1
|
Vithalkar MP, Sandra KS, Bharath HB, Krishnaprasad B, Fayaz SM, Sathyanarayana B, Nayak Y. Network Pharmacology-driven therapeutic interventions for Interstitial Lung Diseases using Traditional medicines: A Narrative Review. Int Immunopharmacol 2025; 147:113979. [PMID: 39746273 DOI: 10.1016/j.intimp.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
This review explores the progressive domain of network pharmacology and its potential to revolutionize therapeutic approaches for Interstitial Lung Diseases (ILDs), a collective term encompassing Interstitial Pneumonia, Pneumoconiosis, Connective Tissue Disease-related ILDs, and Sarcoidosis. The exploration focuses on the profound legacy of traditional medicines, particularly Ayurveda and Traditional Chinese Medicines (TCM), and their largely unexplored capacity in ILD treatment. These ancient healing systems, characterized by their holistic methodologies and multifaceted treatment modalities, offer a promising foundation for discovering innovative therapeutic strategies. Moreover, the review underscores the amalgamation of artificial intelligence (AI) and machine learning (ML) methodologies with bioinformatics, creating a computational synergy capable of deciphering the intricate biological networks associated with ILDs. Network pharmacology has tailored the hypothesis from the conventional "one target, one drug" towards a "network target, multi-component therapeutics" approach. The fusion of traditional literature and computational technology can unveil novel drugs, targets, and pathways, augmenting effective therapies and diminishing adverse effects related to current medications. In conclusion, this review provides a comprehensive exposition of how Network Pharmacology tools can leverage the insights of Ayurveda and TCM to craft efficacious therapeutic solutions for ILDs. It sets the stage for future investigations in this captivating interdisciplinary domain, validating the use of traditional medicines worldwide.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - B Krishnaprasad
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - B Sathyanarayana
- Muniyal Institute of Ayurveda Medical Sciences, Manipal, Karnataka 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
Jiang Y, Cao J, Li R, Yu J, Peng Y, Huang Q, Zuo W, Chen J. Tetrahydropalmatine ameliorates peripheral nerve regeneration by enhancing macrophage anti-inflammatory response. Int Immunopharmacol 2025; 147:114000. [PMID: 39765002 DOI: 10.1016/j.intimp.2024.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Peripheral nerve injury (PNI) is a common clinical problem that can result in partial or complete loss of sensory, motor, and autonomic functions. Tetrahydropalmatine (THP), a Corydalis yanhusuo-derived phytochemical alkaloid, possesses hypnotic, soothing, analgesic, and other effects, but little is known about the effect of THP on moderating peripheral nerve regeneration and its possible underlying mechanism of action. PURPOSE In this study, we aim to elucidate the protective function of THP on PNI and further reveal the underlying pharmacological mechanisms. METHODS PNI rats were in suit injection of THP solution at doses of 40 mg/kg for consecutive 3, 7, or 28 days, followed by harvesting the sciatic nerve tissues. The protective effect of THP on PNI was evaluated by electrophysiological test, transmission electron microscopy, immunofluorescence (IF), and western blotting (WB). Macrophage polarization, the expression of inflammatory-related genes and cytokines, and its upstream signaling pathways were detected by IF, WB, enzyme-linked immunosorbent assay (ELISA), mRNA-seq, and WB. In vitro, the Raw 264.7 cells were treated with lipopolysaccharide containing with/without THP. The degree of inflammatory activation and its potential pharmacological mechanism were measured by ELISA, qRT-PCR, IF staining, flow cytometry, and WB. Additionally, a pharmacological agonist or inhibitor was added to the cell medium to further identify the role of THP's potential pharmacological mechanism in regulating inflammatory response via IF and ELISA technology. RESULTS Using the sciatic nerve crush model, we found that THP significantly enhanced the rate of axonal growth and functional recovery, and altered macrophage subtype transformation from the M1/M0 phenotype into the M2 phenotype, inducing the secretion of large amounts of anti-inflammatory factors. Moreover, THP significantly increased the phosphorylation level of PI3K, AKT, GSK3β, and IκBa, and decreased the expression of TLR4 protein and NF-κB phosphorylation. Similarly, in vitro, THP also facilitated Raw 264.7 cell polarization to the M2 subtype under the condition of LPS stimulation. Meanwhile, the change of PI3K/AKT/GSK3β and TLR4/NF-κB signaling-related proteins in vitro was consistent with the results in vivo. Additionally, the THP-medicated anti-inflammatory effect on Raw 264.7 cells was partly eliminated when pharmacological intervention of these two signaling pathways. CONCLUSIONS THP has anti-inflammatory effects on facilitating M2-subtype macrophage polarization, which produces abundant anti-inflammatory cytokines to ameliorate peripheral nerve regeneration. Moreover, the potential mechanism of THP action may be intimately associated with activating the PI3K/AKT/GSK3β axis and inhibiting the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China
| | - Jianye Cao
- Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional KeyTechnology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Jia Yu
- Hangzhou Institute for Food and Drug Control, China
| | - Yan Peng
- Hangzhou Institute for Food and Drug Control, China
| | - Qiong Huang
- Xiangshan Maternal and Child Health Care Family Planning Service Center, China
| | - Wei Zuo
- Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China.
| | - Junyue Chen
- Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, P.R. China.
| |
Collapse
|
3
|
Chen S, Tian CB, Bai LY, He XC, Lu QY, Zhao YL, Luo XD. Thrombosis inhibited by Corydalis decumbens through regulating PI3K-Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118177. [PMID: 38604510 DOI: 10.1016/j.jep.2024.118177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis decumbens (Thunb.) Pers. was used as stasis-eliminating medicine traditionally to treat cardiovascular disease potentially attributed to its antithrombotic effect, but lack of pharmacological research on it. AIM OF THE STUDY To investigate the antithrombotic effect of C. decumbens and its preliminary mechanism. MATERIALS AND METHODS A carrageenan-induced mouse thrombus model and adenosine diphosphate stimulated platelet aggregation of rabbits were used to confirm the inhibitory effect of C. decumbens extract and compounds on thrombosis in vivo. Then, H2O2-induced human umbilical vein endothelial cells (HUVECs) injury model was further adopted to verify the effects of bioactive compounds in vitro. Moreover, in silico network pharmacology analyses and molecular docking were performed to predict the underlying mechanisms, targets, and pathways, and which were further confirmed through western blotting assay. RESULTS The administration of total extract (TE), total alkaloids (TA) and tetrahydropalmatine (TET) resulted in a significant reduction in black tail thrombus and congestion, along with a decreasing in platelet aggregation of rabbits. A superior antithrombotic effect indicated the bioactive fraction, and then the isolated bioactive compounds, TET and protopine (PRO) increased cell survival, and decreased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release in H2O2-induced HUVECs injury model. Moreover, the two alkaloids targeted 33 major proteins and influenced 153 pathways in network pharmacology prediction. Among these, HSP90AA1, COX-2, NF-κB/p65, MMP1 and HIF-1α were the key proteins and PI3K-Akt emerged as the major signaling pathway. Further western blotting results supported that five key proteins were downregulated by the two bioactive compounds in H2O2-stimulated HUVECs model. CONCLUSION C. decumbens exerted protective effect on thrombosis through inhibiting PI3K-Akt pathway and related key proteins, which supported the traditional use and presented potential antithrombotic alkaloids for further investigation.
Collapse
Affiliation(s)
- Song Chen
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Cai-Bo Tian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Li-Yu Bai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xing-Chao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Qing-Yu Lu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
4
|
Nie Q, Wang C, Xu H, Mittal P, Naeem A, Zhou P, Li H, Zhang Y, Guo T, Sun L, Zhang J. Highly efficient pulmonary delivery of levo-tetrahydropalmatine using γ-cyclodextrin metal-organic framework as a drug delivery platform. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Wen H, Lu D, Chen H, Zhu Y, Xie Q, Zhang Z, Wu Z. Tetrahydropalmatine induces the polarization of M1 macrophages to M2 to relieve limb ischemia-reperfusion-induced lung injury via inhibiting the TLR4/NF-κB/NLRP3 signaling pathway. Drug Dev Res 2022; 83:1362-1372. [PMID: 35976115 DOI: 10.1002/ddr.21965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
Tetrahydropalmatine (THP) is the main component of the Chinese medicine Corydalis yanhusuo, which has been reported to alleviate limb ischemia-reperfusion-induced acute lung injury (LIR-ALI). This study aimed to investigate the mechanism underlying the effect of THP on relieving LIR-ALI. LIR-ALI model was established in rats with the presence or absence of THP pretreatment. Then, BEAS-2B cells and THP-1 macrophages were cocultured with rat serum from the Sham group and the Model group in the presence or absence of THP pretreatment. Subsequently, lung/body weight and lung wet/dry ratio of rats were calculated. Histological changes of lung tissues were observed by hematoxylin-eosin staining. Expression of CD86 and CD163 in lung tissues of rats was assessed by quantitative reverse transcription polymerase chain reaction, immunohistochemistry staining, and flow cytometry analysis. Levels of inflammatory cytokines were measured by enzyme linked immunosorbent assay. The expression of proteins related to toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB)/NLRP3 signaling was detected by western blot analysis. Results revealed that THP significantly relieved LIR-ALI in rats. Moreover, THP also reduced CD86 expression but elevated CD163 expression in lung tissues of rats with LIR-ALI. Furthermore, THP inhibited inflammation in serum and bronchoalveolar lavage fluid of rats with LIR-ALI and inactivated the TLR4/NF-κB/NLRP3 signaling in vivo. Additionally, coculture of serum from rats in the Model group also reduced viability, promoted inflammation, inactivated TLR4/NF-κB/NLRP3 expression in BEAS-2B cells and inhibited macrophage polarization, while these effects were all reversed by THP treatment. Collectively, THP could induce the polarization of M1 macrophage to M2 to suppress inflammation via inhibiting TLR4/NF-κB/NLRP3 signaling, thereby attenuating LIR-ALI.
Collapse
Affiliation(s)
- Heng Wen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongshi Lu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hanjian Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yeke Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhouyang Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Du Q, Meng X, Wang S. A Comprehensive Review on the Chemical Properties, Plant Sources, Pharmacological Activities, Pharmacokinetic and Toxicological Characteristics of Tetrahydropalmatine. Front Pharmacol 2022; 13:890078. [PMID: 35559252 PMCID: PMC9086320 DOI: 10.3389/fphar.2022.890078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tetrahydropalmatine (THP), a tetrahydroproberine isoquinoline alkaloid, is widely present in some botanical drugs, such as Stephania epigaea H.S. Lo (Menispermaceae; Radix stephaniae epigaeae), Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su and C.Y. Wu (Papaveraceae; Corydalis rhizoma), and Phellodendron chinense C.K.Schneid (Berberidaceae; Phellodendri chinensis cortex). THP has attracted considerable attention because of its diverse pharmacological activities. In this review, the chemical properties, plant sources, pharmacological activities, pharmacokinetic and toxicological characteristics of THP were systematically summarized for the first time. The results indicated that THP mainly existed in Papaveraceae and Menispermaceae families. Its pharmacological activities include anti-addiction, anti-inflammatory, analgesic, neuroprotective, and antitumor effects. Pharmacokinetic studies showed that THP was inadequately absorbed in the intestine and had rapid clearance and low bioavailability in vivo, as well as self-microemulsifying drug delivery systems, which could increase the absorption level and absorption rate of THP and improve its bioavailability. In addition, THP may have potential cardiac and neurological toxicity, but toxicity studies of THP are limited, especially its long-duration and acute toxicity tests. In summary, THP, as a natural alkaloid, has application prospects and potential development value, which is promising to be a novel drug for the treatment of pain, inflammation, and other related diseases. Further research on its potential target, molecular mechanism, toxicity, and oral utilization should need to be strengthened in the future.
Collapse
Affiliation(s)
- Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Dudala SS, Venkateswarulu TC, Kancharla SC, Kodali VP, Babu DJ. A review on importance of bioactive compounds of medicinal plants in treating idiopathic pulmonary fibrosis (special emphasis on isoquinoline alkaloids). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00304-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown cause which disrupts the normal lung architecture and functions by deregulating immune responses and ultimately leads to the death of the individual. A number of factors can lead to its development and currently there is no cure for this disease.
Main text
There are synthetic drugs available to relieve the symptoms and decelerate its development by targeting pathways involved in the development of IPF, but there had also been various side effects detected by their usage. It is known since decades that medicinal plants and their compounds have been used all over the world in natural medicines to cure various diseases. This review article is focused on the effects of various natural bioactive compounds of 26 plant extracts that show prophylactic and therapeutic properties against the disease and so can be used in treating IPF replacing synthetic drugs and reducing the side effects.
Short conclusion
This review includes different mechanisms that cause pulmonary fibrosis along with compounds that can induce fibrosis, drugs used for the treatment of pulmonary fibrosis, diagnosis, the biochemical tests used for the experimental study to determine the pathogenesis of disease with a special note on Isoquinoline alkaloids and their role in reducing various factors leading to IPF thus providing promising therapeutic approach.
Collapse
|
8
|
Tetrahydropalmatine Alleviates Hyperlipidemia by Regulating Lipid Peroxidation, Endoplasmic Reticulum Stress, and Inflammasome Activation by Inhibiting the TLR4-NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6614985. [PMID: 34760017 PMCID: PMC8575622 DOI: 10.1155/2021/6614985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/04/2021] [Indexed: 01/11/2023]
Abstract
Hyperlipidemia (HLP) is a lipid metabolism disorder that can induce a series of cardiovascular and cerebrovascular diseases, such as atherosclerosis, myocardial infarction, coronary heart disease, and stroke, which seriously threaten human health. Tetrahydropalmatine (THP) is a component of the plant Rhizoma corydalis and has been shown to exert hepatoprotective and anti-inflammatory effects in HLP. However, whether THP regulates lipid peroxidation in hyperlipidemia, endoplasmic reticulum (ER) stress and inflammasome activation and even the underlying protective mechanism against HLP remain unclear. An animal model of HLP was established by feeding a high-fat diet to golden hamsters. Our results showed that THP reduced the body weight and adipose index; decreased the serum content of ALT, AST, TC, TG, and LDL-C; decreased the free fatty acid hepatic lipid content (liver index, TC, TG, and free fatty acid); inhibited oxidative stress and lipid peroxidation; extenuated hepatic steatosis; and inhibited ER stress and inflammasome activation in high-fat diet-fed golden hamsters. In addition, for the first time, the potential mechanism by which THP protects against HLP through the TLR4-NF-κB signaling pathway was demonstrated. In conclusion, these data indicate that THP attenuates HLP through a variety of effects, including antioxidative stress, anti-ER stress, and anti-inflammatory effects. In addition, THP also inhibited the TLR4-NF-κB signaling pathway in golden hamsters.
Collapse
|
9
|
Liu L, Liu M, Zhao W, Zhao YL, Wang Y. Levo-tetrahydropalmatine: A new potential medication for methamphetamine addiction and neurotoxicity. Exp Neurol 2021; 344:113809. [PMID: 34256045 DOI: 10.1016/j.expneurol.2021.113809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Levo-tetrahydropalmatine (l-THP) is mainly derived from the dried tuber of the Papaveraceae plant Corydalis, also called Corydalis B, which is a drug with analgesic, hypnotic, sedative and other effects. Methamphetamine (METH) belongs to the central nervous stimulant and is a highly addictive drug. It is an urgent problem to study the mechanism of methamphetamine neurotoxicity and to search for the therapeutic targets of the METH addiction. This review is aimed to discuss the pharmacological mechanism and the protective effects of l-THP on METH-induced neurotoxicity, and to explore the therapeutic prospects of l-THP for METH addiction to provide an innovative application of l-THP in clinic. It was found that exposure to METH leads to the compulsive drug-seeking and drug-taking behavior, which is ultimately resulted in METH addiction and neurotoxicity. L-THP has the inhibitory effects on the incidence, maintenance and relapse of METH addiction. L-THP can effectively enhance the plasticity of nerve cells and improve the function of nerve cells where brain-derived neurotrophic factor (BDNF) and its pathways play a protective role. Therefore, l-THP has the potential to become an important therapeutic drug for METH addiction and neurotoxicity.
Collapse
Affiliation(s)
- Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, Liaoning 110854, PR China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
10
|
Zou W, Gong L, Zhou F, Long Y, Li Z, Xiao Z, Ouyang B, Liu M. Anti-inflammatory effect of traditional Chinese medicine preparation Penyanling on pelvic inflammatory disease. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113405. [PMID: 32979412 DOI: 10.1016/j.jep.2020.113405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penyanling is made up of Smilacis Glabrae Rhizoma (SG, from Smilar glabra Roxb.), Angelicae Sinensis Radix (AS, from Angelica sinensis (Oliv.) Diels), Salviae Miltiorrhizae Radix et Rhizoma (SM, from Salvia miltiorrhiza Bunge), Sargentodoxae Caulis (SC, from Sargentodoxa cuneata (Oliv.) Rehd.et Wils.), Linderae Radix (LR, from Lindera aggregata (Sims) Kosterm.), Paeoniae Radix Rubra (PR, from Paeonia lactiflora Pall.), Sparganii Rhizoma (SR, from Sparganium stoloniferum (Graebn.) Buch.-Ham.), Corydalis Rhizoma (CoR, from Corydalis yanhusuo W. T. Wang), Cyperi Rhizoma (CyR, from Cyperus rotundus Linn.), Glycyrrhizae Radix et Rhizoma (GR, from Glycyrrhiza uralensis Fisch.), and Patrinia Scabiosaefolia (PS, from Patrinia scabiosaefolia Fisch. ex Trev.) recorded in Chinese Pharmacopoeia. It has been used on pelvic inflammatory disease (PID) for more than twenty years. AIM OF THE STUDY This study was carried out to illustrate its pharmacological action and clarify its substantial composition. MATERIALS AND METHODS The anti-inflammatory effects of Penyanling were studied on a PID rat model and a lipopolysaccharides (LPS)-stimulated THP-1 cell line. Histological changes and levels of inflammatory factors in the uterine tube of the PID rat were examined. Levels of nuclear factor-kappa B (NF-κB) in the nuclear of THP-1 cells and NF-κB, IκB-α, and FPR2 in the cytoplasm were tested by Western blot analysis. Substances within Penyanling were scanned with liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). The contents of total flavonoids, phenolics, and saponins were quantified. RESULTS The anti-inflammatory effects of Penyanling were observed on PID rats, such as suppressing the infiltrations of lymphocytes and neutrophils in the uterine tube, decreasing the release of interleukin (IL)-1β, IL-6, IL-8, and monocyte chemotactic protein (MCP)-1, and promoting the production of lipoxin A4 (LXA4). On the other hand, Penyanling regulated the activity of NF-κB signal pathway on the LPS-stimulated THP-1 cell line, which suggested the potential mechanism of its anti-inflammatory effect. Besides, it could promote the expression of formyl peptide receptor 2 (FPR2), which suggested its effect on enhancing the resolution of inflammation. Seventy-six substances were identified by their accurate molecular weights, mass fragment patterns, retention times, and standards if available. Most of these substances were flavonoids, phenolics, saponins, and alkaloids. The contents of total flavonoids, phenolics, and saponins within Penyanling were 0.186, 1.371, and 4.321 mg/mL, respectively. CONCLUSION Penyanling showed an anti-inflammatory effect on PID, and its potential mechanism involved suppressing NF-κB signal pathway and promoting the resolution of inflammation. The main substances within it were flavonoids, phenolics, saponins, and alkaloids.
Collapse
Affiliation(s)
- Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Linna Gong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Fenghua Zhou
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yao Long
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Zhen Li
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Zuoqi Xiao
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Bo Ouyang
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, PR China
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
11
|
Yu Q, Cheng P, Wu J, Guo C. PPARγ/NF-κB and TGF-β1/Smad pathway are involved in the anti-fibrotic effects of levo-tetrahydropalmatine on liver fibrosis. J Cell Mol Med 2021; 25:1645-1660. [PMID: 33438347 PMCID: PMC7875896 DOI: 10.1111/jcmm.16267] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a necessary stage in the development of chronic liver diseases to liver cirrhosis. This study aims to investigate the anti‐fibrotic effects of levo‐tetrahydropalmatine (L‐THP) on hepatic fibrosis in mice and cell models and its underlying mechanisms. Two mouse hepatic fibrosis models were generated in male C57 mice by intraperitoneal injection of carbon tetrachloride (CCl4) for 2 months and bile duct ligation (BDL) for 14 days. Levo‐tetrahydropalmatine was administered orally at doses of 20 and 40 mg/kg. An activated LX2 cell model induced by TGF‐β1 was also generated. The results showed that levo‐tetrahydropalmatine alleviated liver fibrosis by inhibiting the formation of extracellular matrix (ECM) and regulating the balance between TIMP1 and MMP2 in the two mice liver fibrosis models and cell model. Levo‐tetrahydropalmatine inhibited activation and autophagy of hepatic stellate cells (HSCs) by modulating PPARγ/NF‐κB and TGF‐β1/Smad pathway in vivo and in vitro. In conclusion, levo‐tetrahydropalmatine attenuated liver fibrosis by inhibiting ECM deposition and HSCs autophagy via modulation of PPARγ/NF‐κB and TGF‐β1/Smad pathway.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Cheng
- Department of Gerontology, Shanghai Minhang District Central Hospital, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Wen H, Zhang H, Wang W, Li Y. Tetrahydropalmatine protects against acute lung injury induced by limb ischemia/reperfusion through restoring PI3K/AKT/mTOR-mediated autophagy in rats. Pulm Pharmacol Ther 2020; 64:101947. [PMID: 32949703 DOI: 10.1016/j.pupt.2020.101947] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Limb ischemia/reperfusion (I/R) is a common clinical process that frequently induces acute lung injury (ALI). Tetrahydropalmatine (THP) is a major bioactive constituent of various traditional Chinese medicine with protective effects on inflammation and oxidation. In this study, we aimed to investigate the possible protective effect of THP on ALI induced by limb I/R. METHODS Rats were used to establish ALI through limb I/R. After administration of three doses of THP, the lung injury was evaluated by hematoxylin-eosin staining, tissue wet/dry weight ratio and ELISA examination of myeloperoxidase (MPO), malondialdehyde (MDA) and Super Oxide Dismutase (SOD). Additionally, PI3K/AKT/mTOR pathway and autophagy markers were determined by Western blot. To confirm the role of autophagy in the effect of THP on ALI, 3-methyladenine (3-MA), THP or THP + rapamycin (RAPA) was given to the model rats, and then evaluated the parameters above mentioned. RESULTS The pulmonary histological lesions and wet/dry were significantly induced after limb I/R. Concurrently, I/R significantly increased MPO and MDA, and decreased SOD in lung tissues. These changes were reversed after THP treatment. Additionally, THP exerted inhibitory effect on the I/R-induced decrease of phosphorylation of PI3K/AKT/mTOR and increase of autophagy activity. The effects by THP on lung injury, PI3K/AKT/mTOR signaling and autophagy were also observed after treatment with 3-MA, an autophagy inhibitor, whereas were blocked by combinational treatment with RAPA, an autophagy inducer. CONCLUSION Our data suggested that THP had significant protection against ALI and this might be achieved by autophagy inhibition through rescuing PI3K/AKT/mTOR activity.
Collapse
Affiliation(s)
- Heng Wen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hu Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Weina Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuebing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Gong L, Luo Z, Tang H, Tan X, Xie L, Lei Y, He C, Ma J, Han S. Integrative, genome-wide association study identifies chemicals associated with common women's malignancies. Genomics 2020; 112:5029-5036. [PMID: 32911025 DOI: 10.1016/j.ygeno.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Breast cancer, cervical cancer, and ovarian cancer are three of the most commonly diagnosed malignancies in women, and more cancer prevention research is urgently needed. METHODS Summary data of a large genome-wide association study of female cancers were derived from the UK biobank. We performed a transcriptome-wide association study and a gene set enrichment analysis to identify correlations between chemical exposure and aberrant expression, repression, or mutation of genes related to cancer using the Comparative Toxicogenomics Database. RESULTS We identified five chemicals (NSC668394, glafenine, methylnitronitrosoguanidine, fenofibrate, and methylparaben) that were associated with the incidence of both breast cancer and cervical cancer. CONCLUSION Using a transcriptome-wide association study and gene set enrichment analysis we identified environmental chemicals that are associated with an increased risk of breast cancer, cervical cancer, and ovarian cancer.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Hanmin Tang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Xinyue Tan
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Lina Xie
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Yutiantian Lei
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Chenchen He
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Jinlu Ma
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China.
| |
Collapse
|
14
|
Gao Y, Li X, Gao J, Zhang Z, Feng Y, Nie J, Zhu W, Zhang S, Cao J. Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose Response 2019; 17:1559325819883479. [PMID: 31700502 PMCID: PMC6823985 DOI: 10.1177/1559325819883479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation-induced lung injury is a major dose-limiting toxicity that occurs due to thoracic radiotherapy. Metabolomics is a powerful quantitative measurement of low-molecular-weight metabolites in response to environmental disturbances. However, the metabolomic profiles of radiation-induced lung injury have not been reported yet. In this study, male Sprague-Dawley rats were subjected to a single dose of 10 or 20 Gy irradiation to the right lung. One week after radiation, the obvious morphological alteration of lung tissues after radiation was observed by hematoxylin and eosin staining through a transmission electron microscope. We then analyzed the metabolites and related pathways of radiation-induced lung injury by gas chromatography-mass spectrometry, and a total of 453 metabolites were identified. Compared to the nonirradiated left lung, 19 metabolites (8 upregulated and 11 downregulated) showed a significant difference in 10 Gy irradiated lung tissues, including mucic acid, methyl-β-d-galactopyranoside, quinoline-4-carboxylic acid, and pyridoxine. There were 31 differential metabolites (16 upregulated and 15 downregulated) between 20 Gy irradiated and nonirradiated lung tissues, including taurine, piperine, 1,2,4-benzenetriol, and lactamide. The Kyoto Encyclopedia of Genes and Genomes-based pathway analysis enriched 32 metabolic pathways between the irradiated and nonirradiated lung tissues, including pyrimidine metabolism, ATP-binding cassette transporters, aminoacyl-tRNA biosynthesis, and β-alanine metabolism. Among the dysregulated metabolites, we found that taurine promoted clonogenic survival and reduced radiation-induced necrosis in human embryonic lung fibroblast (HELF) cells. This study provides evidence indicating that radiation induces metabolic alterations of the lung. These findings significantly advance our understanding of the pathophysiology of radiation-induced lung injury from the perspective of metabolism.
Collapse
Affiliation(s)
- Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Xugang Li
- Anshan Cancer Hospital, Anshan, China
| | | | | | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jihua Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Cai YS, Wang C, Tian C, Sun WT, Chen L, Xiao D, Zhou SY, Qiu G, Yu J, Zhu K, Yang SP. Octahydro-Protoberberine and Protoemetine-Type Alkaloids from the Stems of Alangium salviifolium and Their Cytotoxicity. JOURNAL OF NATURAL PRODUCTS 2019; 82:2645-2652. [PMID: 31513408 DOI: 10.1021/acs.jnatprod.9b00670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two octahydro-protoberberine alkaloids, alangiifoliumines A (1) and B (2), and two new protoemetine derivatives, alangiifoliumines C (3) and D (4), together with 11 known compounds, have been isolated from the stems of Alangium salviifolium. While the structures of these compounds were elucidated by spectroscopic methods, the absolute configurations of the new alkaloids were determined by conformational analysis and time-dependent density functional theory-electronic circular dichroism spectra calculations on selected stereoisomers. Compounds 1 and 2 represent the first 5,8,8a,9,12,12a,13,13a-octahydro-protoberberine derivatives, in which the aromatic ring D was reduced to cyclohexene. All the compounds isolated were evaluated for their cytotoxic activity against three human cancer cell lines: A-549, HeLa, and SKOV-3. Alkaloids 1, 3, and 6-14 exhibited inhibitory effects against all three human cancer cell lines, with half-maximal inhibitory concentration (IC50) values in the range of 3 nM to 9.4 μM.
Collapse
Affiliation(s)
- You-Sheng Cai
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Cong Wang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , Nanning 530006 , People's Republic of China
| | - Congkui Tian
- Wuling Mountain Institute of Natural Medicine , Hubei Minzu University, Key Laboratory of Biological Resources Protection and Utilization of Hubei Province , Enshi 445000 , People's Republic of China
| | - Wen-Ting Sun
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Ling Chen
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Di Xiao
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Si-Yuan Zhou
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Guofu Qiu
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Jianqing Yu
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| | - Kongkai Zhu
- School of Biological Science and Technology , University of Jinan , Jinan 250022 , People's Republic of China
| | - Sheng-Ping Yang
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , People's Republic of China
| |
Collapse
|
16
|
Lierova A, Jelicova M, Nemcova M, Proksova M, Pejchal J, Zarybnicka L, Sinkorova Z. Cytokines and radiation-induced pulmonary injuries. JOURNAL OF RADIATION RESEARCH 2018; 59:709-753. [PMID: 30169853 PMCID: PMC6251431 DOI: 10.1093/jrr/rry067] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/11/2018] [Indexed: 05/20/2023]
Abstract
Radiation therapy is one of the most common treatment strategies for thorax malignancies. One of the considerable limitations of this therapy is its toxicity to normal tissue. The lung is the major dose-limiting organ for radiotherapy. That is because ionizing radiation produces reactive oxygen species that induce lesions, and not only is tumor tissue damaged, but overwhelming inflammatory lung damage can occur in the alveolar epithelium and capillary endothelium. This damage may result in radiation-induced pneumonitis and/or fibrosis. While describing the lung response to irradiation generally, the main focus of this review is on cytokines and their roles and functions within the individual stages. We discuss the relationship between radiation and cytokines and their direct and indirect effects on the formation and development of radiation injuries. Although this topic has been intensively studied and discussed for years, we still do not completely understand the roles of cytokines. Experimental data on cytokine involvement are fragmented across a large number of experimental studies; hence, the need for this review of the current knowledge. Cytokines are considered not only as molecular factors involved in the signaling network in pathological processes, but also for their diagnostic potential. A concentrated effort has been made to identify the significant immune system proteins showing positive correlation between serum levels and tissue damages. Elucidating the correlations between the extent and nature of radiation-induced pulmonary injuries and the levels of one or more key cytokines that initiate and control those damages may improve the efficacy of radiotherapy in cancer treatment and ultimately the well-being of patients.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marcela Jelicova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marketa Nemcova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Magdalena Proksova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lenka Zarybnicka
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Corresponding author. Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic. Tel.: +420 973 253 219.
| |
Collapse
|
17
|
Sun C, Chen Z, Wang H, Ding K. Tetrahydropalmatine Prevents High-Fat Diet-Induced Hyperlipidemia in Golden Hamsters (Mesocricetus Auratus). Med Sci Monit 2018; 24:6564-6572. [PMID: 30226834 PMCID: PMC6157085 DOI: 10.12659/msm.910578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Hyperlipidemia is a major cause of atherosclerotic cardiovascular disease. Tetrahydropalmatine (THP) can exhibit hepatoprotective, anti-arrhythmic, and anti-inflammatory activities. The mechanism of THP on the hyperlipidemia remains unknown; therefore, the present study explored the role of THP in hyperlipidemia. Material/Methods We established an animal model of hyperlipidemia by high-fat diet (HFD) feeding. Blood samples were obtained for determination of serum cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), pro-inflammatory cytokines, and CYP7A1 expression. Histology was performed and inflammation was detected in the liver using hematoxylin-eosin (HE) staining and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA and protein levels of TLR4 and TRAF-6 were determined by quantitative real-time PCR (qPCR) and Western blot, respectively. Results THP suppressed hepatic lipid accumulation and reduced serum levels of TC, TG, LDL-c, and HDL-c in HFD-fed golden hamsters. THP increased cholesterol 7 α-hydroxylase (CYP7A1) expression and prevented inflammation by the limited reduction in interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expressions in serum and liver. THP slightly increased the ratio of the body/liver weight. THP inhibited the mRNA and protein levels of Toll-like receptor 4 (TLR4) and TNF-receptor associated factor-6 (TRAF-6). Conclusions These results suggest that THP attenuates hyperlipidemia by multiple effects, including hepatoprotective and anti-inflammatory effects. Moreover, THP also suppressed the expressions of TLR4 and TRAF-6 in golden hamsters.
Collapse
Affiliation(s)
- Caihua Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Zhiyun Chen
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Hui Wang
- College of Pharmaceutical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Ke Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
18
|
Zhang Y, Sha R, Wang K, Li H, Yan B, Zhou N. Protective effects of tetrahydropalmatine against ketamine-induced learning and memory injury via antioxidative, anti-inflammatory and anti-apoptotic mechanisms in mice. Mol Med Rep 2018; 17:6873-6880. [PMID: 29512789 DOI: 10.3892/mmr.2018.8700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Tetrahydropalmatine exerts numerous pharmacological activities, including analgesic and narcotic effects; anti-arrhythmic, blood pressure lowering and cardioprotective effects; protective effects against cerebral ischemia-reperfusion injury; inhibition of platelet aggregation; prevention of ulcerative diseases and inhibition of gastric acid secretion; antitumor effects; and beneficial effects on the withdrawal symptoms associated with drug addiction. The present study aimed to investigate the protective effects of tetrahydropalmatine against ketamine‑induced learning and memory impairment in mice. The Morris water maze test and open field test were used to analyzed learning and memory impairment in mice. ELISA kits and western blotting were used to analyze oxidative stress, inflammation factors, caspease‑3 and caspase‑9, iNOS, glial fibrillary acidic protein (GFAP), glial cell‑derived neurotrophic factor (GDNF), cytochrome c and phospholipase C (PLC)‑γ1 protein expression. The results demonstrated that tetrahydropalmatine treatment significantly decreased escape latency in the learning phase and increased the number of platform site crossings in ketamine‑induced mice. In addition, tetrahydropalmatine significantly inhibited oxidative stress, inflammation and acetylcholinesterase activity, and decreased acetylcholine levels in ketamine‑induced mice. Tetrahydropalmatine also suppressed iNOS protein expression, weakened caspase‑3 and caspase‑9 activation, inhibited nuclear factor‑κB, glial fibrillary acidic protein, cytochrome c and phospholipase C‑γ1 protein expression, and induced glial cell‑derived neurotrophic factor protein expression in ketamine‑induced mice. Taken together, these results indicated that tetrahydropalmatine may protect against ketamine‑induced learning and memory impairment in mice via antioxidative, anti‑inflammatory and anti‑apoptotic mechanisms. The present study provided an experimental basis for the clinical application of tetrahydropalmatine to reduce the severe side effects associated with ketamine therapy in future studies.
Collapse
Affiliation(s)
- Yonglai Zhang
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Rui Sha
- Department of Anesthesiology, Oncology Ward, Chinese Medicine Hospital in Shandong Province, Jinan, Shandong 250117, P.R. China
| | - Kaiguo Wang
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Hao Li
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Bo Yan
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Naibao Zhou
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
19
|
Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:45-63. [PMID: 28038955 PMCID: PMC7127743 DOI: 10.1016/j.jep.2016.12.042] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a chronic, debilitating and often lethal lung disorder. Despite the molecular mechanisms of PF are gradually clear with numerous researchers' efforts, few effective drugs have been developed to reverse human PF or even halt the chronic progression to respiratory failure. Traditional Chinese medicine (TCM), the main component of the medical practice used for more than 5000 years especially in China, often exerts wider action spectrum than previously attempted options in treating human diseases. Recent data have shown the anti-fibrotic benefits of the active ingredients from TCM in this field, which may represent an attractive source of the drug discovery against PF. AIM OF THE REVIEW This review summarizes the pre-clinical and clinical evidence on the benefits of TCM and their active ingredients, and provides a comprehensive information and reliable basis for the exploration of new treatment strategies of botanical drugs in the therapy of PF. METHODS The literature information was obtained from the scientific databases on ethnobotany and ethno medicines (up to Aug 2016), mainly from the Pubmed, Web of Science and CNKI databases, and was to identify the experimental studies on the anti-fibrotic role of the active agents from TCM and the involved mechanisms. The search keywords for such work included: "lung fibrosis" or "pulmonary fibrosis", and "traditional Chinese medicine", "extract" or "herb". RESULTS A number of studies have shown that the active agents of single herbs and TCM formulas, particularly the flavonoids, glycosides and alkaloids, exhibit potential benefits against PF, the mechanisms of which appear to involve the regulation of inflammation, oxidant stress, and pro-fibrotic signaling pathways, etc. Besides, the processing methods for discovering TCM in treating PF were prospectively discussed. CONCLUSION These research work have shown the therapeutic benefits of TCM in the treatment of PF. However, more continued researches should be undertaken to clarify the unconfirmed chemical composition and regulatory mechanisms, conduct standard clinical trials, and evaluate the possible side effects. The insights provided in present review will be needed for further exploration of botanical drugs in the development of PF therapy.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|