1
|
Huang M, Di J, He L, Li N, Tian Z, Xiao L, Zhu R, He T, Pang M, Liu B, Rong L. Double-target magnetic stimulation attenuates oligodendrocyte apoptosis and oxidative stress impairment after spinal cord injury via GAP43. Spine J 2025; 25:820-842. [PMID: 39701305 DOI: 10.1016/j.spinee.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) causes neural circuit interruption and permanent functional damage. Magnetic stimulation in humans with SCI aims to engage residual neural networks to improve neurological functional, but the detailed mechanism remains unknown. PURPOSE This study evaluates functional recovery and neural circuitry improvements in rodent with double-target (brain and spinal cord) magnetic stimulation (DTMS) treatment and explores the effect of DTMS on the modulation of glial cells in vivo and in vitro. STUDY DESIGN In vivo animal study. METHODS SCI model rats at T10 level were induced via a weight-drop method and underwent long-time DTMS treatment. A series of behavioral assessments and tissue staining were used to evaluate neurological function and neural circuitry improvements. More importantly, single-cell RNA sequencing was conducted to identify the most significant glial cells after DTMS treatment. Furthermore, transmission electron microscopy, western blotting, immunofluorescence staining, TUNEL staining, Annexin V-FITC apoptosis kit and Lipid ROS kit were used to explore the mechanism underlying the observed changes. Study funding sources: National Natural Science Foundation of China (Grant number: U22A20297; Dollar amount: 62500); Key Research and Development Program of Guangzhou (Grant number: 202206060003; Dollar amount: 63750). There are no conflicts of interest or disclosures to report. RESULTS DTMS promoted the improvements of motor and sensory neural circuitry by modulating remyelination and neuronal survival, while silencing growth-associated protein 43 (GAP43) in oligodendrocytes suppressed these effects of DTMS in vivo. Mechanically, GAP43 played a crucial part to promote the branching and mature of oligodendrocytes and axonal regeneration via anti-apoptotic and antioxidative stress effects. Furthermore, oligodendrocytes subjected to magnetic stimulation exerted neuroprotective effects on neurons by secreting exosomes containing GAP43. CONCLUSIONS Our study revealed the neuroprotection of DTMS on SCI. The GAP43 in oligodendrocytes were associated with this relationship between magnetic stimulation and myelin and neuronal regeneration after SCI. CLINICAL SIGNIFICANCE The current study demonstrated the beneficial effects of DTMS on SCI based on functional, electrophysiological, cellular and histological evidence. According to these findings, we expect DTMS to make a positive and significant difference for SCI therapeutic screening.
Collapse
Affiliation(s)
- Mudan Huang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Jiawei Di
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Na Li
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Longyou Xiao
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Ruijue Zhu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Lin GQ, He XF, Liu B, Wei CY, Tao R, Yang P, Pei Z, Mo YM. Continuous theta burst stimulation ameliorates cognitive deficits in microinfarcts mice via inhibiting glial activation and promoting paravascular CSF-ISF exchange. Neuroscience 2024; 561:20-29. [PMID: 39366451 DOI: 10.1016/j.neuroscience.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Microinfarcts are widespread in the elderly, accompanied by varying degrees of cognitive decline. Continuous theta burst stimulation (cTBS) has been demonstrated to be neuroprotective on cognitive dysfunction, but the underlying cellular mechanism has been still not clear. In the present study, we evaluated the effects of cTBS on cognitive function and brain pathological changes in mice model of microinfarcts. The spatial learning and memory was assessed by Morris water maze (MWM), Glymphatic clearance efficiency was evaluated using in vivo two-photon imaging. The loss of neurons, activation of astrocytes and microglia, the expression and polarity distribution of the astrocytic aquaporin-4 (AQP4) were assessed by immunofluorescence staining. Our results showed that cTBS treatment significantly improved the spatial learning and memory, accelerated the efficiency of glymphatic clearance, up-regulated the AQP4 expression and improved the polarity distribution of AQP4 in microinfarcts mice. Besides, cTBS treatment increased the number of surviving neurons, whereas decreased the activated astrocytes and microglia. Our study suggested that cTBS accelerated glymphatic clearance and inhibited the excessive gliogenesis, which ultimately exerted neuroprotective effects on microinfarcts mice.
Collapse
Affiliation(s)
- Gui-Qing Lin
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Xiao-Fei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Chun-Ying Wei
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Ran Tao
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Peng Yang
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, SunYat-sen University, Guangzhou 510080, China
| | - Ying-Min Mo
- Department of Geriatric Neurology, Guangxi Academy of Medical Sciences & the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
3
|
Wang D, Zhang X, Huang Z, Li Y, Wang X, Wang J, Zhao Y, Lv Q, Wu M, Zha M, Yuan K, Zhu W, Xu G, Xie Y. Theta-burst transcranial magnetic stimulation attenuates chronic ischemic demyelination and vascular cognitive impairment in mice. Exp Neurol 2024; 383:115022. [PMID: 39442857 DOI: 10.1016/j.expneurol.2024.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Vascular cognitive impairment and dementia (VCID) is mainly caused by chronic cerebral hypoperfusion and subsequent white matter lesions. Noninvasive transcranial magnetic stimulation has been utilized in treating various neurological disorders. However, the function of theta-burst transcranial magnetic stimulation on VCID remains to be defined. We utilized 4-week bilateral carotid artery stenosis model of male mice to mimic VCID. Intermittent theta-burst stimulation (iTBS) or consecutive theta-burst stimulation (cTBS) was administered for 14 consecutive days. Through luxol fast blue staining, electron microscopy and immunofluorescence, we found that iTBS, not cTBS, significantly improved demyelination, axonal damage and β-amyloid deposition, without affecting cerebral blood flow in VCID mice. At cellular levels, iTBS rescued the loss of mature oligodendrocytes, promoted precursor cell differentiation, and inhibited pro-inflammatory activation of astrocytes and microglia. Notably, iTBS attenuated cognitive deterioration in both short-term retention and long-term spatial memory of VCID mice as indicated by serial neurobehavioral tests. To explore the molecular involvement of iTBS, mRNA sequencing was carried out. By real-time PCR and combined RNA fluorescence in situ hybridization with immunofluorescence, iTBS was confirmed to increase Rxrg expression specifically in mature oligodendrocytes. Collectively, iTBS could ameliorate vascular cognitive dysfunction, probably via mitigating white matter lesions and neuroinflammation in the corpus callosum. Rxrg signaling in mature oligodendrocytes, which was increased by iTBS, might be a potential target for VCID treatment.
Collapse
Affiliation(s)
- Di Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Zhenqian Huang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yunzi Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Xinyi Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Jia Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Qiushi Lv
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Min Wu
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Mingming Zha
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Kang Yuan
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Gelin Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China; Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
4
|
Funnell JL, Fougere J, Zahn D, Dutz S, Gilbert RJ. Delivery of TGFβ3 from Magnetically Responsive Coaxial Fibers Reduces Spinal Cord Astrocyte Reactivity In Vitro. Adv Biol (Weinh) 2024; 8:e2300531. [PMID: 38935534 PMCID: PMC11473240 DOI: 10.1002/adbi.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/29/2024] [Indexed: 06/29/2024]
Abstract
A spinal cord injury (SCI) compresses the spinal cord, killing neurons and glia at the injury site and resulting in prolonged inflammation and scarring that prevents regeneration. Astrocytes, the main glia in the spinal cord, become reactive following SCI and contribute to adverse outcomes. The anti-inflammatory cytokine transforming growth factor beta 3 (TGFβ3) has been shown to mitigate astrocyte reactivity; however, the effects of prolonged TGFβ3 exposure on reactive astrocyte phenotype have not yet been explored. This study investigates whether magnetic core-shell electrospun fibers can be used to alter the release rate of TGFβ3 using externally applied magnetic fields, with the eventual application of tailored drug delivery based on SCI severity. Magnetic core-shell fibers are fabricated by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) into the shell and TGFβ3 into the core solution for coaxial electrospinning. Magnetic field stimulation increased the release rate of TGFβ3 from the fibers by 25% over 7 days and released TGFβ3 reduced gene expression of key astrocyte reactivity markers by at least twofold. This is the first study to magnetically deliver bioactive proteins from magnetic fibers and to assess the effect of sustained release of TGFβ3 on reactive astrocyte phenotype.
Collapse
Affiliation(s)
- Jessica L Funnell
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
| | - Jasper Fougere
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
| | - Diana Zahn
- Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 2, 98693, Ilmenau, Germany
| | - Silvio Dutz
- Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 2, 98693, Ilmenau, Germany
- Westsächsische Hochschule Zwickau, Kornmarkt 1, 08056, Zwickau, Germany
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
- Albany Stratton Veteran Affairs Medical Center, 113 Holland Ave., Albany, NY, 12208, USA
| |
Collapse
|
5
|
Nguyen PT, Makowiecki K, Lewis TS, Fortune AJ, Clutterbuck M, Reale LA, Taylor BV, Rodger J, Cullen CL, Young KM. Low intensity repetitive transcranial magnetic stimulation enhances remyelination by newborn and surviving oligodendrocytes in the cuprizone model of toxic demyelination. Cell Mol Life Sci 2024; 81:346. [PMID: 39134808 PMCID: PMC11335270 DOI: 10.1007/s00018-024-05391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
In people with multiple sclerosis (MS), newborn and surviving oligodendrocytes (OLs) can contribute to remyelination, however, current therapies are unable to enhance or sustain endogenous repair. Low intensity repetitive transcranial magnetic stimulation (LI-rTMS), delivered as an intermittent theta burst stimulation (iTBS), increases the survival and maturation of newborn OLs in the healthy adult mouse cortex, but it is unclear whether LI-rTMS can promote remyelination. To examine this possibility, we fluorescently labelled oligodendrocyte progenitor cells (OPCs; Pdgfrα-CreER transgenic mice) or mature OLs (Plp-CreER transgenic mice) in the adult mouse brain and traced the fate of each cell population over time. Daily sessions of iTBS (600 pulses; 120 mT), delivered during cuprizone (CPZ) feeding, did not alter new or pre-existing OL survival but increased the number of myelin internodes elaborated by new OLs in the primary motor cortex (M1). This resulted in each new M1 OL producing ~ 471 µm more myelin. When LI-rTMS was delivered after CPZ withdrawal (during remyelination), it significantly increased the length of the internodes elaborated by new M1 and callosal OLs, increased the number of surviving OLs that supported internodes in the corpus callosum (CC), and increased the proportion of axons that were myelinated. The ability of LI-rTMS to modify cortical neuronal activity and the behaviour of new and surviving OLs, suggests that it may be a suitable adjunct intervention to enhance remyelination in people with MS.
Collapse
Affiliation(s)
- Phuong Tram Nguyen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Thomas S Lewis
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Alastair J Fortune
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Mackenzie Clutterbuck
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Laura A Reale
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
6
|
Muñoz-Jurado A, Escribano BM, Túnez I. Animal model of multiple sclerosis: Experimental autoimmune encephalomyelitis. Methods Cell Biol 2024; 188:35-60. [PMID: 38880527 DOI: 10.1016/bs.mcb.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.
| |
Collapse
|
7
|
Escribano BM, Muñoz-Jurado A, Luque E, Galván A, LaTorre M, Caballero-Villarraso J, Giraldo AI, Agüera E, Túnez I. Effect of the Combination of Different Therapies on Oxidative Stress in the Experimental Model of Multiple Sclerosis. Neuroscience 2023; 529:116-128. [PMID: 37595941 DOI: 10.1016/j.neuroscience.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Oxidative stress is heavily involved in several pathological features of Multiple Sclerosis (MS), such as myelin destruction, axonal degeneration, and inflammation. Different therapies have been shown to reduce the oxidative stress that occurs in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Some of these therapies are transcranial magnetic stimulation (TMS), extra virgin olive oil (EVOO) and S-allyl cysteine (SAC). This study aims to test the antioxidant effect of these three therapies, to compare the efficacy of SAC versus TMS and EVOO, and to analyze the effect of combining SAC + TMS and SAC and EVOO. Seventy Dark Agouti rats were used, which were divided into Control group; Vehicle group; Mock group; SAC; EVOO; TMS; SAC + EVOO; SAC + TMS; EAE; EAE + SAC; EAE + EVOO; EAE + TMS; EAE + SAC + EVOO; EAE + SAC + TMS. The TMS consisted of an oscillatory magnetic field in the form of a sine wave with a frequency of 60 Hz and an amplitude of 0.7mT (EL-EMF) applied for two hours in the morning, once a day, five days a week. SAC was administered at a dose of 50 mg/kg body weight, orally daily, five days a week. EVOO represented 10% of their calorie intake in the total standard daily diet of rats AIN-93G. All treatments were maintained for 51 days. TMS, EVOO and SAC, alone or in combination, reduce oxidative stress, increasing antioxidant defenses and also lowering the clinical score. Combination therapies do not appear to be more potent than individual therapies against the oxidative stress of EAE or its clinical symptoms.
Collapse
Affiliation(s)
- Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Spain
| | - Alberto Galván
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Spain; Analysis Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Ana I Giraldo
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Spain; Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Spain.
| |
Collapse
|
8
|
Sheng R, Chen C, Chen H, Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol 2023; 14:1197422. [PMID: 37283739 PMCID: PMC10239808 DOI: 10.3389/fimmu.2023.1197422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide, with most survivors reporting dysfunctions of motor, sensation, deglutition, cognition, emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS), one of noninvasive brain stimulation (NIBS) techniques, is able to modulate neural excitability of brain regions and has been utilized in neurological and psychiatric diseases. Moreover, a large number of studies have shown that the rTMS presents positive effects on function recovery of stroke patients. In this review, we would like to summarized the clinical benefits of rTMS for stroke rehabilitation, including improvements of motor impairment, dysphagia, depression, cognitive function, and central post-stroke pain. In addition, this review will also discuss the molecular and cellular mechanisms underlying rTMS-mediated stroke rehabilitation, especially immune regulatory mechanisms, such as regulation of immune cells and inflammatory cytokines. Moreover, the neuroimaging technique as an important tool in rTMS-mediated stroke rehabilitation has been discussed, to better understanding the mechanisms underlying the effects of rTMS. Finally, the current challenges and future prospects of rTMS-mediated stroke rehabilitation are also elucidated with the intention to accelerate its widespread clinical application.
Collapse
Affiliation(s)
- Rongjun Sheng
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Changchun Chen
- Department of Radiology, The People’s Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China
| | - Huan Chen
- Department of Radiology, The People’s Hospital of Longyou, Quzhou, China
| | - Peipei Yu
- Department of Radiology, Sanmen People’s Hospital, Taizhou, China
| |
Collapse
|
9
|
Scheinok TJ, D'Haeseleer M, Nagels G, De Bundel D, Van Schependom J. Neuronal activity and NIBS in developmental myelination and remyelination - current state of knowledge. Prog Neurobiol 2023; 226:102459. [PMID: 37127087 DOI: 10.1016/j.pneurobio.2023.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Oligodendrocytes are responsible for myelinating central nervous system (CNS) axons. and rapid electrical transmission through saltatory conduction of action potentials. Myelination and myelin repair rely partially on oligodendrogenesis, which comprises. oligodendrocyte precursor cell (OPC) migration, maturation, and differentiation into. oligodendrocytes (OL). In multiple sclerosis (MS), demyelination occurs due to an. inflammatory cascade with auto-reactive T-cells. When oligodendrogenesis fails, remyelination becomes aberrant and conduction impairments are no longer restored. Although current disease modifying therapies have achieved results in modulating the. faulty immune response, disease progression continues because of chronic. inflammation, neurodegeneration, and failure of remyelination. Therapies have been. tried to promote remyelination. Modulation of neuronal activity seems to be a very. promising strategy in preclinical studies. Additionally, studies in people with MS. (pwMS) have shown symptom improvement following non-invasive brain stimulation. (NIBS) techniques. The aforementioned mechanisms are yet unknown and probably. involve both the activation of neurons and glial cells. Noting neuronal activity. contributes to myelin plasticity and that NIBS modulates neuronal activity; we argue. that NIBS is a promising research horizon for demyelinating diseases. We review the. hypothesized pathways through which NIBS may affect both neuronal activity in the. CNS and how the resulting activity can affect oligodendrogenesis and myelination.
Collapse
Affiliation(s)
- Thomas J Scheinok
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium; Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Miguel D'Haeseleer
- Nationaal Multiple Sclerose Centrum, Vanheylenstraat 16, 1820 Melsbroek, Belgium
| | - Guy Nagels
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium; St Edmund Hall, University of Oxford, Queen's Lane, Oxford, UK
| | - Dimitri De Bundel
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Jeroen Van Schependom
- AIMS Lab, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium; Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| |
Collapse
|
10
|
Zhou X, Li K, Chen S, Zhou W, Li J, Huang Q, Xu T, Gao Z, Wang D, Zhao S, Dong H. Clinical application of transcranial magnetic stimulation in multiple sclerosis. Front Immunol 2022; 13:902658. [PMID: 36131925 PMCID: PMC9483183 DOI: 10.3389/fimmu.2022.902658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Multiple sclerosis (MS) is a common chronic, autoimmune-mediated inflammatory and neurodegenerative disease of the central nervous system. The treatment of MS has enormous progress with disease-modifying drugs, but the complexity of the disease course and the clinical symptoms of MS requires personalized treatment and disease management, including non-pharmacological treatment. Transcranial magnetic stimulation (TMS) is a painless and non-invasive brain stimulation technique, which has been widely used in neurological diseases. In this review, we mainly focus on the progress of physiological assessment and treatment of TMS in MS.
Collapse
Affiliation(s)
- Xiaoliang Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kailin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenbin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Xu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhiyuan Gao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongyu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuo Zhao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Dong
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
11
|
High-Frequency Repetitive Transcranial Magnetic Stimulation Regulates Astrocyte Activation by Modulating the Endocannabinoid System in Parkinson’s Disease. Mol Neurobiol 2022; 59:5121-5134. [DOI: 10.1007/s12035-022-02879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
12
|
Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022; 30:1569-1596. [PMID: 35665873 PMCID: PMC9167428 DOI: 10.1007/s10787-022-01011-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful in controlling the microbiota. CONCLUSION Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.
Collapse
|
13
|
Escribano BM, Muñoz-Jurado A, Luque E, Conde C, Feijóo M, LaTorre M, Valdelvira ME, Buendía P, Giraldo AI, Caballero-Villarraso J, Santamaría A, Agüera E, Túnez I. Lactose and Casein Cause Changes on Biomarkers of Oxidative Damage and Dysbiosis in an Experimental Model of Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:680-692. [PMID: 34875994 DOI: 10.2174/1871527320666211207101113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Experimental Autoimmune Encephalomyelitis (EAE) in rats closely reproduces Multiple Sclerosis (MS), a disease characterized by neuroinflammation and oxidative stress that also appears to extend to other organs and their compartments. The origin of MS is a matter for discussion, but it would seem that altering certain bacterial populations present in the gut may lead to a proinflammatory condition due to the bacterial Lipopolysaccharides (LPS) in the so-called brain-gut axis. The casein and lactose in milk confer anti-inflammatory properties and immunomodulatory effects. The objectives of this study were to evaluate the effects of administration of casein and lactose on the oxidative damage and the clinical status caused by EAE and to verify whether both casein and lactose had any effect on the LPS and its transport protein -LBP-. METHODS Twenty male Dark Agouti rats were divided into control rats (control), EAE rats, and EAE rats, to which casein and lactose, EAE+casein, and EAE+lactose, respectively, were administered. Fifty-one days after casein and lactose administration, the rats were sacrificed, and different organs were studied (brain, spinal cord, blood, heart, liver, kidney, small, and large intestine). In the latter, products derived from oxidative stress were studied (lipid peroxides and carbonylated proteins) as well as the glutathione redox system, various inflammation factors (total nitrite, Nuclear Factor-kappa B p65, the Rat Tumour Necrosis Factor-α), and the LPS and LBP values. RESULTS AND CONCLUSION Casein and lactose administration improved the clinical aspect of the disease at the same time as reducing inflammation and oxidative stress, exerting its action on the glutathione redox system, or increasing GPx levels.
Collapse
Affiliation(s)
- Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain.,Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
| | - Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Cristina Conde
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Montse Feijóo
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Medical and Surgery Sciences, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Mathematics, Campus of Rabanales, University of Cordoba, Cordoba, Spain
| | - Manuel E Valdelvira
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Paula Buendía
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Canvax Biotech S.L., Cordoba, Spain
| | - Ana I Giraldo
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Clinical Analysis Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Abel Santamaría
- Laboratory of Exciting Amino Acids, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM) Ministery of Economy, Industry of Competitiveness, 28046 Madrid, Spain
| |
Collapse
|
14
|
León Ruiz M, Sospedra M, Arce Arce S, Tejeiro-Martínez J, Benito-León J. Current evidence on the potential therapeutic applications of transcranial magnetic stimulation in multiple sclerosis: A systematic review of the literature. Neurologia 2022; 37:199-215. [PMID: 29898858 DOI: 10.1016/j.nrl.2018.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/03/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION A growing number of studies have evaluated the effects of transcranial magnetic stimulation (TMS) for the symptomatic treatment of multiple sclerosis (MS). METHODS We performed a PubMed search for articles, recent books, and recommendations from the most relevant clinical practice guidelines and scientific societies regarding the use of TMS as symptomatic treatment in MS. CONCLUSIONS Excitatory electromagnetic pulses applied to the affected cerebral hemisphere allow us to optimise functional brain activity, including the transmission of nerve impulses through the demyelinated corticospinal pathway. Various studies into TMS have safely shown statistically significant improvements in spasticity, fatigue, lower urinary tract dysfunction, manual dexterity, gait, and cognitive deficits related to working memory in patients with MS; however, the exact level of evidence has not been defined as the results have not been replicated in a sufficient number of controlled studies. Further well-designed, randomised, controlled clinical trials involving a greater number of patients are warranted to attain a higher level of evidence in order to recommend the appropriate use of TMS in MS patients across the board. TMS acts as an adjuvant with other symptomatic and immunomodulatory treatments. Additional studies should specifically investigate the effect of conventional repetitive TMS on fatigue in these patients, something that has yet to see the light of day.
Collapse
Affiliation(s)
- M León Ruiz
- Servicio de Neurología, Clínica San Vicente, Madrid, España; Servicio de Neurología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, España.
| | - M Sospedra
- Sección de Neuroinmunología y de Investigación en Esclerosis Múltiple, Departamento de Neurología, Hospital Universitario de Zúrich, Zúrich, Suiza
| | - S Arce Arce
- Servicio de Psiquiatría, Clínica San Vicente, Madrid, España; Departamento de Dirección Médica, Clínica San Vicente, Madrid, España
| | - J Tejeiro-Martínez
- Servicio de Neurología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, España
| | - J Benito-León
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, España; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, España
| |
Collapse
|
15
|
León Ruiz M, Sospedra M, Arce Arce S, Tejeiro-Martínez J, Benito-León J. Current evidence on the potential therapeutic applications of transcranial magnetic stimulation in multiple sclerosis: a systematic review of the literature. Neurologia 2022; 37:199-215. [PMID: 35465914 DOI: 10.1016/j.nrleng.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION A growing number of studies have evaluated the effects of transcranial magnetic stimulation (TMS) for the symptomatic treatment of multiple sclerosis (MS). METHODS We performed a PubMed search for articles, recent books, and recommendations from the most relevant clinical practice guidelines and scientific societies regarding the use of TMS as symptomatic treatment in MS. CONCLUSIONS Excitatory electromagnetic pulses applied to the affected cerebral hemisphere allow us to optimise functional brain activity, including the transmission of nerve impulses through the demyelinated corticospinal pathway. Various studies into TMS have safely shown statistically significant improvements in spasticity, fatigue, lower urinary tract dysfunction, manual dexterity, gait, and cognitive deficits related to working memory in patients with MS; however, the exact level of evidence has not been defined as the results have not been replicated in a sufficient number of controlled studies. Further well-designed, randomised, controlled clinical trials involving a greater number of patients are warranted to attain a higher level of evidence in order to recommend the appropriate use of TMS in MS patients across the board. TMS acts as an adjuvant with other symptomatic and immunomodulatory treatments. Additional studies should specifically investigate the effect of conventional repetitive TMS on fatigue in these patients, something that has yet to see the light of day.
Collapse
Affiliation(s)
- M León Ruiz
- Servicio de Neurología, Clínica San Vicente, Madrid, Spain; Servicio de Neurología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - M Sospedra
- Sección de Neuroinmunología y de Investigación en Esclerosis Múltiple, Departamento de Neurología, Hospital Universitario de Zúrich, Zurich, Switzerland
| | - S Arce Arce
- Servicio de Psiquiatría, Clínica San Vicente, Madrid, Spain; Departamento de Dirección Médica, Clínica San Vicente, Madrid, Spain
| | - J Tejeiro-Martínez
- Servicio de Neurología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - J Benito-León
- Servicio de Neurología, Hospital Universitario 12 de Octubre, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
16
|
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF, Bashir S. Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res 2022; 17:251-265. [PMID: 34269184 PMCID: PMC8464007 DOI: 10.4103/1673-5374.317962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Brain stimulation techniques offer powerful means of modulating the physiology of specific neural structures. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation, have emerged as therapeutic tools for neurology and neuroscience. However, the possible repercussions of these techniques remain unclear, and there are few reports on the incisive recovery mechanisms through brain stimulation. Although several studies have recommended the use of non-invasive brain stimulation in clinical neuroscience, with a special emphasis on TMS, the suggested mechanisms of action have not been confirmed directly at the neural level. Insights into the neural mechanisms of non-invasive brain stimulation would unveil the strategies necessary to enhance the safety and efficacy of this progressive approach. Therefore, animal studies investigating the mechanisms of TMS-induced recovery at the neural level are crucial for the elaboration of non-invasive brain stimulation. Translational research done using animal models has several advantages and is able to investigate knowledge gaps by directly targeting neuronal levels. In this review, we have discussed the role of TMS in different animal models, the impact of animal studies on various disease states, and the findings regarding brain function of animal models after TMS in pharmacology research.
Collapse
Affiliation(s)
- Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, South Korea
- Hallym Institute for Translational Genomics & Bioinformatics, Hallym University College of Medicine, Anyang, South Korea
| | - Ali Mir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Reem Fahd Bunyan
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
17
|
Peña-Toledo MA, Luque E, Ruz-Caracuel I, Agüera E, Jimena I, Peña-Amaro J, Tunez I. Transcranial Magnetic Stimulation Improves Muscle Involvement in Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2021; 22:ijms22168589. [PMID: 34445295 PMCID: PMC8395284 DOI: 10.3390/ijms22168589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle is affected in experimental autoimmune encephalomyelitis (EAE), which is a model of multiple sclerosis that produces changes including muscle atrophy; histological features of neurogenic involvement, and increased oxidative stress. In this study, we aimed to evaluate the therapeutic effects of transcranial magnetic stimulation (TMS) on the involvement of rat skeletal muscle and to compare them with those produced by natalizumab (NTZ). EAE was induced by injecting myelin oligodendrocyte glycoprotein (MOG) into Dark Agouti rats. Both treatments, NTZ and TMS, were implemented from day 15 to day 35. Clinical severity was studied, and after sacrifice, the soleus and extensor digitorum longus muscles were extracted for subsequent histological and biochemical analysis. The treatment with TMS and NTZ had a beneficial effect on muscle involvement in the EAE model. There was a clinical improvement in functional motor deficits, atrophy was attenuated, neurogenic muscle lesions were reduced, and the level of oxidative stress biomarkers was lower in both treatment groups. Compared to NTZ, the best response was obtained with TMS for all the parameters analyzed. The myoprotective effect of TMS was higher than that of NTZ. Thus, the use of TMS may be an effective strategy to reduce muscle involvement in multiple sclerosis.
Collapse
MESH Headings
- Animals
- Cell Count
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Male
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Atrophy/physiopathology
- Muscular Atrophy/prevention & control
- Myelin-Oligodendrocyte Glycoprotein
- Natalizumab/pharmacology
- Rats
- Transcranial Magnetic Stimulation
Collapse
Affiliation(s)
- Maria Angeles Peña-Toledo
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Ruz-Caracuel
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
| | - Eduardo Agüera
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Jimena
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
| | - Jose Peña-Amaro
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
| | - Isaac Tunez
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, 14004 Cordoba, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministery for Economy, Industry and Competitiveness, 28046 Madrid, Spain
| |
Collapse
|
18
|
Feng W. Tectorigenin attenuates cognitive impairments in mice with chronic cerebral ischemia by inhibiting the TLR4/NF-κB signaling pathway. Biosci Biotechnol Biochem 2021; 85:1665-1674. [PMID: 34014269 DOI: 10.1093/bbb/zbab086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
This study aims to explore the effect of Tectorigenin in chronic cerebral ischemia (CCI)-induced cognitive impairment mice model. Cognitive impairment, hippocampal tissue histopathology, and myelin density in CCI mice were detected. HT22 cells were used to induce oxygen-glucose deprivation/reperfusion (OGD/R) injury. Cell viability and apoptosis of transfected HT22 cells and toll-like receptor-4 (TLR4)/nuclear factor-kappaB (NF-κB) pathway-related factor levels in hippocampal tissue and OGD/R models were detected. CCI caused cognitive impairment, hippocampal damage, and decreased myelin density in mice while promoting interleukin-1β, tumor necrosis factor-alpha, TLR4, myeloid differentiation primary response gene 88, p-p65, NLRP3, and ASC levels. Tectorigenin reversed the effects of CCI in mice and reversed the promoting effects of OGD/R on apoptosis and TLR4/NF-κB pathway-related factors levels, while overexpressed TLR4 reversed the effects of Tectorigenin in OGD/R-induced HT-22 cells. Tectorigenin alleviated cognitive impairment in CCI mice by inhibiting the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Feng
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin City, Jilin Province, China
| |
Collapse
|
19
|
Roque C, Pinto N, Vaz Patto M, Baltazar G. Astrocytes contribute to the neuronal recovery promoted by high-frequency repetitive magnetic stimulation in in vitro models of ischemia. J Neurosci Res 2021; 99:1414-1432. [PMID: 33522025 DOI: 10.1002/jnr.24792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
After decades of effort, there are no effective clinical treatments to induce the recovery of ischemia-injured tissues, and among the several strategies that have been explored, repetitive transcranial magnetic stimulation has proven to be one of the most promising, with beneficial effects in limb motor function, aphasia, hemispatial neglect, or dysphagia. Despite the clinical evidences, little is known about the mechanisms underlying those effects. The present study aimed to explore the cellular and molecular effects of high-frequency repetitive magnetic stimulation (HF-rMS) on an in vitro model of ischemia. Using primary cortical cultures exposed to oxygen and glucose deprivation followed by reperfusion, we observed that HF-rMS treatment prevents the ischemia-induced neuronal death by 21.2%, and the neurite degeneration triggered by ischemia. Our results also demonstrate that with this treatment there is an increase of 89.2% on the number cells expressing ERK1/2, of 20.1% on the number of cells expressing c-Fos, and a synaptogenic effect, through an increase of 62.9% in the number of synaptic puncta as well as of 49.4% in their intensity. Interestingly, our results indicate that astrocytes are crucial to the beneficial effects triggered by HF-rMS after ischemia, thus suggesting a direct effect of HF-rMS on these cells. The modulation of astrocytes with this non-invasive brain stimulation technique is a promising approach to promote the recovery of ischemia-induced injured tissues; however, it is essential to understand how these effects can be modulated in order to optimize the protocols and enhance the beneficial outcomes.
Collapse
Affiliation(s)
- Cláudio Roque
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Vaz Patto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Graça Baltazar
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal.,Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
20
|
Agüera E, Caballero-Villarraso J, Feijóo M, Escribano BM, Conde C, Bahamonde MC, Giraldo AI, Paz-Rojas E, Túnez I. Clinical and Neurochemical Effects of Transcranial Magnetic Stimulation (TMS) in Multiple Sclerosis: A Study Protocol for a Randomized Clinical Trial. Front Neurol 2020; 11:750. [PMID: 32849212 PMCID: PMC7431867 DOI: 10.3389/fneur.2020.00750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Transcranial Magnetic Stimulation (TMS) is a technique based on the principles of electromagnetic induction. It applies pulses of magnetic radiation that penetrate the brain tissue, and it is a non-invasive, painless, and practically innocuous procedure. Previous studies advocate the therapeutic capacity of TMS in several neurodegenerative and psychiatric processes, both in animal models and in human studies. Its uses in Parkinson's disease, Alzheimer's disease and in Huntington's chorea have shown improvement in the symptomatology and in the molecular profile, and even in the cellular density of the brain. Consequently, the extrapolation of these TMS results in the aforementioned neurodegenerative disease to other entities with etiopathogenic and clinical analogy would raise the relevance and feasibility of its use in multiple sclerosis (MS). The overall objective will be to demonstrate the effectiveness of the TMS in terms of safety and clinical improvement, as well as to observe the molecular changes in relation to the treatment. Methods and Design: Phase II clinical trial, unicentric, controlled, randomized, single blind. A total of 90 patients diagnosed with relapsing-remitting multiple sclerosis (RRMS) who meet all the inclusion criteria and do not present any of the exclusion criteria that are established and from which clinically evaluable results can be obtained. The patients included will be assigned under the 1:1:1 randomization formula, constituting three groups for the present study: 30 patients treated with natalizumab + white (placebo) + 30 patients treated with natalizumab + TMS (1 Hz) + 30 patients treated with natalizumab + TMS (5 Hz). Discussion: Results of this study will inform on the efficiency of the TMS for the treatment of MS. The expected results are that TMS is a useful therapeutic resource to improve clinical status (main parameters) and neurochemical profile (surrogate parameters); both types of parameters will be checked. Ethics and Dissemination: The study is approved by the Local Ethics Committee and registered in https://clinicaltrials.gov (NCT04062331). Dissemination will include submission to a peer-reviewed journal, patients, associations of sick people and family members, healthcare magazines and congress presentations. Trial Registration:ClinicalTrials.gov ID: NCT04062331 (registration date: 19th/ August/2019). Version Identifier: EMTr-EMRR, ver-3, 21/11/2017.
Collapse
Affiliation(s)
- Eduardo Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Gestión Clínica de Neurología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Javier Caballero-Villarraso
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departmento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain.,Unidad de Gestión Clínica de Análisis Clínicos, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Montserrat Feijóo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departmento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
| | - Begoña M Escribano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Cristina Conde
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - María C Bahamonde
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Gestión Clínica de Neurología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Ana I Giraldo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departmento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
| | - Elier Paz-Rojas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Canvax Biotech S.L., Córdoba, Spain
| | - Isaac Túnez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departmento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
21
|
Agüera E, Caballero-Villarraso J, Feijóo M, Escribano BM, Bahamonde MC, Conde C, Galván A, Túnez I. Impact of Repetitive Transcranial Magnetic Stimulation on Neurocognition and Oxidative Stress in Relapsing-Remitting Multiple Sclerosis: A Case Report. Front Neurol 2020; 11:817. [PMID: 32903741 PMCID: PMC7438891 DOI: 10.3389/fneur.2020.00817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/29/2020] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition whose manifestation and clinical evolution can present themselves in very different ways. Analogously, its treatment has to be personalized and the patient's response may be idiosyncratic. At this moment there is no cure for it, in addition to its clinical course sometimes being torpid, with a poor response to any treatment. However, Transcranial Magnetic Stimulation (TMS) has demonstrated its usefulness as a non-invasive therapeutic tool for the treatment of some psychiatric and neurodegenerative diseases. Some studies show that the application of rTMS implies improvement in patients with MS at various levels, but the effects at the psychometric level and the redox profile in blood have never been studied before, despite the fact that both aspects have been related to the severity of MS and its evolution. Here we present the case of a woman diagnosed with relapsing-remitting multiple sclerosis (RRMS) at the age of 33, with a rapid progression of her illness and a poor response to different treatments previously prescribed for 9 years. In view of the patient's clinical course, a compassionate treatment with rTMS for 1 year was proposed. Starting from the fourth month of treatment, when reviewing the status of her disease, the patient denoted a clear improvement at different levels. There followed out psychometric evaluations and blood analyses, that showed both an improvement in her neuropsychological functions and a reduction in oxidative stress in plasma, in correspondence with therTMS treatment.
Collapse
Affiliation(s)
- Eduardo Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Gestión Clínica de Neurología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Javier Caballero-Villarraso
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departmento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain.,Unidad de Gestión Clínica de Análisis Clínicos, Hospital Universitario Reina Sofía, Córdoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - Montserrat Feijóo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departmento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
| | - Begoña M Escribano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | - María C Bahamonde
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Gestión Clínica de Neurología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Cristina Conde
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Alberto Galván
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departmento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
| | - Isaac Túnez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,Departmento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
22
|
Hong Y, Liu Q, Peng M, Bai M, Li J, Sun R, Guo H, Xu P, Xie Y, Li Y, Liu L, Du J, Liu X, Yang B, Xu G. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J Neuroinflammation 2020; 17:150. [PMID: 32375835 PMCID: PMC7203826 DOI: 10.1186/s12974-020-01747-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive treatment for ischemic stroke. Astrocytes regulation has been suggested as one mechanism for rTMS effectiveness. But how rTMS regulates astrocytes remains largely undetermined. There were neurotoxic and neuroprotective phenotypes of astrocytes (also denoted as classically and alternatively activated astrocytes or A1 and A2 astrocytes) pertaining to pro- or anti-inflammatory gene expression. Pro-inflammatory or neurotoxic polarized astrocytes were induced during cerebral ischemic stroke. The present study aimed to investigate the effects of rTMS on astrocytic polarization during cerebral ischemic/reperfusion injury. Methods Three rTMS protocols were applied to primary astrocytes under normal and oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Cell survival, proliferation, and phenotypic changes were assessed after 2-day treatment. Astrocytes culture medium (ACM) from control, OGD/R, and OGD/R + rTMS groups were mixed with neuronal medium to culture neurons for 48 h and 7 days, in order to explore the influence on neuronal survival and synaptic plasticity. In vivo, rats were subjected to middle cerebral artery occlusion (MCAO), and received posterior orbital intravenous injection of ACM collected from different groups at reperfusion, and at 3 days post reperfusion. The apoptosis in the ischemic penumbra, infarct volumes, and the modified Neurological Severity Score (mNSS) were evaluated at 1 week after reperfusion, and cognitive functions were evaluated using the Morris Water Maze (MWM) tests. Finally, the 10 Hz rTMS was directly applied to MCAO rats to verify the rTMS effects on astrocytic polarization. Results Among these three frequencies, the 10 Hz protocol exerted the greatest potential to modulate astrocytic polarization after OGD/R injury. Classically activated and A1 markers were significantly inhibited by rTMS treatment. In OGD/R model, the concentration of pro-inflammatory mediator TNF-α decreased from 57.7 to 23.0 рg/mL, while anti-inflammatory mediator IL-10 increased from 99.0 to 555.1 рg/mL in the ACM after rTMS treatment. The ACM collected from rTMS-treated astrocytes significantly alleviated neuronal apoptosis induced by OGD/R injury, and promoted neuronal plasticity. In MCAO rat model, the ACM collected from rTMS treatment decreased neuronal apoptosis and infarct volumes, and improved cognitive functions. The neurotoxic astrocytes were simultaneously inhibited after rTMS treatment. Conclusion Inhibition of neurotoxic astrocytic polarization is a potential mechanism for the effectiveness of high-frequency rTMS in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Ye Hong
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Qian Liu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Mengna Peng
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Maosheng Bai
- Department of Orthopedics, Nanjing Tongren Hospital, Nanjing, 210002, Jiangsu, China.,Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210002, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Rui Sun
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.,Department of Neurology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, 210000, China
| | - Hongquan Guo
- Department of Neurology, Jinling Hospital, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Pengfei Xu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.,Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Yi Xie
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Yunzi Li
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Ling Liu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Juan Du
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Xinfeng Liu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Bin Yang
- Department of Ultrasonography, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Gelin Xu
- Department of Neurology, Jingling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
23
|
André P, Samieri C, Buisson C, Dartigues JF, Helmer C, Laugerette F, Féart C. Lipopolysaccharide-Binding Protein, Soluble CD14, and the Long-Term Risk of Alzheimer’s Disease: A Nested Case-Control Pilot Study of Older Community Dwellers from the Three-City Cohort. J Alzheimers Dis 2019; 71:751-761. [DOI: 10.3233/jad-190295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Perrine André
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team Lifelong Exposure Health and Aging, U1219, Bordeaux, France
| | - Cécilia Samieri
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team Lifelong Exposure Health and Aging, U1219, Bordeaux, France
| | - Charline Buisson
- Univ-Lyon, CarMeN laboratory, INRA U1397, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Jean-François Dartigues
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team Lifelong Exposure Health and Aging, U1219, Bordeaux, France
| | - Catherine Helmer
- INSERM, Clinical Investigation Center – Clinical Epidemiology, Bordeaux, France
| | - Fabienne Laugerette
- Univ-Lyon, CarMeN laboratory, INRA U1397, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Catherine Féart
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team Lifelong Exposure Health and Aging, U1219, Bordeaux, France
| |
Collapse
|
24
|
Metabolic Endotoxemia: A Potential Underlying Mechanism of the Relationship between Dietary Fat Intake and Risk for Cognitive Impairments in Humans? Nutrients 2019; 11:nu11081887. [PMID: 31412673 PMCID: PMC6722750 DOI: 10.3390/nu11081887] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Nutrition is a major lifestyle factor that can prevent the risk of cognitive impairment and dementia. Diet-induced metabolic endotoxemia has been proposed as a major root cause of inflammation and these pathways emerge as detrimental factors of healthy ageing. The aim of this paper was to update research focusing on the relationship between a fat-rich diet and endotoxemia, and to discuss the potential role of endotoxemia in cognitive performances. (2) Methods: We conducted a non-systematic literature review based on the PubMed database related to fat-rich meals, metabolic endotoxemia and cognitive disorders including dementia in humans. A total of 40 articles out of 942 in the first screening met the inclusion criteria. (3) Results: Evidence suggested that a fat-rich diet, depending on its quality, quantity and concomitant healthy food components, could influence metabolic endotoxemia. Since only heterogeneous cross-sectional studies are available, it remains unclear to what extent endotoxemia could be associated or not with cognitive disorders and dementia. (4) Conclusions: A fat-rich diet has the capability to provide significant increases in circulating endotoxins, which highlights nutritional strategies as a promising area for future research on inflammatory-associated diseases. The role of endotoxemia in cognitive disorders and dementia remains unclear and deserves further investigation.
Collapse
|
25
|
Cullen CL, Senesi M, Tang AD, Clutterbuck MT, Auderset L, O'Rourke ME, Rodger J, Young KM. Low-intensity transcranial magnetic stimulation promotes the survival and maturation of newborn oligodendrocytes in the adult mouse brain. Glia 2019; 67:1462-1477. [PMID: 30989733 PMCID: PMC6790715 DOI: 10.1002/glia.23620] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 11/23/2022]
Abstract
Neuronal activity is a potent extrinsic regulator of oligodendrocyte generation and central nervous system myelination. Clinically, repetitive transcranial magnetic stimulation (rTMS) is delivered to noninvasively modulate neuronal activity; however, the ability of rTMS to facilitate adaptive myelination has not been explored. By performing cre‐lox lineage tracing, to follow the fate of oligodendrocyte progenitor cells in the adult mouse brain, we determined that low intensity rTMS (LI‐rTMS), administered as an intermittent theta burst stimulation, but not as a continuous theta burst or 10 Hz stimulation, increased the number of newborn oligodendrocytes in the adult mouse cortex. LI‐rTMS did not alter oligodendrogenesis per se, but instead increased cell survival and enhanced myelination. These data suggest that LI‐rTMS can be used to noninvasively promote myelin addition to the brain, which has potential implications for the treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Matteo Senesi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | - Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Megan E O'Rourke
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia.,Brain Plasticity Lab, Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
26
|
Genc A, Dalkıran M, Pirdoğan Aydın E, Türkyılmaz Uyar E, Alkan A, Guven D, Özer ÖA, Karamustafalıoğlu O. The alteration of retinal nerve fibre layer thickness with repetitive transcranial magnetic stimulation in patients with treatment resistant major depression. Int J Psychiatry Clin Pract 2019; 23:57-61. [PMID: 30596524 DOI: 10.1080/13651501.2018.1480785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The nerves and axons of the retinal nerve fibre layer (RNFL) are similar to those in the brain and therefore retina is considered as the extension of the brain. We aimed to evaluate the RNFL thickness in the treatment-resistant major depressive patients before and after repetitive transcranial magnetic stimulation (rTMS) treatment and at least 6 months later after rTMS treatment using optical coherence tomography (OCT). METHODS Thirty patients with treatment resistant major depression and 24 healthy controls were included in the study. rTMS was applied to the left dorsolateral prefrontal cortex (DLPFC) of the patients. RESULTS rTMS was initiated in 28 patients. OCT assessments were performed in 24 patients at baseline and after rTMS treatment and in 19 patients at least sixth months after the rTMS treatment. We found significant increase in RNFL thickness compared with controls at the baseline and further increase in RNFL thickness after rTMS treatment. Although there was a decreasing trend in RNFL thickness 6 months after rTMS treatment, 6 months later RNFL thickness was still higher compared with controls. CONCLUSIONS RNFL thickness is increased in treatment resistant major depression and rTMS over the left DLPFC further increases RNFL thickness in treatment resistant major depressive patients.
Collapse
Affiliation(s)
- Abdullah Genc
- a Department of Psychiatry , Sisli Etfal Education and Research State Hospital , Istanbul , Turkey
| | - Mihriban Dalkıran
- a Department of Psychiatry , Sisli Etfal Education and Research State Hospital , Istanbul , Turkey
| | - Efruz Pirdoğan Aydın
- a Department of Psychiatry , Sisli Etfal Education and Research State Hospital , Istanbul , Turkey
| | - Ece Türkyılmaz Uyar
- a Department of Psychiatry , Sisli Etfal Education and Research State Hospital , Istanbul , Turkey
| | - Alparslan Alkan
- b Department of Ophthalmology , Sisli Etfal Education and Research State Hospital , Istanbul , Turkey
| | - Dilek Guven
- b Department of Ophthalmology , Sisli Etfal Education and Research State Hospital , Istanbul , Turkey
| | - Ömer Akil Özer
- a Department of Psychiatry , Sisli Etfal Education and Research State Hospital , Istanbul , Turkey
| | - Oğuz Karamustafalıoğlu
- a Department of Psychiatry , Sisli Etfal Education and Research State Hospital , Istanbul , Turkey
| |
Collapse
|
27
|
Medina-Fernández FJ, Escribano BM, Padilla-Del-Campo C, Drucker-Colín R, Pascual-Leone Á, Túnez I. Transcranial magnetic stimulation as an antioxidant. Free Radic Res 2018; 52:381-389. [PMID: 29385851 DOI: 10.1080/10715762.2018.1434313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last decades, different transcranial magnetic stimulation protocols have been developed as a therapeutic tool against neurodegenerative and psychiatric diseases, although the biochemical, molecular and cellular mechanisms underlying these effects are not well known. Recent data show that those magnetic stimulation protocols showing beneficial effects could trigger an anti-oxidant action that would favour, at least partially, their therapeutic effect. We have aimed to review the molecular effects related to oxidative damage induced by this therapeutic strategy, as well as from them addressing a broader definition of the anti-oxidant concept.
Collapse
Affiliation(s)
- Francisco J Medina-Fernández
- a Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería , Universidad de Córdoba , Córdoba , Spain.,b Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) , Córdoba , Spain
| | - Begoña M Escribano
- a Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería , Universidad de Córdoba , Córdoba , Spain.,c Departamento de Biología Celular, Fisiología e Inmunología , Universidad de Córdoba , Córdoba , Spain
| | | | - René Drucker-Colín
- e Departmento de Neuropatología Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM) , Ciudad de México , DF , México
| | - Álvaro Pascual-Leone
- f Division of Cognitive Neurology, Department of Neurology , Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | - Isaac Túnez
- a Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería , Universidad de Córdoba , Córdoba , Spain.,b Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) , Córdoba , Spain
| |
Collapse
|
28
|
Medina-Fernandez FJ, Escribano BM, Luque E, Caballero-Villarraso J, Gomez-Chaparro JL, Feijoo M, Garcia-Maceira FI, Pascual-Leone A, Drucker-Colin R, Tunez I. Comparative of transcranial magnetic stimulation and other treatments in experimental autoimmune encephalomyelitis. Brain Res Bull 2018; 137:140-145. [DOI: 10.1016/j.brainresbull.2017.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
|
29
|
Repetitive Transcranial Magnetic Stimulation, Cognition, and Multiple Sclerosis: An Overview. Behav Neurol 2018; 2018:8584653. [PMID: 29568339 PMCID: PMC5822759 DOI: 10.1155/2018/8584653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) affects cognition in the majority of patients. A major aspect of the disease is brain volume loss (BVL), present in all phases and types (relapsing and progressive) of the disease and linked to both motor and cognitive disabilities. Due to the lack of effective pharmacological treatments for cognition, cognitive rehabilitation and other nonpharmacological interventions such as repetitive transcranial magnetic stimulation (rTMS) have recently emerged and their potential role in functional connectivity is studied. With recently developed advanced neuroimaging and neurophysiological techniques, changes related to alterations of the brain's functional connectivity can be detected. In this overview, we focus on the brain's functional reorganization in MS, theoretical and practical aspects of rTMS utilization in humans, and its potential therapeutic role in treating cognitively impaired MS patients.
Collapse
|
30
|
Dose-dependent S-allyl cysteine ameliorates multiple sclerosis disease-related pathology by reducing oxidative stress and biomarkers of dysbiosis in experimental autoimmune encephalomyelitis. Eur J Pharmacol 2017; 815:266-273. [PMID: 28939293 DOI: 10.1016/j.ejphar.2017.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/15/2023]
Abstract
Garlic is a component of the Mediterranean diet. S-allyl cysteine (SAC), the most common organosulphur present in garlic, possesses neuroprotective properties. This investigation was performed to evaluate the dose-dependent protective action of SAC on oxidative damage, inflammation and gut microbiota alterations biomarkers. Experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis (MS) was induced by the myelin oligodendrocyte glycoprotein (MOG), whose effects were quantified by examining the changes in: clinical score, lipid peroxidation products, carbonylated proteins, glutathione system, tumor necrosis factor alpha (TNFα), and lipopolysaccharide membrane bacteria (LPS). Our results reveal that MOG induces paralysis, oxidative damage and increases in LPS binding protein (LBP) and LPS levels. In this work, two doses of SAC were compared with two dose of N-acetyl cysteine (NAC). SAC was more effective than NAC and it prevented the harmful effects induced by MOG more effectively at the dose of 50mg/kg than that of 18mg/kg. Surprisingly, NAC increases LBP levels while SAC had not such negative effect. In conclusion the data show the ability of SAC to modify EAE evolution.
Collapse
|
31
|
Medina-Fernandez FJ, Escribano BM, Agüera E, Aguilar-Luque M, Feijoo M, Luque E, Garcia-Maceira FI, Pascual-Leone A, Drucker-Colin R, Tunez I. Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis. Free Radic Res 2017; 51:460-469. [DOI: 10.1080/10715762.2017.1324955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Begoña M. Escribano
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
- Faculty of Veterinary Medicine, Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
- Department of Neurology, Reina Sofia University Hospital, Cordoba, Spain
| | - Macarena Aguilar-Luque
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Montserrat Feijoo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cordoba, Cordoba, Spain
| | - Evelio Luque
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cordoba, Cordoba, Spain
- Histology Section, Faculty of Medicine, Department of Morphological Sciences, University of Cordoba, Cordoba, Spain
| | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - René Drucker-Colin
- Department of Molecular Neuropathology, Institute of Cell Physiology, National Autonomous University of Mexico (UNAM), Ciudad de Mexico, D.F, Mexico
| | - Isaac Tunez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| |
Collapse
|