1
|
Han M, Li C, Zhang C, Song C, Xu Q, Liu Q, Guo J, Sun Y. Single-cell transcriptomics reveals the natural product Shi-Bi-Man promotes hair regeneration by activating the FGF pathway in dermal papilla cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154260. [PMID: 35777117 DOI: 10.1016/j.phymed.2022.154260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Finasteride and minoxidil are two commonly used drugs for the treatment of hair loss. However, these two drugs have certain side effects. Thus, the further elucidation of treatments for hair loss, including those using Chinese herbal medicine, remains important clinically. Shi-Bi-Man (SBM) is a hair health supplement that darkens hair and contains ginseng radix, tea polyphenols, polygonum multiflorum, radix angelicae sinensis, aloe, linseed, and green tea extract. PURPOSE This study aimed to find potential effective monomer components to promote hair regeneration from SBM and to explore the mechanism of SBM to promote hair regeneration. METHODS Supplementation with the intragastric administration or smear administration of SBM in artificially shaved C57BL/6 mice, observe its hair growth. UPLC/MS and UPLC/LTQ-Orbitrap-MS detect the main components in SBM and the main monomers contained in the skin after smearing, respectively. A network pharmacology study on the main components of SBM and single-cell RNA sequencing was performed to explore the role of SBM for hair regeneration. RESULTS SBM significantly induced hair growth compared with a control treatment. TSG and EGCG were the main monomers in the skin after SBM smearing. The results of single-cell sequencing revealed that after SBM treatment, the number of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs) increased significantly. Cell interactions and volcano dots show that the interaction of the FGF signaling pathway was significantly enhanced, in which Fgf7 expression was especially upregulated in DPCs. In addition, the Wnt signaling pathway also had a partially enhanced effect on the interactions between various cells in the skin. The network pharmacology study showed that the promotion of the FGF and Wnt pathways by SBM was also enriched in alopecia diseases. CONCLUSION We report that SBM has a potential effect on the promotion of hair growth by mainly activating the FGF signaling pathway. The use of SBM may be a novel therapeutic option for hair loss.
Collapse
Affiliation(s)
- Mingrui Han
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Chengxi Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Liu S, Yang Q, Zhang J, Yang M, Wang Y, Sun T, Ma C, Abd El-Aty AM. Enhanced stability of stilbene-glycoside-loaded nanoparticles coated with carboxymethyl chitosan and chitosan hydrochloride. Food Chem 2022; 372:131343. [PMID: 34656910 DOI: 10.1016/j.foodchem.2021.131343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/12/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Stilbene-glycoside (THSG) is a promising dietary supplement with remarkable biological properties, however, its poor stability and low oral bioavailability hinder its application as an ingredient in functional foods. Herein, stilbene-glycoside-loaded nanoparticles (THSG-NPs) coated with carboxymethyl chitosan (CMC) and chitosan hydrochloride (CHC) using a complex coacervation method were successfully prepared for enhancing the stability of THSG. The optimized preparation parameters were 2.5 mg/mL CMC, 1.0 mg/mL CHC, 1.5 mg/mL THSG and preparation temperature of 25 °C, under which the experimentally designed particles averaged 381.9 nm with encapsulation efficiency (EE) of 68.6%. Solid-state characterization was assessed by Fourier transform infrared spectroscope and Differential scanning calorimetry. THSG-NPs showed significant protective effects against heat and solar radiation and exhibited remarkable pH-dependent and controlled release. This work demonstrated that enhanced stability and delayed release of THSG could be achieved using THSG-NPs, which could contribute to its potential application in the functional foods industry.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Qianyu Yang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Jing Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mengnan Yang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanhui Wang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ting Sun
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
3
|
Wu Y, Chung YY, Chin YT, Lin CY, Kuo PJ, Chen TY, Lin TY, Chiu HC, Huang HM, Jeng JH, Lee SY. Comparison of 2,3,5,4'-tetrahydroxystilbene-2-O-b-D-glucoside-induced proliferation and differentiation of dental pulp stem cells in 2D and 3D culture systems-gene analysis. J Dent Sci 2022; 17:14-29. [PMID: 35028016 PMCID: PMC8740205 DOI: 10.1016/j.jds.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Indexed: 12/05/2022] Open
Abstract
Background/purpose Culture environments play a critical role in stem cell expansion. This study aimed to evaluate the effects of 2,3,5,4′-tetrahydroxystilbene-2-O-b-D-glucoside (THSG) on the proliferation and differentiation of human dental pulp stem cells (DPSCs) in 2-dimensional (2D) and 3-dimensional (3D) culture systems. Materials and methods Human DPSCs were seeded in T25 flasks for 2D cultivation. For the 3D culture system, DPSCs were mixed with microcarriers and cultured in spinner flasks. Cells in both culture systems were treated with THSG, and cell proliferation was determined using a cell counter and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. In THSG-treated DPSCs, the genes associated with proliferation, adipogenesis, neurogenesis, osteogenesis, pluripotency, oncogenesis, and apoptosis were analyzed using real-time polymerase chain reactions. Results The spinner flask time-dependently improved cell numbers, cell viability, and expansion rates in THSG-treated DPSCs. In both the T25 and spinner flasks, the messenger RNA (mRNA) levels of proliferation, osteogenesis, and pluripotent-related genes had a significant maximum expression with 10 μM THSG treatment. However, 0.1 μM of THSG may be the most suitable condition for triggering neurogenesis and adipogenesis gene expression when DPSCs were cultured in spinner flasks. Furthermore, the number of oncogenes and apoptotic genes decreased considerably in the presence of THSG in both the T25 and spinner flasks. Conclusion The spinner flask bioreactor combined with THSG may upregulate proliferation and lineage-specific differentiation in DPSCs. Thus, the combination can be used to mass-produce and cultivate human DPSCs for regenerative dentistry.
Collapse
Affiliation(s)
- Yen Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Yao-Yu Chung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Ting-Yi Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical, University Hospital, Kaohsiung, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Bolli R, Tang XL, Guo Y, Li Q. After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can J Physiol Pharmacol 2021; 99:129-139. [PMID: 32937086 PMCID: PMC8299902 DOI: 10.1139/cjpp-2020-0406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Qianghong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
5
|
Lin CY, Tsai MS, Kuo PJ, Chin YT, Weng IT, Wu Y, Huang HM, Hsiung CN, Lin HY, Lee SY. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside promotes the effects of dental pulp stem cells on rebuilding periodontal tissues in experimental periodontal defects. J Periodontol 2020; 92:306-316. [PMID: 32790879 DOI: 10.1002/jper.19-0563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study aimed to investigate the regenerative effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (THSG)-treated human dental pulp stem cells (DPSC) on the healing of experimental periodontal defects in rats. METHODS The maxillary first molars of 30 male Sprague-Dawley rats were extracted, and after healing, bilateral periodontal defects were surgically created mesially in second molars. The defects were treated with Matrigel (as control), DPSC, or DPSC + THSG. After 2 weeks, the healed defects were evaluated using microcomputed tomography and through histological and immunohistochemical analyses. RESULTS In the microcomputed tomography analysis, more new bone formation in the DPSC and DPSC + THSG groups was observed compared with the control group. The periodontal bone supporting ratio in site with DPSC + THSG was significantly higher than that in DPSC. Histologically, an enhanced new bone formation and more significant periodontal attachment were observed in the DPSC + THSG group. The expression levels of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and osteopontin (OPN) in the DPSC + THSG group were significantly greater than those in other groups. CONCLUSIONS THSG-revolutionized DPSCs significantly shortened the regenerative period of periodontal defects by enhancing the cell recruitment and possibly the angiogenesis in rat models, which illustrate the critical implications for a clinical application and provide a novel tactic for periodontitis treatment.
Collapse
Affiliation(s)
- Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Min-Shi Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Tsen Weng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Yen Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Nan Hsiung
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
7
|
Wu WQ, Peng S, Song ZY, Lin S. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv Transl Res 2020; 9:920-934. [PMID: 30877625 DOI: 10.1007/s13346-019-00627-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myocardial infarction (MI) remains one of the leading cause of mortality over the world. However, current treatments are more palliative than curative, which only stall the progression of the disease, but not reverse the disease. While stem cells or bioactive molecules therapy is promising, the limited survival and engraftment of bioactive agent due to a hostile environment is a bottleneck for MI treatment. In order to maximize the utility of stem cells and bioactive molecules for myocardial repair and regeneration, various types of biomaterials have been developed. Among them, collagen-based biomaterial is widely utilized for cardiac tissue engineering and regeneration due to its optimal physical and chemical properties. In this review, we summarize the properties of collagen-based biomaterial. Then, we discuss collagen-based biomaterial currently being applied to treat MI alone, or together with stem cells and/or bioactive molecules. Finally, the delivery system of collagen-based biomaterial will also be discussed.
Collapse
Affiliation(s)
- Wei-Qiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China. .,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Keiraville, NSW, 2522, Australia.
| |
Collapse
|
8
|
Lin CY, Kuo PJ, Chin YT, Weng IT, Lee HW, Huang HM, Lin HY, Hsiung CN, Chan YH, Lee SY. Dental Pulp Stem Cell Transplantation with 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside Accelerates Alveolar Bone Regeneration in Rats. J Endod 2019; 45:435-441. [DOI: 10.1016/j.joen.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
|
9
|
Akbay E, Onur MA. Investigation of survival and migration potential of differentiated cardiomyocytes transplanted with decellularized heart scaffold. J Biomed Mater Res A 2018; 107:561-570. [DOI: 10.1002/jbm.a.36572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/17/2018] [Accepted: 10/27/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Esin Akbay
- Faculty of Science, Department of Biology; University of Hacettepe; Beytepe Ankara Turkey
| | - Mehmet Ali Onur
- Faculty of Science, Department of Biology; University of Hacettepe; Beytepe Ankara Turkey
| |
Collapse
|
10
|
Ji C, Song F, Huang G, Wang S, Liu H, Liu S, Huang L, Liu S, Zhao J, Lu TJ, Xu F. The protective effects of acupoint gel embedding on rats with myocardial ischemia-reperfusion injury. Life Sci 2018; 211:51-62. [PMID: 30195034 DOI: 10.1016/j.lfs.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
AIMS Prevention and treatment of myocardial ischemia-reperfusion (I/R) injury has for many years been a hot topic in treating ischemic heart disease. As one of the most well-known methods of complementary and alternative medicine, acupuncture has attracted increasing interest in preventing myocardial I/R injury due to its remarkable effectiveness and minimal side effect. However, traditional acupuncture approaches are limited by cumbersome execution, high labor costs and inevitable pain caused by frequent stimulation. Therefore, in this work, we aimed to develop a novel acupoint gel embedding approach and investigated its role in protecting against myocardial I/R injury in rats. MAIN METHODS Gels were embedded at bilateral Neiguan (PC6) points of rats and their protective effects against myocardial I/R injury evaluated in terms of changes in histomorphology, myocardial enzymology, antioxidant capacity, anti-inflammatory response, and anti-apoptosis of cells. KEY FINDINGS We found that the approach of acupoint gel embedding could significantly reduce myocardial infarcted size, repair pathological changes, mitigate oxidative stress damage and inflammatory response, as well as inhibit apoptosis of cardiomyocytes. Such cardioprotective effects were found to be associated with Notch-1/Jagged-1 signaling pathway. SIGNIFICANCE The proposed approach of acupoint gel embedding has advantages in continuous acupoint stimulation, dosing controls, and no side effects in the course of treatment, as well as in reducing the pain caused by frequent acupuncture. It can form an alternative therapy to not only protect against myocardial I/R injury but also hold great potential in treating other diseases in the future.
Collapse
Affiliation(s)
- Changchun Ji
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Fan Song
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Guoyou Huang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Han Liu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shaobao Liu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Liping Huang
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Shaoming Liu
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Jingyu Zhao
- Department of Acupuncture and Moxibustion, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
11
|
Protective Effects of 2,3,5,4'-Tetrahydroxystilbene-2- O-β-d-glucoside on Ovariectomy Induced Osteoporosis Mouse Model. Int J Mol Sci 2018; 19:ijms19092554. [PMID: 30154383 PMCID: PMC6163345 DOI: 10.3390/ijms19092554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 12/30/2022] Open
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG), an active polyphenolic component of Polygonum multiflorum, exhibits many pharmacological activities including antioxidant, anti-inflammation, and anti-aging effects. A previous study demonstrated that TSG protected MC3T3-E1 cells from hydrogen peroxide (H₂O₂) induced cell damage and the inhibition of osteoblastic differentiation. However, no studies have investigated the prevention of ovariectomy-induced bone loss in mice. Therefore, we investigated the effects of TSG on bone loss in ovariectomized mice (OVX). Treatment with TSG (1 and 3 μg/g; i.p.) for six weeks positively affected body weight, uterine weight, organ weight, bone length, and weight change because of estrogen deficiency. The levels of the serum biochemical markers of calcium (Ca), inorganic phosphorus (IP), alkaline phosphatase (ALP), and total cholesterol (TCHO) decreased in the TSG-treated mice when compared with the OVX mice. Additionally, the serum bone alkaline phosphatase (BALP) levels in the TSG-treated OVX mice were significantly increased compared with the OVX mice, while the tartrate-resistant acid phosphatase (TRAP) activity was significantly reduced. Furthermore, the OVX mice treated with TSG showed a significantly reduced bone loss compared to the untreated OVX mice upon micro-computed tomography (CT) analysis. Consequently, bone destruction in osteoporotic mice as a result of ovariectomy was inhibited by the administration of TSG. These findings indicate that TSG effectively prevents bone loss in OVX mice; therefore, it can be considered as a potential therapeutic for the treatment of postmenopausal osteoporosis.
Collapse
|
12
|
Lin CY, Chin YT, Kuo PJ, Lee HW, Huang HM, Lin HY, Weng IT, Hsiung CN, Chan YH, Lee SY. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside potentiates self-renewal of human dental pulp stem cells via the AMPK/ERK/SIRT1 axis. Int Endod J 2018; 51:1159-1170. [DOI: 10.1111/iej.12935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- C.-Y. Lin
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research Center of Tooth Bank and Dental Stem Cell Technology; Taipei Medical University; Taipei Taiwan
| | - Y.-T. Chin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - P.-J. Kuo
- Department of Periodontology School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Graduate Institute of Medical Sciences; National Defense Medical Center; Taipei Taiwan
| | - H.-W. Lee
- Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - H.-M. Huang
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - H.-Y. Lin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - I.-T. Weng
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - C.-N. Hsiung
- College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Y.-H. Chan
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - S.-Y. Lee
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research Center of Tooth Bank and Dental Stem Cell Technology; Taipei Medical University; Taipei Taiwan
- Department of Dentistry; Wan-Fang Medical Center; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
13
|
2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside exacerbates acetaminophen-induced hepatotoxicity by inducing hepatic expression of CYP2E1, CYP3A4 and CYP1A2. Sci Rep 2017; 7:16511. [PMID: 29184146 PMCID: PMC5705655 DOI: 10.1038/s41598-017-16688-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 01/10/2023] Open
Abstract
Hepatotoxicity induced by medicinal herb Polygonum multiflorum Thunb. attracts wide attention in the world recently. 2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is a main active compound in Polygonum multiflorum Thunb. This study aims to observe TSG-provided the aggravation on acetaminophen (APAP)-induced hepatotoxicity in mice by inducing hepatic expression of cytochrome P450 (CYP450) enzymes. Serum alanine/aspartate aminotransferase (ALT/AST) analysis and liver histological evaluation showed that TSG (200, 400, 800 mg/kg) exacerbated the hepatotoxicity induced by sub-toxic dose of APAP (200 mg/kg) in mice, but TSG alone had no hepatotoxicity. TSG aggravated hepatic reduced glutathione (GSH) depletion and APAP-cysteine adducts (APAP-CYS) formation induced by APAP in mice. TSG increased the expression of CYP2E1, CYP3A4 and CYP1A2 both in mice and in human normal liver L-02 hepatocytes. TSG also enhanced liver catalytic activity of CYP2E1, CYP3A4 and CYP1A2 in mice. TSG induced the nuclear translocation of aryl hydrocarbon receptor (AHR) and pregnane X receptor (PXR), and TSG-provided the aggravation on APAP-induced hepatotoxicity in mice was reversed by PXR or AHR inhibitors. In summary, our results demonstrate that TSG enhances hepatic expression of CYP3A4, CYP2E1 and CYP1A2, and thus exacerbates the hepatotoxicity induced by APAP in mice. PXR and AHR both play some important roles in this process.
Collapse
|
14
|
Wu J, Hu W, Gong Y, Wang P, Tong L, Chen X, Chen Z, Xu X, Yao W, Zhang W, Huang C. Current pharmacological developments in 2,3,4',5-tetrahydroxystilbene 2-O-β-D-glucoside (TSG). Eur J Pharmacol 2017; 811:21-29. [PMID: 28545778 DOI: 10.1016/j.ejphar.2017.05.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022]
Abstract
2,3,4',5-tetrahydroxystilbene 2-O-β-D-glucoside (TSG), a resveratrol analog with glucoside, is purified from a traditional Chinese herbal medicine polygonum multiflorum. It has been extensively studied in last decade and known to exert strong anti-inflammatory, anti-oxidative, anti-apoptotic, and free radical scavenging activities, and therefore has been listed as a potential agent for disease therapies. Recent studies extend well-beyond effects of TSG on the injury of neurons, cardiomyocytes and endothelial cells, and report important functions of TSG in a lot of pathophysiological conditions. For example, TSG has been shown to prevent the production of pro-inflammatory cytokines in microglia and macrophages in vitro, and ameliorate pro-inflammatory responses in animal models with neurodegeneration, atherosclerosis, and rat paw or ear oedema. TSG can prevent the proliferation of vascular smooth cells, gastrointestinal dysfunctions, platelet aggregation, osteoblastic injury, diabetic nephropathy and melanogenesis. TSG is also indicated to facilitate long-term potentiation and learning and memory in both normal and pathological conditions. These effects to some extent enrich the understanding about the role of TSG in disease prevention and therapy. However, to date, we still have no outlined knowledges about the pharmacological effects of TSG, though the role of TSG in aging and Alzheimer's disease has been reviewed in recent years. Here, we summarize the current pharmacological developments of TSG as well as its possible mechanisms in disease prevention and therapy, aiming to push the understanding about the protective role of TSG as well as its preclinical assessment of novel applications.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Wenfeng Hu
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yu Gong
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Peng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xiangfan Chen
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Xiaole Xu
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Wenjuan Yao
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University,#19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
15
|
Therapeutic Potential of Stem Cells Strategy for Cardiovascular Diseases. Stem Cells Int 2016; 2016:4285938. [PMID: 27829839 PMCID: PMC5088322 DOI: 10.1155/2016/4285938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023] Open
Abstract
Despite development of medicine, cardiovascular diseases (CVDs) are still the leading cause of mortality and morbidity worldwide. Over the past 10 years, various stem cells have been utilized in therapeutic strategies for the treatment of CVDs. CVDs are characterized by a broad range of pathological reactions including inflammation, necrosis, hyperplasia, and hypertrophy. However, the causes of CVDs are still unclear. While there is a limit to the currently available target-dependent treatments, the therapeutic potential of stem cells is very attractive for the treatment of CVDs because of their paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. Various studies have recently reported increased therapeutic potential of transplantation of microRNA- (miRNA-) overexpressing stem cells or small-molecule-treated cells. In addition to treatment with drugs or overexpressed miRNA in stem cells, stem cell-derived extracellular vesicles also have therapeutic potential because they can deliver the stem cell-specific RNA and protein into the host cell, thereby improving cell viability. Here, we reported the state of stem cell-based therapy for the treatment of CVDs and the potential for cell-free based therapy.
Collapse
|