1
|
Méndez D, Tellería F, Alarcón M, Montecino-Garrido H, Molina-Gutiérrez N, Morales-Malvarez L, Deras B, Mansilla S, Castro L, Trostchansky A, Araya-Maturana R, Fuentes E. MITOCDNB DECREASES PLATELET ACTIVATION THROUGH ITS SELECTIVE ACTION ON MITOCHONDRIAL THIOREDOXIN REDUCTASE. Biomed Pharmacother 2025; 183:117840. [PMID: 39842272 DOI: 10.1016/j.biopha.2025.117840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro. Cytotoxicity and viability tests were performed on human platelets from volunteer donors, together with experiments on aggregation, platelet activation, mitochondrial function, mitochondrial respiration, and thioredoxin reductase 2 (TrxR2) enzymatic activity in isolated platelet mitochondria. The compound MitoCDNB, corresponding to the molecule 5-chloro-2,4-dinitrophenylamino linked with triphenylphosphonium cation (TPP+) by a butyl chain and methanesulfonate as the counterion, was evaluated. MitoCDNB demonstrates potent, high mitochondria-selective antiplatelet effects that provide a novel approach to platelet inhibition with potentially minimized systemic risks. Here, we describe the first compound that inhibits platelet activation by decreasing TrxR2 enzymatic activity and collagen-stimulated maximal mitochondrial respiration, preventing aggregation and platelet activation. These results can be used to develop new antiplatelet drugs targeting mitochondria.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Francisca Tellería
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Nacim Molina-Gutiérrez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Lisandra Morales-Malvarez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile; Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| | - Bessy Deras
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
2
|
Méndez D, Tellería F, Monroy-Cárdenas M, Montecino-Garrido H, Mansilla S, Castro L, Trostchansky A, Muñoz-Córdova F, Zickermann V, Schiller J, Alfaro S, Caballero J, Araya-Maturana R, Fuentes E. Linking triphenylphosphonium cation to a bicyclic hydroquinone improves their antiplatelet effect via the regulation of mitochondrial function. Redox Biol 2024; 72:103142. [PMID: 38581860 PMCID: PMC11002875 DOI: 10.1016/j.redox.2024.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Francisca Tellería
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, 3460000, Chile
| | - Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | | | - Volker Zickermann
- Institute of Biochemistry II, Goethe University Medical School, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, Goethe University Medical School, Germany
| | - Sergio Alfaro
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
3
|
Littlejohn JB, Grenn EE, Carter KT, Palei AC, Spradley FT, Hosler JP, Hoang NH, Edwards KS, Kutcher ME. Increased platelet mitochondrial function correlates with clot strength in a rodent fracture model. J Trauma Acute Care Surg 2024; 96:378-385. [PMID: 37962216 PMCID: PMC10922128 DOI: 10.1097/ta.0000000000004204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Thromboelastographic measures of clot strength increase early after injury, portending higher risks for thromboembolic complications during recovery. Understanding the specific role of platelets is challenging because of a lack of clinically relevant measures of platelet function. Platelet mitochondrial respirometry may provide insight to global platelet function but has not yet been correlated with functional coagulation studies. METHODS Wistar rats underwent anesthesia and either immediate sacrifice for baseline values (n = 6) or (1) bilateral hindlimb orthopedic injury (n = 12), versus (2) sham anesthesia (n = 12) with terminal phlebotomy/hepatectomy after 24 hours. High-resolution respirometry was used to measure basal respiration, mitochondrial leak, maximal oxidative phosphorylation, and Complex IV activity in intact platelets; Complex I- and Complex II-driven respiration was measured in isolated liver mitochondria. Results were normalized to platelet number and protein mass, respectively. Citrated native thromboelastography (TEG) was performed in triplicate. RESULTS Citrated native TEG maximal amplitude was significantly higher (81.0 ± 3.0 vs. 73.3 ± 3.5 mm, p < 0.001) in trauma compared with sham rats 24 hours after injury. Intact platelets from injured rats had higher basal oxygen consumption (17.7 ± 2.5 vs. 15.1 ± 3.2 pmol O 2 /[s × 10 8 cells], p = 0.045), with similar trends in mitochondrial leak rate ( p = 0.19) when compared with sham animals. Overall, platelet basal respiration significantly correlated with TEG maximal amplitude ( r = 0.44, p = 0.034). As a control for sex-dependent systemic mitochondrial differences, females displayed higher liver mitochondria Complex I-driven respiration (895.6 ± 123.7 vs. 622.1 ± 48.7 mmol e - /min/mg protein, p = 0.02); as a control for systemic mitochondrial effects of injury, no liver mitochondrial respiration differences were seen. CONCLUSION Platelet mitochondrial basal respiration is increased after injury and correlates with clot strength in this rodent hindlimb fracture model. Several mitochondrial-targeted therapeutics exist in common use that are underexplored but hold promise as potential antithrombotic adjuncts that can be sensitively evaluated in this preclinical model.
Collapse
Affiliation(s)
| | - Emily Evans Grenn
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristen T. Carter
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana C. Palei
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Frank T. Spradley
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jonathan P. Hosler
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ngoc H. Hoang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristin S. Edwards
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Matthew E. Kutcher
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
4
|
Flora GD, Nayak MK, Ghatge M, Chauhan AK. Metabolic targeting of platelets to combat thrombosis: dawn of a new paradigm? Cardiovasc Res 2023; 119:2497-2507. [PMID: 37706546 PMCID: PMC10676458 DOI: 10.1093/cvr/cvad149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
Current antithrombotic therapies used in clinical settings target either the coagulation pathways or platelet activation receptors (P2Y12 or GPIIb/IIIa), as well as the cyclooxygenase (COX) enzyme through aspirin. However, they are associated with bleeding risk and are not suitable for long-term use. Thus, novel strategies which provide broad protection against platelet activation with minimal bleeding risks are required. Regardless of the nature of agonist stimulation, platelet activation is an energy-intensive and ATP-driven process characterized by metabolic switching toward a high rate of aerobic glycolysis, relative to oxidative phosphorylation (OXPHOS). Consequently, there has been considerable interest in recent years in investigating whether targeting metabolic pathways in platelets, especially aerobic glycolysis and OXPHOS, can modulate their activation, thereby preventing thrombosis. This review briefly discusses the choices of metabolic substrates available to platelets that drive their metabolic flexibility. We have comprehensively elucidated the relevance of aerobic glycolysis in facilitating platelet activation and the underlying molecular mechanisms that trigger this switch from OXPHOS. We have provided a detailed account of the antiplatelet effects of targeting vital metabolic checkpoints such as pyruvate dehydrogenase kinases (PDKs) and pyruvate kinase M2 (PKM2) that preferentially drive the pyruvate flux to aerobic glycolysis. Furthermore, we discuss the role of fatty acids and glutamine oxidation in mitochondria and their subsequent role in driving OXPHOS and platelet activation. While the approach of targeting metabolic regulatory mechanisms in platelets to prevent their activation is still in a nascent stage, accumulating evidence highlights its beneficial effects as a potentially novel antithrombotic strategy.
Collapse
Affiliation(s)
- Gagan D Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Manasa K Nayak
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Madankumar Ghatge
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Pirabe A, Frühwirth S, Brunnthaler L, Hackl H, Schmuckenschlager A, Schrottmaier WC, Assinger A. Age-Dependent Surface Receptor Expression Patterns in Immature Versus Mature Platelets in Mouse Models of Regenerative Thrombocytopenia. Cells 2023; 12:2419. [PMID: 37830633 PMCID: PMC10571991 DOI: 10.3390/cells12192419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Aging is a multifaceted process that unfolds at both the individual and cellular levels, resulting in changes in platelet count and platelet reactivity. These alterations are influenced by shifts in platelet production, as well as by various environmental factors that affect circulating platelets. Aging also triggers functional changes in platelets, including a reduction in RNA content and protein production capacity. Older individuals and RNA-rich immature platelets often exhibit hyperactivity, contributing significantly to pathologic conditions such as cardiovascular diseases, sepsis, and thrombosis. However, the impact of aging on surface receptor expression of circulating platelets, particularly whether these effects vary between immature and mature platelets, remains largely unexplored. Thus, we investigated the expression of certain surface and activation receptors on platelets from young and old mice as well as on immature and mature platelets from mouse models of regenerative thrombocytopenia by flow cytometry. Our findings indicate that aged mice show an upregulated expression of the platelet endothelial cell adhesion molecule-1 (CD31), tetraspanin-29 (CD9), and Toll-like receptor 2 (TLR2) compared to their younger counterparts. Interestingly, when comparing immature and mature platelets in both young and old mice, no differences were observed in mature platelets. However, immature platelets from young mice displayed higher surface expression compared to immature platelets from old mice. Additionally, in mouse models of regenerative thrombocytopenia, the majority of receptors were upregulated in immature platelets. These results suggest that distinct surface receptor expressions are increased on platelets from old mice and immature platelets, which may partially explain their heightened activity and contribute to an increased thrombotic risk.
Collapse
Affiliation(s)
- Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Frühwirth
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Laura Brunnthaler
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Waltraud C. Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Fuentes E, Arauna D, Araya-Maturana R. Regulation of mitochondrial function by hydroquinone derivatives as prevention of platelet activation. Thromb Res 2023; 230:55-63. [PMID: 37639783 DOI: 10.1016/j.thromres.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Platelet activation plays an essential role in the pathogenesis of thrombotic events in different diseases (e.g., cancer, type 2 diabetes, Alzheimer's, and cardiovascular diseases, and even in patients diagnosed with coronavirus disease 2019). Therefore, antiplatelet therapy is essential to reduce thrombus formation. However, the utility of current antiplatelet drugs is limited. Therefore, identifying novel antiplatelet compounds is very important in developing new drugs. In this context, the involvement of mitochondrial function as an efficient energy source required for platelet activation is currently accepted; however, its contribution as an antiplatelet target still has little been exploited. Regarding this, the intramolecular hydrogen bonding of hydroquinone derivatives has been described as a structural motif that allows the reach of small molecules at mitochondria, which can exert antiplatelet activity, among others. In this review, we describe the role of mitochondrial function in platelet activation and how hydroquinone derivatives exert antiplatelet activity through mitochondrial regulation.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile.
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
7
|
Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E. Elevated LDL-C, high blood pressure, and low peak V ˙ O 2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. Front Mol Biosci 2023; 10:1136975. [PMID: 37033448 PMCID: PMC10073692 DOI: 10.3389/fmolb.2023.1136975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: To evaluate the association of platelet (PL) mitochondria respiration with markers of cardiovascular health in children ages 7-10 years. Methods: PL mitochondrial respiration (n = 91) was assessed by high resolution respirometry (HRR): Routine (R) respiration, complex (C) I linked respiration (CI), and maximal uncoupled electron transport capacity of CII (CIIE) were measured. The respiratory control ratio (RCR) was calculated as the ratio of maximal oxidative phosphorylation capacity of CI and CI leak respiration (PCI/LCI). Peak V ˙ O2 (incremental bike test) and body composition (dual-energy X-ray absorptiometry) were measured. Multiple generalized linear regression analysis was used to model the association of measures by HRR with variables of interest: adiposity, low-density lipoprotein (LDL-C) and triglyceride (TG) status (normal vs. elevated) HOMA2-IR, blood pressure status (normal vs. high), and demographics. Results: R and CI-linked respiration positively associated with adiposity, high blood pressure (HBP), and peak V ˙ O2. R and CI-linked respiration had inverse association with age and elevated LDL-C. CIIE was higher in children with elevated LDL-C (log-β = -0.54, p = 0.010). HBP and peak V ˙ O2 interacted in relation to RCR (log-β = -0.01, p = 0.028). Specifically, RCR was lowest among children with HBP and low aerobic capacity (i.e., mean peak V ˙ O2 -1SD). HOMA2-IR did not associate with measures of PL mitochondria respiration. Conclusion: In PL, R and CI-linked mitochondrial respiration directly associate with adiposity, peak V ˙ O2 and HBP. Elevated LDL-C associates with lower CI-linked respiration which is compensated by increasing CII respiration. PL bioenergetics phenotypes in children associate with whole-body metabolic health status.
Collapse
Affiliation(s)
- Eva C. Diaz
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Eva C. Diaz,
| | - Sean H. Adams
- Department of Surgery, and Center for Alimentary and Metabolic Science, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Judith L. Weber
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Nursing Science, College of Nursing, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Matthew Cotter
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Cannabidiol and Nano-Selenium Increase Microvascularization and Reduce Degenerative Changes in Superficial Breast Muscle in C. perfringens-Infected Chickens. Int J Mol Sci 2022; 24:ijms24010237. [PMID: 36613680 PMCID: PMC9820102 DOI: 10.3390/ijms24010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Here, we demonstrated the potential of Cannabis-derived cannabidiol (CBD) and nanosized selenium (nano-Se) for the modulation of microvascularization and muscle fiber lesions in superficial breast muscle in C. perfringens-challenged chickens. The administration of CBD resulted in a decreased number of atrophic fibers (3.13 vs. 1.13/1.5 mm2) compared with the control, whereas nano-Se or both substances resulted in a decreased split fiber number (4.13 vs. 1.55/1.5 mm2) and in a lower number of necrotic myofibers (2.38 vs. 0.69/1.5 mm2) in breast muscle than the positive control. There was a significantly higher number of capillary vessels in chickens in the CBD+Nano-Se group than in the control and positive control groups (1.31 vs. 0.97 and 0.98, respectively). Feeding birds experimental diets lowered the activity of DNA damage repair enzymes, including 3,N4-ethenodeoxycytosine (by 39.6%), 1,N6-ethenodeoxyadenosine (by 37.5%), 8-oxo-guanine (by 36.2%), formamidopyrimidine (fapy)-DNA glycosylase (by 56.2%) and human alkyl adenine DNA glycosylase (by 40.2%) in the ileal mucosa, but it did not compromise the blood mitochondrial oxygen consumption rate (-2.67 OD/min on average). These findings indicate a potential link between gut mucosa condition and histopathological changes in superficial pectoral muscle under induced inflammation and show the ameliorative effect of CBD and nano-Se in this cross-talk due to their protection from mucosal DNA damage.
Collapse
|
9
|
Potential Role of Mitochondria as Modulators of Blood Platelet Activation and Reactivity in Diabetes and Effect of Metformin on Blood Platelet Bioenergetics and Platelet Activation. Int J Mol Sci 2022; 23:ijms23073666. [PMID: 35409027 PMCID: PMC8998700 DOI: 10.3390/ijms23073666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/27/2022] Open
Abstract
Blood platelet dysfunctions are strongly involved in the development of the micro- and macrovascular complications in diabetes mellitus (DM). However, the molecular causes of abnormal platelet activation in DM remain unclear. Experimental data suggests that platelet mitochondria can regulate the prothrombotic phenotype of platelets, and changes in these organelles may influence platelet activation and modify platelet responses to stimulation. The present study evaluates the impact of DM on mitochondrial respiratory parameters and blood platelet activation/reactivity in a rat model of experimental diabetes following 1, 2.5 and 5 months of streptozotocin (STZ)-induced diabetes. Moreover, a mild inhibition of the mitochondrial respiratory chain with the use of metformin under in vitro and in vivo conditions was tested as a method to reduce platelet activation and reactivity. The platelets were studied with a combination of flow cytometry and advanced respirometry. Our results indicate that prolonged exposure of blood platelets to high concentrations of glucose, as in diabetes, can result in elevated blood platelet mitochondrial respiration; this may be an effect of cell adaptation to the high availability of energy substrates. However, as these alterations occur later than the changes in platelet activation/reactivity, they may not constitute the major reason for abnormal platelet functioning in DM. Moreover, metformin was not able to inhibit platelet activation and reactivity under in vitro conditions despite causing a decrease in mitochondrial respiration. This indicates that the beneficial effect of metformin on the coagulation system observed in vivo can be related to other mechanisms than via the inhibition of platelet activation.
Collapse
|
10
|
Toward the Decipherment of Molecular Interactions in the Diabetic Brain. Biomedicines 2022; 10:biomedicines10010115. [PMID: 35052794 PMCID: PMC8773210 DOI: 10.3390/biomedicines10010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) has been associated with cognitive complications in the brain resulting from acute and chronic metabolic disturbances happening peripherally and centrally. Numerous studies have reported on the morphological, electrophysiological, biochemical, and cognitive changes in the brains of diabetic individuals. The detailed pathophysiological mechanisms implicated in the development of the diabetic cognitive phenotype remain unclear due to intricate molecular changes evolving over time and space. This review provides an insight into recent advances in understanding molecular events in the diabetic brain, focusing on cerebral glucose and insulin uptake, insulin action in the brain, and the role of the brain in the regulation of glucose homeostasis. Fully competent mitochondria are essential for energy metabolism and proper brain function; hence, the potential contribution of mitochondria to the DM-induced impairment of the brain is also discussed.
Collapse
|
11
|
Vernerova A, Garcia-Souza LF, Soucek O, Kostal M, Rehacek V, Kujovska Krcmova L, Gnaiger E, Sobotka O. Mitochondrial Respiration of Platelets: Comparison of Isolation Methods. Biomedicines 2021; 9:biomedicines9121859. [PMID: 34944675 PMCID: PMC8698846 DOI: 10.3390/biomedicines9121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple non-aggregatory functions of human platelets (PLT) are widely acknowledged, yet their functional examination is limited mainly due to a lack of standardized isolation and analytic methods. Platelet apheresis (PA) is an established clinical method for PLT isolation aiming at the treatment of bleeding diathesis in severe thrombocytopenia. On the other hand, density gradient centrifugation (DC) is an isolation method applied in research for the analysis of the mitochondrial metabolic profile of oxidative phosphorylation (OXPHOS) in PLT obtained from small samples of human blood. We studied PLT obtained from 29 healthy donors by high-resolution respirometry for comparison of PA and DC isolates. ROUTINE respiration and electron transfer capacity of living PLT isolated by PA were significantly higher than in the DC group, whereas plasma membrane permeabilization resulted in a 57% decrease of succinate oxidation in PA compared to DC. These differences were eliminated after washing the PA platelets with phosphate buffer containing 10 mmol·L−1 ethylene glycol-bis (2-aminoethyl ether)-N,N,N′,N′-tetra-acetic acid, suggesting that several components, particularly Ca2+ and fuel substrates, were carried over into the respiratory assay from the serum in PA. A simple washing step was sufficient to enable functional mitochondrial analysis in subsamples obtained from PA. The combination of the standard clinical PA isolation procedure with PLT quality control and routine mitochondrial OXPHOS diagnostics meets an acute clinical demand in biomedical research of patients suffering from thrombocytopenia and metabolic diseases.
Collapse
Affiliation(s)
- Andrea Vernerova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic; (A.V.); (L.K.K.)
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | | | - Ondrej Soucek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic;
| | - Milan Kostal
- 4th Department of Internal Medicine—Hematology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic;
| | - Vit Rehacek
- Transfusion Department, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic;
| | - Lenka Kujovska Krcmova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, 500 05 Hradec Kralove, Czech Republic; (A.V.); (L.K.K.)
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Erich Gnaiger
- Oroboros Instruments GmbH, Schoepfstrasse 18, A-6020 Innsbruck, Austria; (L.F.G.-S.); (E.G.)
- D.Swarovski Research Laboratory, Department of General and Transplant Surgery, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, A-6020 Innsbruck, Austria
| | - Ondrej Sobotka
- 3rd Department of Internal Medicine—Metabolic Care and Gerontology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Correspondence: ; Tel.: +420-495832243
| |
Collapse
|
12
|
Siewiera K, Labieniec-Watala M, Wolska N, Kassassir H, Watala C. Sample Preparation as a Critical Aspect of Blood Platelet Mitochondrial Respiration Measurements-The Impact of Platelet Activation on Mitochondrial Respiration. Int J Mol Sci 2021; 22:ijms22179332. [PMID: 34502240 PMCID: PMC8430930 DOI: 10.3390/ijms22179332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
Blood platelets are considered as promising candidates as easily-accessible biomarkers of mitochondrial functioning. However, their high sensitivity to various stimulus types may potentially affect mitochondrial respiration and lead to artefactual outcomes. Therefore, it is crucial to identify the factors associated with platelet preparation that may lead to changes in mitochondrial respiration. A combination of flow cytometry and advanced respirometry was used to examine the effect of blood anticoagulants, the media used to suspend isolated platelets, respiration buffers, storage time and ADP stimulation on platelet activation and platelet mitochondria respiration. Our results clearly show that all the mentioned factors can affect platelet mitochondrial respiration. Briefly, (i) the use of EDTA as anticoagulant led to a significant increase in the dissipative component of respiration (LEAK), (ii) the use of plasma for the suspension of isolated platelets with MiR05 as a respiration buffer allows high electron transfer capacity and low platelet activation, and (iii) ADP stimulation increases physiological coupling respiration (ROUTINE). Significant associations were observed between platelet activation markers and mitochondrial respiration at different preparation steps; however, the fact that these relationships were not always apparent suggests that the method of platelet preparation may have a greater impact on mitochondrial respiration than the platelet activation itself.
Collapse
Affiliation(s)
- Karolina Siewiera
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (N.W.); (H.K.); (C.W.)
- Correspondence: ; Tel.: +48-42-2725720; Fax: +48-42-2725730
| | | | - Nina Wolska
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (N.W.); (H.K.); (C.W.)
| | - Hassan Kassassir
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (N.W.); (H.K.); (C.W.)
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (N.W.); (H.K.); (C.W.)
| |
Collapse
|
13
|
Jiang X, Wu D, Jiang Z, Ling W, Qian G. Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4665632. [PMID: 34285763 PMCID: PMC8275446 DOI: 10.1155/2021/4665632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A major shortcoming of postischemic therapy for myocardial infarction is the no-reflow phenomenon due to impaired cardiac microvascular function including microcirculatory barrier function, loss of endothelial activity, local inflammatory cell accumulation, and increased oxidative stress. Consequently, inadequate reperfusion of the microcirculation causes secondary ischemia, aggravating the myocardial reperfusion injury. ATP-sensitive potassium ion (KATP) channels regulate the coronary blood flow and protect cardiomyocytes from ischemia-reperfusion injury. Studies in animal models of myocardial ischemia-reperfusion have illustrated that the opening of mitochondrial KATP (mito-KATP) channels alleviates endothelial dysfunction and reduces myocardial necrosis. By contrast, blocking mito-KATP channels aggravates microvascular necrosis and no-reflow phenomenon following ischemia-reperfusion injury. Nicorandil, as an antianginal drug, has been used for ischemic preconditioning (IPC) due to its mito-KATP channel-opening effect, thereby limiting infarct size and subsequent severe ischemic insult. In this review, we analyze the protective actions of nicorandil against microcirculation reperfusion injury with a focus on improving mitochondrial integrity. In addition, we discuss the function of mitochondria in the pathogenesis of myocardial ischemia.
Collapse
Affiliation(s)
- Xiaosi Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zichao Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiwei Ling
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Hu LL, Zou K, Chen Y, Wu LJ, Cao J, Xiong XY, Wang L, Cheng XS, Xiao QZ, Yang RQ. Functional role and molecular mechanisms underlying prohibitin 2 in platelet mitophagy and activation. Mol Med Rep 2021; 23:384. [PMID: 33760146 PMCID: PMC7986013 DOI: 10.3892/mmr.2021.12023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Platelet mitophagy is a major pathway involved in the clearance of injured mitochondria during hemostasis and thrombosis. Prohibitin 2 (PHB2) has recently emerged as an inner mitochondrial membrane receptor involved in mitophagy. However, the mechanisms underlying PHB2-mediated platelet mitophagy and activation are not completely understood. PHB2 is a highly conserved inner mitochondrial membrane protein that regulates mitochondrial assembly and function due to its unique localization on the mitochondrial membrane. The present study aimed to investigate the role and mechanism underlying PHB2 in platelet mitophagy and activation. Phorbol-12-myristate-13-acetate (PMA) was used to induce MEG-01 cells maturation and differentiate into platelets following PHB2 knockdown. Cell Counting Kit-8 assays were performed to examine platelet viability. Flow cytometry was performed to assess platelet mitochondrial membrane potential. RT-qPCR and western blotting were conducted to measure mRNA and protein expression levels, respectively. Subsequently, platelets were exposed to CCCP and the role of PHB2 was assessed. The results of the present study identified a crucial role for PHB2 in platelet mitophagy and activation, suggesting that PHB2-mediated regulation of mitophagy may serve as a novel strategy for downregulating the expression of platelet activation genes. Although further research into mitophagy is required, the present study suggested that PHB2 may serve as a novel therapeutic target for thrombosis-related diseases due to its unique localization on the mitochondrial membrane.
Collapse
Affiliation(s)
- Long-Long Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Kai Zou
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Juan Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jie Cao
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Ying Xiong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Wang
- Medicine Lab, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Shu Cheng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing-Zhong Xiao
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ren-Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Fuentes E, Araya-Maturana R, Urra FA. Regulation of mitochondrial function as a promising target in platelet activation-related diseases. Free Radic Biol Med 2019; 136:172-182. [PMID: 30625393 DOI: 10.1016/j.freeradbiomed.2019.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Platelets are anucleated cell elements produced by fragmentation of the cytoplasm of megakaryocytes and have a unique metabolic phenotype compared with circulating leukocytes, exhibiting a high coupling efficiency to mitochondrial adenosine triphosphate production with reduced respiratory reserve capacity. Platelet mitochondria are well suited for ex vivo analysis of different diseases. Even some diseases induce mitochondrial changes in platelets without reflecting them in other organs. During platelet activation, an integrated participation of glycolysis and oxidative phosphorylation is mediated by oxidative stress production-dependent signaling. The platelet activation-dependent procoagulant activity mediated by collagen, thrombin and hyperglycemia induce mitochondrial dysfunction to promote thrombosis in oxidative stress-associated pathological conditions. Interestingly, some compounds exhibit a protective action on platelet mitochondrial dysfunction through control of mitochondrial oxidative stress production or inhibition of respiratory complexes. They can be grouped in a) Natural source-derived compounds (e.g. Xanthohumol, Salvianoloc acid A and Sila-amide derivatives of NAC), b) TPP+-linked small molecules (e.g. mitoTEMPO and mitoQuinone) and c) FDA-approved drugs (e.g. metformin and statins), illustrating the wide range of molecular structures capable of effectively interacting with platelet mitochondria. The present review article aims to discuss the mechanisms of mitochondrial dysfunction and their association with platelet activation-related diseases.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
16
|
Petrus AT, Lighezan DL, Danila MD, Duicu OM, Sturza A, Muntean DM, Ionita I. Assessment of platelet respiration as emerging biomarker of disease. Physiol Res 2019; 68:347-363. [PMID: 30904011 DOI: 10.33549/physiolres.934032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is currently acknowledged as a central pathomechanism of most common diseases of the 21(st) century. Recently, the assessment of the bioenergetic profile of human peripheral blood cells has emerged as a novel research field with potential applications in the development of disease biomarkers. In particular, platelets have been successfully used for the ex vivo analysis of mitochondrial respiratory function in several acute and chronic pathologies. An increasing number of studies support the idea that evaluation of the bioenergetic function in circulating platelets may represent the peripheral signature of mitochondrial dysfunction in metabolically active tissues (brain, heart, liver, skeletal muscle). Accordingly, impairment of mitochondrial respiration in peripheral platelets might have potential clinical applicability as a diagnostic and prognostic tool as well as a biomarker in treatment monitoring. The aim of this minireview is to summarize current information in the field of platelet mitochondrial dysfunction in both acute and chronic diseases.
Collapse
Affiliation(s)
- A T Petrus
- Department of Anatomy, Physiology and Pathophysiology, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania and Department of Functional Sciences - Pathophysiology, "Victor Babes" University of Medicine and Pharmacy of Timisoara, Timisoara, Romania.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ost M, Doerrier C, Gama-Perez P, Moreno-Gomez S. Analysis of mitochondrial respiratory function in tissue biopsies and blood cells. Curr Opin Clin Nutr Metab Care 2018; 21:336-342. [PMID: 29939971 DOI: 10.1097/mco.0000000000000486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The review provides an overview on latest methodological strategies to assess mitochondrial respiratory function in tissue biopsies or blood cells. In addition, it summarizes the recent literature related to this topic. RECENT FINDINGS Today, the study of mitochondrial function in key metabolic active tissues has been become more relevant, with increasing focus in clinical applications. In addition, assessment of mitochondrial function in blood cells by respirometry might be a sensitive biomarker of disease progression. High-Resolution Respirometry provides a modern tool to study mitochondrial respiratory physiology which allows direct measurement of cellular metabolic function during health and disease. Moreover, standard operating procedures are required regarding instrumental settings, sample collection and preparation, protocol design and respirometric data analysis of mitochondrial respiratory function in tissue biopsies (such as skeletal muscle, liver and adipose tissue), as well as isolated blood cells. SUMMARY Mitochondrial function is a key factor in many metabolic diseases. Although various analytical approaches are available, certain well-established protocols for isolated mitochondria are limited for the analysis of mitochondrial function in tissue biopsies or blood cells. Thus, cautious considerations in selecting appropriate protocols and analytical endpoints are crucial for the interpretation of the gained data and to draw robust conclusions.
Collapse
Affiliation(s)
- Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | - Pau Gama-Perez
- Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
| | - Sonia Moreno-Gomez
- Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Karimova A, Hacioğlu Y, Bahtiyar N, Niyazoğlu M, Akbaş F, Yilmaz E, Ulutin T, Onaran I. Increased mitochondrial common deletion in platelets from patients with type 2 diabetes is not associated with abnormal platelet activity or mitochondrial function. Mol Med Rep 2018; 18:3529-3536. [PMID: 30066943 DOI: 10.3892/mmr.2018.9340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/07/2018] [Indexed: 11/05/2022] Open
Abstract
The present study examined the presence and frequency of the 4,977‑base pair mitochondrial (mt)DNA (mtDNA4977) deletion in blood platelets, and whether increased mtDNA4977 deletion was associated with abnormal mitochondrial and platelet function in type 2 diabetes mellitus. A total of 66 patients with type 2 diabetes mellitus and 23 healthy subjects were included in the present study. Patients were divided into three subgroups according to glycemic control, and the presence or absence of chronic diabetic complications: i) Good glycemic control [glycated hemoglobin (HbA1c) <7] without complications; ii) poor glycemic control (HbA1c ≥7) without complications; and iii) poor glycemic control (HbA1c ≥7) with complications. mtDNA4977 deletion, mtDNA copy number, adenine nucleotides, mitochondrial membrane potential and P‑selectin expression levels were analyzed in platelets. Although the frequency of mtDNA4977 deletion in platelets of the patient (96.9%) and control groups (95.6%) was extremely similar, the deletion level significantly increased in all the diabetic groups, compared with the healthy control group. However, the data from the present study revealed that an increased deletion frequency in platelets was not associated with disease severity, although there was clear interindividual variability. Furthermore, all other parameters were not significantly different among the groups, and there were no correlations between mtDNA4977 deletion frequency and all other studied parameters for any of the case groups. The results indicated that the mtDNA4977 deletion occurred in platelets, and increased deletion in patients with type 2 diabetes did not have a marked influence on mitochondrial and/or platelet dysfunction, when compared with the non‑diabetic subjects. Further research is required to elucidate the sources of inter‑individual variability observed in certain parameters.
Collapse
Affiliation(s)
- Ayla Karimova
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Yalçin Hacioğlu
- Department of Family Medicine, Istanbul Training and Research Hospital, 34098 Istanbul, Turkey
| | - Nurten Bahtiyar
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Mutlu Niyazoğlu
- Department of Endocrinology, Istanbul Training and Research Hospital, 34098 Istanbul, Turkey
| | - Fahri Akbaş
- Department of Medical Biology, Faculty of Medicine at Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Erkan Yilmaz
- Tissue Typing Laboratory, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Ilhan Onaran
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| |
Collapse
|
19
|
Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. J Pineal Res 2017; 63. [PMID: 28749565 DOI: 10.1111/jpi.12438] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022]
Abstract
Platelet activation is a major (patho-) physiological mechanism that underlies ischemia/reperfusion (I/R) injury. In this study, we explored the molecular signals for platelet hyperactivity and investigated the beneficial effects of melatonin on platelet reactivity in response to I/R injury. After reperfusion, peroxisome proliferator-activated receptor γ (PPARγ) was progressively downregulated in patients with acute myocardial infarction undergoing coronary artery bypass grafting (CABG) surgery and in mice with I/R injury model. Loss of PPARγ was closely associated with FUN14 domain containing 1 (FUNDC1) dephosphorylation and mitophagy activation, leading to increased mitochondrial electron transport chain complex (ETC.) activity, enhanced mitochondrial respiratory function, and elevated ATP production. The improved mitochondrial function strongly contributed to platelet aggregation, spreading, expression of P-selectin, and final formation of micro-thromboses, eventually resulting in myocardial dysfunction and microvascular structural destruction. However, melatonin powerfully suppressed platelet activation via restoration of the PPARγ content in platelets, which subsequently blocked FUNDC1-required mitophagy, mitochondrial energy production, platelet hyperactivity, and cardiac I/R injury. In contrast, genetic ablation of PPARγ in platelet abolished the beneficial effects of melatonin on mitophagy, mitochondrial ATP supply, and platelet activation. Our results lay the foundation for the molecular mechanism of platelet activation in response to I/R injury and highlight that the manipulation of the PPARγ/FUNDC1/mitophagy pathway by melatonin could be a novel strategy for cardioprotection in the setting of cardiac I/R injury.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Dandan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Tianwen Han
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Przygodzki T, Talar M, Kassassir H, Mateuszuk L, Musial J, Watala C. Enhanced adhesion of blood platelets to intact endothelium of mesenteric vascular bed in mice with streptozotocin-induced diabetes is mediated by an up-regulated endothelial surface deposition of VWF - In vivo study. Platelets 2017; 29:476-485. [PMID: 28745543 DOI: 10.1080/09537104.2017.1332365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Numerous in vitro experiments have confirmed that a dysfunctional endothelium is characterized by, inter alia, a higher affinity for binding of platelets and leukocytes. However, there is still no direct evidence for greater interaction between platelets and intact endothelium in in vivo animal models of diabetes. Therefore, the present study examines the pro-adhesive properties of endothelium change in vivo as an effect of streptozotocin (STZ)-induced diabetes and the role of two key platelet receptors: GPIb-IX-V and GPIIb/IIIa. Mice of C57BL strain with streptozotocin-induced diabetes were used in the study. Flow cytometry was used to assess basal activation and reactivity of platelets. Adhesion of platelets to the vascular wall was visualized with the use of intravital microscopy in mesentery. The contribution of GPIIb/IIIa and GPIb-IX-V was evaluated by the injection of Fab fragments of respective antibodies. The integrity of the endothelium and vWf expression were evaluated histochemically. Basal activation and reactivity of platelets in streptozotocin-diabetic mice were elevated. Blood platelets adhered more often to the vascular wall of diabetic mice than nondiabetic animals: 11.9 (6.4; 32.8) plt/min/mm2 (median [IQR]) vs 2.7 (1.3; 6.4) plt/min/mm2. The injection of anti-GPIbα antibodies decreased the number of adhering platelets from 89.5 (34.0; 113.1) plt/min/mm2 (median [IQR]) in mice treated with isotype antibodies to 3.1 (1.7; 5.6) plt/min/mm2 in mice treated with blocking antibodies. The effect of GPIIb/IIIa blockage was not significant. Immunohistochemistry revealed a higher expression of vWF in the endothelium of STZ mice, but no substantial changes in endothelial morphology were detected. To conclude, the study shows that the platelets interact more frequently with the mesenteric vascular bed in mice with 1-month STZ-induced diabetes than in healthy mice. These interactions are mediated via platelet GPIb-IX-V and are driven by increased expression of vWF in endothelial cells.
Collapse
Affiliation(s)
- Tomasz Przygodzki
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland
| | - Marcin Talar
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland
| | - Hassan Kassassir
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland
| | - Lukasz Mateuszuk
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University , Krakow , Poland
| | - Jacek Musial
- c Synevo Central Laboratory , Department of Pathology , Lodz , Poland
| | - Cezary Watala
- a Department of Haemostasis and Haemostatic Disorders , Medical University of Lodz , Lodz , Poland
| |
Collapse
|