1
|
Chen X, Liu J, Wang G, Sun Y, Ding X, Zhang X. Regulating lipid metabolism in osteoarthritis: a complex area with important future therapeutic potential. Ann Med 2024; 56:2420863. [PMID: 39466361 PMCID: PMC11520103 DOI: 10.1080/07853890.2024.2420863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), which is characterized by pain, inflammation and pathological changes, is associated with abnormal lipid metabolism. Extensive studies have been conducted on the potential functions of lipids including cholesterol, fatty acids (FAs) and adipokines. MATERIALS AND METHODS By searching and screening the literature included in the PubMed and Web of Science databases from 1 January 2019 to 1 January 2024, providing an overview of research conducted on lipid metabolism and OA in the last 5 years. RESULTS In addition to adiponectin, several studies on the effects of lipid metabolism on OA have been consistent and complementary. Total cholesterol, triglycerides, low-density lipoprotein cholesterol, adipsin, leptin, resistin, saturated FAs, monounsaturated FAs, FA-binding protein 4 and the ratios of the FAs hexadecenoylcarnitine (C16:1) to dodecanoylcarnitine and C16:1 to tetradecanoylcarnitine induced mostly deleterious effects, whereas high-density lipoprotein cholesterol and apolipoprotein A/B/D had a positive impact on the health of joints. The situation for polyunsaturated FAs may be more complicated, as omega-3 increases the genetic susceptibility to OA, whereas omega-6 does the opposite. Alterations in lipid or adipokine levels and the resulting pathological changes in cartilage and other tissues (such as bone and synovium) ultimately affect joint pain, inflammation and cartilage degradation. Lipid or adipokine regulation has potential as a future direction for the treatment of OA, this potential avenue of OA treatment requires high-quality randomized controlled trials of combined lipid regulation therapy, and more in-depth in vivo and in vitro studies to confirm the underlying mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Guizhen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Fauste E, Panadero MI, Pérez-Armas M, Donis C, López-Laiz P, Sevillano J, Sánchez-Alonso MG, Ramos-Álvarez MP, Otero P, Bocos C. Maternal fructose intake aggravates the harmful effects of a Western diet in rat male descendants impacting their cholesterol metabolism. Food Funct 2024; 15:6147-6163. [PMID: 38767501 DOI: 10.1039/d4fo01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Scope: fructose consumption from added sugars correlates with the epidemic rise in MetS and CVD. Maternal fructose intake has been described to program metabolic diseases in progeny. However, consumption of fructose-containing beverages is allowed during gestation. Cholesterol is also a well-known risk factor for CVD. Therefore, it is essential to study Western diets which combine fructose and cholesterol and how maternal fructose can influence the response of progeny to these diets. Methods and results: a high-cholesterol (2%) diet combined with liquid fructose (10%), as a model of an unhealthy Western diet, was administered to descendants from control and fructose-fed mothers. Gene (mRNA and protein) expression and plasma, fecal and tissue parameters of cholesterol metabolism were measured. Interestingly, progeny from fructose-fed dams consumed less liquid fructose and cholesterol-rich chow than males from control mothers. Moreover, descendants of fructose-fed mothers fed a Western diet showed an increased cholesterol elimination through bile and feces than males from control mothers. Despite these mitigating circumstances to develop a proatherogenic profile, the same degree of hypercholesterolemia and severity of steatosis were observed in all descendants fed a Western diet, independently of maternal intake. An increased intestinal absorption of cholesterol, synthesis, esterification, and assembly into lipoprotein found in males from fructose-fed dams consuming a Western diet could be the cause. Moreover, an augmented GLP2 signalling seen in these animals would explain this enhanced lipid absorption. Conclusions: maternal fructose intake, through a fetal programming, makes a Western diet considerably more harmful in their descendants than in the offspring from control mothers.
Collapse
Affiliation(s)
- E Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M Pérez-Armas
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - C Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - P López-Laiz
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - J Sevillano
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M G Sánchez-Alonso
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M P Ramos-Álvarez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - P Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - C Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
3
|
Ferreira M, Garzón A, Oliva M, Cian R, Drago S, D'Alessandro M. Lipid-lowering effect of microencapsulated peptides from brewer's spent grain in high-sucrose diet-fed rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit Rev Food Sci Nutr 2022; 63:7896-7944. [PMID: 35297701 DOI: 10.1080/10408398.2022.2052261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The definition of metabolic syndrome (MetS) fairly varies from one to another guideline and health organization. Per description of world health organization, occurrence of hyperinsulinemia or hyperglycemia in addition to two or more factors of dyslipidemia, hypoalphalipoproteinemia, hypertension and or large waist circumference factors would be defined as MetS. Conventional therapies and drugs, commonly with adverse effects, are used to treat these conditions and diseases. Nonetheless, in the recent decades scientific community has focused on the discovery of natural compounds to diminish the side effects of these medications. Among many available bioactives, biologically active peptides have notable beneficial effects on the management of diabetes, obesity, hypercholesterolemia, and hypertension. Marine inclusive of fish peptides have exerted significant bioactivities in different experimental in-vitro, in-vivo and clinical settings. This review exclusively focuses on studies from the recent decade investigating hypoglycemic, hypolipidemic, hypercholesterolemic and anti-obesogenic fish and fish peptides. Related extraction, isolation, and purification methodologies of anti-MetS fish biopeptides are reviewed herein for comparison purposes only. Moreover, performance of biopeptides in simulated gastrointestinal environment and structure-activity relationship along with absorption, distribution, metabolism, and excretion properties of selected oligopeptides have been discussed, in brief, to broaden the knowledge of readers on the design and discovery trends of anti-MetS compounds.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2052261 .
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
5
|
Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf 2022; 21:1803-1842. [PMID: 35150206 DOI: 10.1111/1541-4337.12917] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
Fish processing industries result in an ample number of protein-rich byproducts, which have been used to produce protein hydrolysate (PH) for human consumption. Chemical, microbial, and enzymatic hydrolysis processes have been implemented for the production of fish PH (FPH) from diverse types of fish processing byproducts. FPH has been reported to possess bioactive active peptides known to exhibit various biological activities such as antioxidant, antimicrobial, angiotensin-I converting enzyme inhibition, calcium-binding ability, dipeptidyl peptidase-IV inhibition, immunomodulation, and antiproliferative activity, which are discussed comprehensively in this review. Appropriate conditions for the hydrolysis process (e.g., type and concentration of enzymes, time, and temperature) play an important role in achieving the desired level of hydrolysis, thus affecting the functional and bioactive properties and stability of FPH. This review provides an in-depth and comprehensive discussion on the sources, process parameters, purification as well as functional and bioactive properties of FPHs. The most recent research findings on the impact of production parameters, bitterness of peptide, storage, and food processing conditions on functional properties and stability of FPH were also reported. More importantly, the recent studies on biological activities of FPH and in vivo health benefits were discussed with the possible mechanism of action. Furthermore, FPH-polyphenol conjugate, encapsulation, and digestive stability of FPH were discussed in terms of their potential to be utilized as a nutraceutical ingredient. Last but not the least, various industrial applications of FPH and the fate of FPH in terms of limitations, hurdles, future research directions, and challenges have been addressed.
Collapse
Affiliation(s)
| | | | - Mithun Singh Rajput
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Liang B, Cai XY, Gu N. Marine Natural Products and Coronary Artery Disease. Front Cardiovasc Med 2021; 8:739932. [PMID: 34621803 PMCID: PMC8490644 DOI: 10.3389/fcvm.2021.739932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease is the major cause of mortality worldwide, especially in low- and middle-income earners. To not only reduce angina symptoms and exercise-induced ischemia but also prevent cardiovascular events, pharmacological intervention strategies, including antiplatelet drugs, anticoagulant drugs, statins, and other lipid-lowering drugs, and renin-angiotensin-aldosterone system blockers, are conducted. However, the existing drugs for coronary artery disease are incomprehensive and have some adverse reactions. Thus, it is necessary to look for new drug research and development. Marine natural products have been considered a valuable source for drug discovery because of their chemical diversity and biological activities. The experiments and investigations indicated that several marine natural products, such as organic small molecules, polysaccharides, proteins, and bioactive peptides, and lipids were effective for treating coronary artery disease. Here, we particularly discussed the functions and mechanisms of active substances in coronary artery disease, including antiplatelet, anticoagulant, lipid-lowering, anti-inflammatory, and antioxidant activities.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yi Cai
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Nirmal NP, Santivarangkna C, Benjakul S, Maqsood S. Fish protein hydrolysates as a health-promoting ingredient-recent update. Nutr Rev 2021; 80:1013-1026. [PMID: 34498087 DOI: 10.1093/nutrit/nuab065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary habits and lifestyle-related diseases indicate that food has a direct impact on individual health. Hence, a diet containing essential nutrients is important for healthy living. Fish and fish products are important in diets worldwide because of their nutritional value, especially their easily digestible proteins with essential amino acids. Similarly, fish protein hydrolysate (FPH) obtained from fish muscle and by-products has been reported to exhibit various biological activities and to have functional properties, which make FPH a suitable nutraceutical candidate. This review focuses on the health-promoting ability of FPH in terms of skin health, bone and cartilage health, blood lipid profile, and body-weight management studied in rats and human model systems. The absorption and bioavailability of FPH in humans is discussed, and challenges and obstacles of FPH as a functional food ingredient are outlined.
Collapse
Affiliation(s)
- Nilesh P Nirmal
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chalat Santivarangkna
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Soottawat Benjakul
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Conception of active food packaging films based on crab chitosan and gelatin enriched with crustacean protein hydrolysates with improved functional and biological properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106639] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Ajebli M, Amssayef A, Eddouks M. Hypolipidemic, Antioxidant and Cardioprotective Effects of the Aqueous Extract from Scorzanera Undulata Tubers in Streptozotocin-Induced Diabetic Rats. Cardiovasc Hematol Agents Med Chem 2021; 19:17-23. [PMID: 33050868 DOI: 10.2174/1871525718666201013152449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
AIMS This study aimed to assess the effect of Scorzanera undulata on plasma lipid profile. BACKGROUND Scorzanera undulata (S. undulata) is a medicinal plant popularly used in the Moroccan pharmacopeia as traditional medicine, particularly to treat diabetes mellitus. OBJECTIVE The purpose of this study was to explore the effects of aqueous extract of Scorzanera undulata tubers (AERSU) on lipid profile and atherogenic indices in Wistar rats. Biochemical parameters such as Total Cholesterol (TC), triglycerides (TG), and low-and high-density lipoproteins-cholesterol (LDL and HDL) were assessed. Furthermore, the in vitro antioxidant activity of AERSU was also evaluated. METHODS The effect of tubers aqueous extract (AERSU) of S. undulata (20 mg/kg) on plasma lipid profile was investigated in normal and streptozotocin (STZ)-induced diabetic rats. The aqueous extract was tested for its in vitro antioxidant activity. Besides, cardiovascular parameters were estimated. RESULTS Treatment with AERSU significantly improved the weight in diabetic rats and decreased plasma cholesterol, triglycerides, and LDL lipoproteins levels. Furthermore, the extract had a favorable impact on the Atherogenic Index (AI) and Coronary Risk Index (CRI). In addition, AERSU seems to possess a potent in vitro antioxidant activity. CONCLUSION The study demonstrates that aqueous Scorzanera undulate extract exhibits antidyslipidemic and antioxidant activities.
Collapse
Affiliation(s)
- Mohammed Ajebli
- Department of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia-52000, Morocco
| | - Ayoub Amssayef
- Department of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia-52000, Morocco
| | - Mohamed Eddouks
- Department of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia-52000, Morocco
| |
Collapse
|
10
|
Qiao Q, Chen L, Li X, Lu X, Xu Q. Roles of Dietary Bioactive Peptides in Redox Balance and Metabolic Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5582245. [PMID: 34234885 PMCID: PMC8219413 DOI: 10.1155/2021/5582245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Bioactive peptides (BPs) are fragments of 2-15 amino acid residues with biological properties. Dietary BPs derived from milk, egg, fish, soybean, corn, rice, quinoa, wheat, oat, potato, common bean, spirulina, and mussel are reported to possess beneficial effects on redox balance and metabolic disorders (obesity, diabetes, hypertension, and inflammatory bowel diseases (IBD)). Peptide length, sequence, and composition significantly affected the bioactive properties of dietary BPs. Numerous studies have demonstrated that various dietary protein-derived BPs exhibited biological activities through the modulation of various molecular mechanisms and signaling pathways, including Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response element in oxidative stress; peroxisome proliferator-activated-γ, CCAAT/enhancer-binding protein-α, and sterol regulatory element binding protein 1 in obesity; insulin receptor substrate-1/phosphatidylinositol 3-kinase/protein kinase B and AMP-activated protein kinase in diabetes; angiotensin-converting enzyme inhibition in hypertension; and mitogen-activated protein kinase and nuclear factor-kappa B in IBD. This review focuses on the action of molecular mechanisms of dietary BPs and provides novel insights in the maintenance of redox balance and metabolic diseases of human.
Collapse
Affiliation(s)
- Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Yang H, Pan R, Wang J, Zheng L, Li Z, Guo Q, Wang C. Modulation of the Gut Microbiota and Liver Transcriptome by Red Yeast Rice and Monascus Pigment Fermented by Purple Monascus SHM1105 in Rats Fed with a High-Fat Diet. Front Pharmacol 2021; 11:599760. [PMID: 33551805 PMCID: PMC7859525 DOI: 10.3389/fphar.2020.599760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperlipidemia can easily cause atherosclerosis and induce cardiovascular and cerebrovascular diseases. Red yeast rice (RYR) contains a variety of active ingredients and is commonly used as medicine and food, and has pharmacological effects such as lowering blood lipids. In this study, we select Monascus strain SHM1105 with a high yield of Monacolin K and monascus pigment (PIG), and studied the effects of the RYR and PIG fermented by this strain on blood lipids, intestinal flora, and liver transcriptome in hyperlipidemia model rats. The experimental results show that, compared with the high-fat model group, the weight growth rate, liver weight ratio, kidney weight ratio, spleen weight ratio, and fat weight ratio of rats in the gavage lovastatin (LOV), RYR, and PIG group were all significantly decreased (p < 0.05). Intervention with RYR and PIG can significantly reduce the serum TC, TG, and LDL-C levels, which has the effect of lowering blood lipids. The 16SrDNA sequencing results showed that the ratio of Firmicutes/Bacteroidetes decreased significantly (p ≤ 0.01) after the intervention of LOV, RYR, and PIG; the abundance of the ratio of Lachnospiraceae, Ruminococcaceae, Prevotellaceae, and Bacteroidales-S24-7-group also changed. The combined analysis of transcriptome and metabolome showed that lovastatin, RYR, and PIG can all improve lipid metabolism in rats by regulating Steroid hormone biosynthesis, Glycerolipid metabolism, and the Arachidonic acid metabolism pathway. In addition, RYR and PIG also have a unique way of regulating blood lipids. Although a lot of research on the lipid-lowering components of Monascus rice and the single pigment component of Monascus has been carried out, the actual application is RYR and pigments as mixtures, as a mixture of RYR and PIG contains a variety of biologically active ingredients, and each component may have a synergistic effect. Hence it has a lipid-lowering mechanism that lovastatin does not have. Therefore, RYR and PIG are effective in reducing lipid potential development and can be utilized in functional foods.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ronghua Pan
- Zhejiang Sanhe Bio-Tech Co., Ltd., Zhejiang, China
| | - Jing Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | | | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
12
|
Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar Drugs 2020; 18:E390. [PMID: 32726987 PMCID: PMC7459887 DOI: 10.3390/md18080390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
With twice the number of cancer's deaths, cardiovascular diseases have become the leading cause of death worldwide. Atherosclerosis, in particular, is a progressive, chronic inflammatory cardiovascular disease caused by persistent damage to blood vessels due to elevated cholesterol levels and hyperlipidemia. This condition is characterized by an increase in serum cholesterol, triglycerides, and low-density lipoprotein, and a decrease in high-density lipoprotein. Although existing therapies with hypolipidemic effects can improve the living standards of patients with cardiovascular diseases, the drugs currently used in clinical practice have certain side effects, which insists on the need for the development of new types of drugs with lipid-lowering effects. Some marine-derived substances have proven hypolipidemic activities with fewer side effects and stand as a good alternative for drug development. Recently, there have been thousands of studies on substances with lipid-lowering properties of marine origin, and some are already implemented in clinical practice. Here, we summarize the active components of marine-derived products having a hypolipidemic effect. These active constituents according to their source are divided into algal, animal, plant and microbial and contribute to the development and utilization of marine medicinal products with hypolipidemic effects.
Collapse
Affiliation(s)
- Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Zeyu Cheng
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
13
|
Ranjbar T, Nekooeian AA, Tanideh N, Koohi-Hosseinabadi O, Masoumi SJ, Amanat S, Azarpira N, Monabati A. A comparison of the effects of Stevia extract and metformin on metabolic syndrome indices in rats fed with a high-fat, high-sucrose diet. J Food Biochem 2020; 44:e13242. [PMID: 32478426 DOI: 10.1111/jfbc.13242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
The beneficial effects of Stevia on metabolic indices have been studied in recent years. However, controversial results emphasize the need for further investigation. We aimed to examine and compare the effects of Stevia's hydroalcoholic extract with two dosages (200, 400 mg/kg) with those of metformin (100 mg/kg) on metabolic syndrome (MetS) indices of rats fed with a high-fat, high-sucrose diet (HFHS). It was found that both Stevia extract and metformin could prevent the adverse effects of a HFHS on lipid profile, liver enzymes, total antioxidant capacity (TAC), and histopathologic factors. Except for the finding that metformin showed a greater potential to alleviate insulin resistance than did Stevia extract, no significant difference was observed between the rats receiving metformin or Stevia extract. In addition, using a high treatment dosage of Stevia extract did not lead to better results than a low dosage. Collectively, the efficacy of Stevia extracts to modify metabolic, oxidative, and histopathological indices in a MetS model was comparable to that of the metformin. PRACTICAL APPLICATIONS: This study was aimed to compare the efficiency of Stevia hydroalcoholic extract with metformin in attenuating MetS abnormalities of rats induced by a high-fat, high-sucrose diet. The results showed the beneficial changes caused due to the administration of Stevia extract on lipid profile, antioxidant capacity, liver enzyme, and liver histopathological indices. The changes were comparable with the results of metformin group. Despite some promising results, further investigation is suggested to evaluate the effectiveness of Stevia extract on human subjects.
Collapse
Affiliation(s)
- Tahereh Ranjbar
- Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbar Nekooeian
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Department of Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sasan Amanat
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology and Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Mora L, González-Rogel D, Heres A, Toldrá F. Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory peptides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103840] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Hypolipidemic Activities of Two Pentapeptides (VIAPW and IRWWW) from Miiuy Croaker (Miichthys miiuy) Muscle on Lipid Accumulation in HepG2 Cells through Regulation of AMPK Pathway. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, the hypolipidemic activities of two pentapeptides (VIAPW and IRWWW) from miiuy croaker (Miichthys miiuy) muscle on oleic acid (OA)-induced lipid accumulation in HepG2 cells were investigated. VIAPW and IRWWW could significantly inhibit lipid accumulation induced by OA and decreased intracellular levels of intracellular triglyceride (TG) and total cholesterol (TC) in a dose-effect dependence manner. At the concentration of 100 μm, the TG levels of VIAPW (0.201 ± 0.006 mm) and IRWWW (0.186 ± 0.005 mm) were very (p < 0.01) and extremely (p < 0.001) significantly lower than those (0.247 ± 0.004 mm) of the OA model group; the levels of TC of VIAPW (45.88 ± 0.74 μg/mg protein) and IRWWW (41.02 ± 0.14 μg/mg protein) were very (p < 0.01) and extremely (p < 0.001) significantly lower than that (53.45 ± 0.10μg/mg protein) of the OA model group (p < 0.01). The hypolipidemic mechanisms of VIAPW and IRWWW were to down-regulate the expression levels of genes of SREBP-1c, SREBP-2, FAS, ACC, and HMGR in lipid synthesis and to up-regulate the expression levels of genes of PPARα, ACOX-1, and CPT-1 in lipid oxidation. These results suggested that VIAPW and IRWWW could play their hypolipidemic activities in HepG2 cells through regulation of AMPK pathway and act as hypolipidemic nutrient ingredients applied in public healthy and functional foods.
Collapse
|
16
|
Han Y, Hao H, Yang L, Chen G, Wen Y, Huang R. Nutritional characteristics of marine fish Sardinella zunasi Bleeker and immunostimulatory activities of its glycoprotein. RSC Adv 2019; 9:30144-30153. [PMID: 35530240 PMCID: PMC9072115 DOI: 10.1039/c9ra04913d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Sardinella zunasi Bleeker, an edible and medicinal marine fish, is largely distributed in tropical oceans. However, the chemical composition and nutritional properties of this species have not yet been investigated. In the present study, proximate composition, fatty acids, amino acids, taurine, and minerals of S. zunasi Bleeker were characterized, and the immunostimulatory properties of its glycoprotein were evaluated. The results indicated the presence of crude protein (19.66%), crude lipid (6.29%) and carbohydrate (0.74%) in S. zunasi Bleeker; monounsaturated fatty acids and polyunsaturated fatty acids in the fatty acid composition of S. zunasi Bleeker were 25.00% and 31.01%, respectively; S. zunasi Bleeker was rich in taurine (219 mg/100 g) and essential amino acids (5.57 g/100 g). In addition, the glycoprotein of S. zunasi consisted of protein and sugars, with a total content of 34.25% and 16.27%, respectively. The glycoprotein showed significant effects on promoting NO, TNF-α and IL-6 in a dose-dependent manner in RAW264.7 macrophage cells. Thus, these findings provide a scientific basis for the further utilization of glycoprotein from S. zunasi Bleeker.
Collapse
Affiliation(s)
- Yu Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Lihong Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
- Shenzhen Shajing People's Hospital, Guangzhou University of Chinese Medicine Shenzhen China
| | - Guolian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Yucong Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| |
Collapse
|
17
|
Gómez B, Munekata PES, Zhu Z, Barba FJ, Toldrá F, Putnik P, Bursać Kovačević D, Lorenzo JM. Challenges and opportunities regarding the use of alternative protein sources: Aquaculture and insects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:259-295. [PMID: 31351528 DOI: 10.1016/bs.afnr.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The world population is constantly growing so that the needs of food, including protein sources, will also increase considerably in the coming years. Animal farming has been related to numerous environmental consequences such as soil erosion, exaggerated water consumption, generation of large quantities of waste and accumulation of greenhouse gases. This is a situation that demonstrates the suitability and importance of finding more sustainable protein alternatives without losing the quality and the nutritional benefits of current common protein sources. In this context, it is worth highlighting the potential of insects and products derived from aquaculture. Particularly, farmed aquatic food products can reduce the impact on wild fish stocks, whose overfishing may end up in an ecological collapse, and insects are easy to be reared and efficient in converting feed into biomass. However, there are still several challenges like the need to adapt technologies and methods for the production and well-characterization of the new ingredients, careful evaluation of the introduction of such new proteins in the diet and its safety of use, including potential allergies, and the acceptance by consumers.
Collapse
Affiliation(s)
- Belén Gómez
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain; Department of Food Engineering, College of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Zhenzhou Zhu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, València, Spain.
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.
| |
Collapse
|
18
|
Kumar MS. Peptides and Peptidomimetics as Potential Antiobesity Agents: Overview of Current Status. Front Nutr 2019; 6:11. [PMID: 30834248 PMCID: PMC6388543 DOI: 10.3389/fnut.2019.00011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
There is a high occurrence of obesity worldwide without many new medications being approved for its treatment. Therefore, there is an urgent need to introduce new approaches for treating obesity. Bioactive peptides have been used to treat metabolic disorders- such as type-2 diabetes and obesity; while also possessing anti-oxidant, anti-inflammatory, anti-microbial, and anti-viral properties. However, the development of these peptides has taken backstage due to their size, reduced stability, poor delivery and bioavailability, fast rate of degradation etc. But with the emergence of newer techniques for multifunctional peptides, mimetics, peptide analogs, and aptamers, there is a sudden revival in this therapeutic field. An increased attention is required for development of the natural peptides from food and marine sources which can mimic the function of mediators involved in weight management to avoid obesity. Herein, the search for the structures of anti-obesity peptides was carried out in order to establish their potential for drug development in future. An extensive search for the current status of endogenous, food and marine peptides, with reference to novel and interesting experimental approaches based on peptidomimetics for controlling obesity, was performed. Apolipoprotein A-I (apoA-I), melanocortin-4 receptor (MC4R)-specific agonist, GLP-1 dual and triple agonists, neuropeptides and prolactin-releasing peptide mimetics were specifically examined for their anti-obesity role. Novel peptides, mimetics, and synthesis interventions are transpiring and might offer safer alternatives for otherwise scarcely available safe antiobesity drug. A deeper understanding of peptides and their chemistry through the use of peptide engineering can be useful to overcome the disadvantages and select best mimetics and analogs for treatment in future.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Shobhaben Pratapbhai School of Pharmacy and Technology Management, SVKM'S Narsee Monjee Institute of Management Studies-NMIMS, Mumbai, India
| |
Collapse
|
19
|
Gautam A, Paudel YN, Abidin S, Bhandari U. Guggulsterone, a farnesoid X receptor antagonist lowers plasma trimethylamine- N-oxide levels: An evidence from in vitro and in vivo studies. Hum Exp Toxicol 2018; 38:356-370. [PMID: 30526076 DOI: 10.1177/0960327118817862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current study investigated the role of guggulsterone (GS), a farnesoid X receptor antagonist, in the choline metabolism and its trimethylamine (TMA)/flavin monooxygenases/trimethylamine-N-oxide (TMAO) inhibiting potential in a series of in vitro and in vivo studies as determined by high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and liquid chromatography (LC)-MS techniques. Atherosclerosis (AS) was successfully induced in a group of experimental animals fed with 2% choline diet for 6 weeks. Serum lipid profiles such as total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were measured. Pro-inflammatory cytokines levels, markers for a hepatic injury, and oxidative stress markers were assessed. Interestingly, GS reduced the level of TMA/TMAO in both in vitro and in vivo studies as demonstrated by the peaks obtained from HPLC, MS, and LC-MS. Furthermore, GS exhibited cardioprotective and antihyperlipidemic effects as evidenced by the attenuation of levels of several serum lipid profiles and different atherogenic risk predictor indexes. GS also prevented hepatic injury by successfully restoring the levels of hepatic injury biomarkers to normal. Similarly, GS inhibited the production of pro-inflammatory cytokines levels, as well as GS, enhanced antioxidant capacity, and reduced lipid peroxidation. Histopathological study of aortic sections demonstrated that GS maintained the normal architecture in AS-induced rats. On the basis of results obtained from current investigation, we suggest that GS might have a great therapeutic potential for the treatment of AS.
Collapse
Affiliation(s)
- A Gautam
- 1 Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India.,2 Department of Pharmacology, Chitwan Medical College, Bharatpur, Nepal
| | - Y N Paudel
- 3 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Saz Abidin
- 3 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - U Bhandari
- 1 Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
20
|
Affane F, Louala S, El Imane Harrat N, Bensalah F, Chekkal H, Allaoui A, Lamri-Senhadji M. Hypolipidemic, antioxidant and antiatherogenic property of sardine by-products proteins in high-fat diet induced obese rats. Life Sci 2018; 199:16-22. [PMID: 29505784 DOI: 10.1016/j.lfs.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
AIMS Fish by-products valorization on account of their richness in bioactive compounds may represent a better alternative to marine products with a view to economic profitability and sustainable development. In this study, we compared the effect of sardine by-product proteins (SBy-P), with those of the fillets (SF-P) or casein (Cas), on growth parameters, serum leptin level, lipids disorders, lipid peroxidation and reverse cholesterol transport, in diet-induced obese rats. MAIN METHODS Obesity was induced by feeding rats a high-fat diet (20% sheep fat), during 12 weeks. At body weight (BW) of 400 ± 20 g, eighteen obese rats were divided into three homogenous groups and continue to consume the high-fat diet for 4 weeks containing either, 20% SBy-P, SF-P or Cas. KEY FINDINGS The results showed that SBy-P, compared to SF-P and Cas, efficiently reduced food intake (FI), BW gain and serum leptin level, and improved blood lipids levels and reverse cholesterol transport by reducing total cholesterol (TC), triacylglycerols (TG) and low-density lipoprotein cholesterol (LDL-HDL1-C) serum levels, increasing the level of high-density lipoprotein cholesterol (HDL2-C and HDL3-C), and enhancing lecithin: cholesterol acyltransferase (LCAT) activity. Furthermore, they attenuated lipid peroxidation by increasing atheroprotective activity of the paraoxonase-1 (PON-1). SIGNIFICANCE Sardine by-product proteins due to their richness in certain essential amino acids, highlight weight-loss, lipid-lowering, antioxidant and anti-atherogenic potentials, contributing to the improvement of the complications associated with obesity.
Collapse
Affiliation(s)
- Fouad Affane
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Sabrine Louala
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Nour El Imane Harrat
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Fatima Bensalah
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Hadjera Chekkal
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Amine Allaoui
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria
| | - Myriem Lamri-Senhadji
- Laboratory of Clinical and Metabolic Nutrition (LNCM), Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El m'nouer, 31100 Oran, Algeria.
| |
Collapse
|
21
|
Zhu J, Zhang X, Chen X, Sun Y, Dai Y, Chen C, Zhang T, Yan Z. Studies on the regulation of lipid metabolism and the mechanism of the aqueous and ethanol extracts of Usnea. Biomed Pharmacother 2017; 94:930-936. [DOI: 10.1016/j.biopha.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
|
22
|
Jemil I, Nasri R, Abdelhedi O, Aristoy MC, Salem RBSB, Kallel C, Marrekchi R, Jamoussi K, ElFeki A, Hajji M, Toldrá F, Nasri M. Beneficial effects of fermented sardinelle protein hydrolysates on hypercaloric diet induced hyperglycemia, oxidative stress and deterioration of kidney function in wistar rats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:313-325. [PMID: 28242930 PMCID: PMC5306024 DOI: 10.1007/s13197-016-2464-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
This study investigated the potential effects of fermented sardinelle protein hydrolysates (FSPHs) obtained by two proteolytic bacteria, Bacillus subtilis A26 (FSPH-A26) and Bacillus amyloliquefaciens An6 (FSPH-An6), on hypercaloric diet (HCD) induced hyperglycemia and oxidative stress in rats. Effects of FSPHs on blood glucose level, glucose tolerance, α-amylase activity and hepatic glycogen content were investigated, as well as their effect on the oxidative stress state. Biochemical findings revealed that, while undigested sardinelle proteins did not exhibit hypoglycemic activity, oral administration of FSPHs to HCD-fed rats reduced significantly α-amylase activity as well as glycemia and hepatic glycogen levels. Further, the treatment with FSPHs improved the redox status by decreasing the levels of lipid peroxidation products and increasing the activities of the antioxidant enzymes (superoxide dismutase, glutathione peroxidase and catalase) and the level of glutathione in the liver and kidneys, as compared to those of HCD-fed rats. FSPHs were also found to exert significant protective effects on liver and kidney functions, evidenced by a marked decrease in alkaline phosphatase activity and a modulation of creatinine and uric acid contents. These results indicated the beneficial effect of FSPHs on the prevention from hyperglycemia and oxidative stress.
Collapse
Affiliation(s)
- Ines Jemil
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Maria-Concepción Aristoy
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Rabeb Ben Slama-Ben Salem
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Choumous Kallel
- Laboratory of Hematology, Habib Bourguiba Hospital, 3029 Sfax, Tunisia
| | - Rim Marrekchi
- Laboratory of Biochemistry, CHU Hedi Chaker, 3029 Sfax, Tunisia
| | - Kamel Jamoussi
- Laboratory of Biochemistry, CHU Hedi Chaker, 3029 Sfax, Tunisia
| | - Abdelfattah ElFeki
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax (FSS), University of Sfax, P. O. Box 95, 3052 Sfax, Tunisia
| | - Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P. O. Box 1173, 3038 Sfax, Tunisia
| |
Collapse
|
23
|
Nasri M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 81:109-159. [PMID: 28317603 DOI: 10.1016/bs.afnr.2016.10.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits.
Collapse
Affiliation(s)
- M Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia.
| |
Collapse
|