1
|
Guo Y, Fu Y, Sun W. 50 Hz Magnetic Field Exposure Inhibited Spontaneous Movement of Zebrafish Larvae through ROS-Mediated syn2a Expression. Int J Mol Sci 2023; 24:ijms24087576. [PMID: 37108734 PMCID: PMC10144198 DOI: 10.3390/ijms24087576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) exists widely in public and occupational environments. However, its potential adverse effects and the underlying mechanism on nervous system, especially behavior are still poorly understood. In this study, zebrafish embryos (including a transfected synapsin IIa (syn2a) overexpression plasmid) at 3 h post-fertilization (hpf) were exposed to a 50-Hz magnetic field (MF) with a series of intensities (100, 200, 400 and 800 μT, respectively) for 1 h or 24 h every day for 5 days. Results showed that, although MF exposure did not affect the basic development parameters including hatching rate, mortality and malformation rate, yet MF at 200 μT could significantly induce spontaneous movement (SM) hypoactivity in zebrafish larvae. Histological examination presented morphological abnormalities of the brain such as condensed cell nucleus and cytoplasm, increased intercellular space. Moreover, exposure to MF at 200 μT inhibited syn2a transcription and expression, and increased reactive oxygen species (ROS) level as well. Overexpression of syn2a could effectively rescue MF-induced SM hypoactivity in zebrafish. Pretreatment with N-acetyl-L-cysteine (NAC) could not only recover syn2a protein expression which was weakened by MF exposure, but also abolish MF-induced SM hypoactivity. However, syn2a overexpression did not affect MF-increased ROS. Taken together, the findings suggested that exposure to a 50-Hz MF inhibited spontaneous movement of zebrafish larvae via ROS-mediated syn2a expression in a nonlinear manner.
Collapse
Affiliation(s)
- Yixin Guo
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiti Fu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Rauš Balind S, Manojlović-Stojanoski M, Šošić-Jurjević B, Selaković V, Milošević V, Petković B. An Extremely Low Frequency Magnetic Field and Global Cerebral Ischemia Affect Pituitary ACTH and TSH Cells in Gerbils. Bioelectromagnetics 2019; 41:91-103. [PMID: 31828821 DOI: 10.1002/bem.22237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/28/2019] [Indexed: 11/10/2022]
Abstract
The neuroendocrine system can be modulated by a magnetic field and cerebral ischemia as external and internal stressors, respectively. This study deals with the separate or combined effects of an extremely low frequency (ELF) magnetic field (50 Hz, average magnetic field of 0.5 mT) for 7 days and global cerebral ischemia for 10 min on the morpho-functional features of pituitary adrenocorticotrophic (ACTH) and thyrotrophic (TSH) cells in 3-month-old gerbils. To determine the immediate and delayed effects of the applied stressors, measurements were made on the 7th and 14th days after the onset of the experiment. The ELF magnetic field and 10-min global cerebral ischemia, separately and particularly in combination, decreased (P < 0.05) the volume density of ACTH cells, while only in combination were intracellular ACTH content and plasma ACTH concentration increased (P < 0.05) on day 7. The ELF magnetic field elevated serum TSH concentration on day 7 and intracellular TSHβ content on day 14 (P < 0.05). Also, 10-min global cerebral ischemia alone increased serum TSH concentration (P < 0.05), while in combination with the ELF magnetic field it elevated (P < 0.05) intracellular TSHβ content on day 14. In conclusion, an ELF magnetic field and/or 10-min global cerebral ischemia can induce immediate and delayed stimulation of ACTH and TSH synthesis and secretion. Bioelectromagnetics. 2020;41:91-103. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Snežana Rauš Balind
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Manojlović-Stojanoski
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy (MMA), Medical Faculty MMA, University of Defence, Belgrade, Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
5
|
Zendehdel R, Yu IJ, Hajipour-Verdom B, Panjali Z. DNA effects of low level occupational exposure to extremely low frequency electromagnetic fields (50/60 Hz). Toxicol Ind Health 2019; 35:424-430. [PMID: 31138035 DOI: 10.1177/0748233719851697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Exposure to extremely low frequency magnetic fields (ELF-MF) occurs from natural and artificial sources. Although ELF-MF has been classified as a suspected humans carcinogen agent by the International Agency for Research on Cancer, little is known of the effects of ELF-MF at lower exposure levels of the recommended range. In the present study, DNA damage in the peripheral blood cells of power line workers was investigated. MATERIALS AND METHODS Occupational exposure to ELF-MF in a power plant was measured using the National Institute for Occupational Safety and Health (NIOSH) manual. Single-strand breaks (SSBs) in DNA were evaluated in 29 male utility workers as the exposed population and 28 male support personnel as the control subjects using the comet assay. Effects of ELF-MF on subjects were evaluated using DNA percent in tails, tail length, olive length, and tail moment. RESULTS Occupational exposure levels to ELF-MF in the utility workers were less than the threshold limit values (TLV) recommended by the American Conference of Government Industrial Hygienist (ACGIH). The median value of the magnetic field at the working sites was 0.85 µT. Induction of DNA damage was observed for the exposed workers compared with the controls. Olive length, tail moment, and tail DNA percent increased significantly (p < 0.05) in the utility workers. CONCLUSIONS Exposure to ELF-MF at levels less than the ACGIH exposure limit can produce DNA strand breaks.
Collapse
Affiliation(s)
- Rezvan Zendehdel
- 1 Environmental and Occupational Hazard Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Il Je Yu
- 2 HCTm, Co. Ltd., Icheon, Republic of Korea
| | - Behnam Hajipour-Verdom
- 3 Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Panjali
- 4 Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mailan Arachchige Don RK, Jung JS, Lee YJ, Hong SC. ELF-MF occupational exposure in die-casting and electroplating workers in Korea. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2018; 26:624-631. [PMID: 29697306 DOI: 10.1080/10803548.2018.1469721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A 24-h exposure assessment was performed in two groups of blue-collar workers from a die-casting plant and an electroplating plant to investigate levels of exposure to extremely low-frequency magnetic fields (ELF-MFs), using an EMDEX Lite (Enertech, USA) dosimeter. ELF-MF exposure of workers from the die-casting plant (arithmetic M ± SD 0.649 ± 1.343 µT) is higher than in electroplating workers (0.138 ± 0.045 µT). Higher ELF-MF exposure occurred among workers living in the same building as their workplace compared with that among other workers. This study suggests that ELF-MF exposure levels should be taken into consideration when providing dormitories for workers to minimize levels of residential ELF-MF exposure due to emissions from industrial plants. The study recommends that blue-collar workers should be made aware of measures to minimize their exposure to environmental agents such as ELF-MFs and electromagnetic fields during work, such as maintaining a safe distance between machines and avoiding undesirable behavior with equipment.
Collapse
Affiliation(s)
| | - Joon-Sig Jung
- National Indoor Environment & Noise Research Division, National Institute of Environmental Research, Korea
| | - Yun-Jin Lee
- Department of Occupational Health & Safety Engineering, Inje University, Korea
| | - Seung-Cheol Hong
- Department of Emergency and Disaster Management, Inje University, Korea.,Department of Occupational Health & Safety Engineering, Inje University, Korea
| |
Collapse
|
7
|
Su L, Yimaer A, Wei X, Xu Z, Chen G. The effects of 50 Hz magnetic field exposure on DNA damage and cellular functions in various neurogenic cells. JOURNAL OF RADIATION RESEARCH 2017; 58:474-486. [PMID: 28369556 PMCID: PMC5570089 DOI: 10.1093/jrr/rrx012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 05/15/2023]
Abstract
Epidemiological studies have indicated a possible association between extremely low-frequency magnetic field (ELF-MF) exposure and the risk of nervous system diseases. However, laboratory studies have not provided consistent results for clarifying this association, despite many years of studies. In this study, we have systematically investigated the effects of 50 Hz MF exposure on DNA damage and cellular functions in both neurogenic tumor cell lines (U251, A172, SH-SY5Y) and primary cultured neurogenic cells from rats (astrocytes, microglia, cortical neurons). The results showed that exposure to a 50 Hz MF at 2.0 mT for up to 24 h did not influence γH2AX foci formation (an early marker of DNA double-strand breaks) in any of six different neurogenic cells. Exposure to a 50 Hz MF did not affect cell cycle progression, cell proliferation or cell viability in neurogenic tumor U251, A172 or SH-SY5Y cells. Furthermore, the MF exposure for 24 h did not significantly affect the secretion of cytokines (TNF-α, IL-6 or IL-1β) in astrocytes or microglia, or the phagocytic activity of microglia. In addition, MF exposure for 1 h per day did not significantly influence expression levels of microtubule-associated protein tau, microtubule-associated protein 2, postsynaptic density 95 or gephyrin in cortical neurons, indicating an absence of effects of MF exposure on the development of cortical neurons. In conclusion, our data suggest that exposure to a 50 Hz MF at 2.0 mT did not elicit DNA damage effects or abnormal cellular functions in the neurogenic cells studied.
Collapse
Affiliation(s)
- Liling Su
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Clinical Medicine, Jiangxi Medical College, 399 Zhimi Road, Shangrao 331000, China
| | - Aziguli Yimaer
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Environmental Health, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Environmental Health, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou 310058, China
- Corresponding author. Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China. Tel: +86-571-88208169; Fax: +86-571-88208163;
| |
Collapse
|