 10.3892/mmr.2016.5743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Numerous clinical therapeutic agents have been identified as DNA damaging. The present study revealed that isoproterenol (Iso) resulted in DNA damage in vascular smooth muscle cells (VSMCs) and increased the levels of intracellular oxygen free radicals. Administration of chlorogenic acid (CGA) inhibited this effect. Pretreatment with CGA abrogated the increase in protein expression levels of γ-H2A histone family member X, phosphorylated ataxia telangiectasia mutated, phosphorylated Rad3-related protein, breast cancer 1 and C-terminal Src homologous kinase induced by Iso. In addition, the increase in levels of intracellular reactive oxygen species (ROS) induced by Iso was inhibited by CGA pretreatment in a dose-dependent manner. The results of the present study suggest that CGA may inhibit Iso-induced VSMC damage via the suppression of ROS generation. Therefore, CGA may be a novel agent for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jingshuai Wang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 201204, P.R. China
| | - Jiyang Li
- Department of General Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China
| | - Jie Liu
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Mengjiao Xu
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jianjun Wang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
21
|
Venkatesan B, Tumala A, Subramanian V, Vellaichamy E. Transient silencing of Npr3 gene expression improved the circulatory levels of atrial natriuretic peptides and attenuated β-adrenoceptor activation- induced cardiac hypertrophic growth in experimental rats. Eur J Pharmacol 2016; 782:44-58. [DOI: 10.1016/j.ejphar.2016.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
22
|
Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 2016; 310:H153-73. [DOI: 10.1152/ajpheart.00206.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
23
|
Scofield SLC, Amin P, Singh M, Singh K. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. Compr Physiol 2015; 6:527-60. [PMID: 26756642 DOI: 10.1002/cphy.c150025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling.
Collapse
Affiliation(s)
- Stephanie L C Scofield
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Parthiv Amin
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA; Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; James H. Quillen VA Medical Center, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|