1
|
Ali MA, El Taieb MA, Younis AM, Zaki EN, Ahmed NM, Ibrahim AK, Abdellatif MAA. Plasma irisin levels in newly diagnosed leprosy patients: a case-control study. Arch Dermatol Res 2025; 317:396. [PMID: 39945874 DOI: 10.1007/s00403-025-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 05/09/2025]
Abstract
Leprosy is a granulomatous disease affecting the skin, mucous membrane, and peripheral nerves. Irisin, a novel protein, has been associated with several inflammatory and metabolic diseases and has been demonstrated in peripheral nerve cells. The objective of this study was to compare the plasma irisin levels of newly diagnosed leprosy patients with those of healthy individuals while also assessing the role of irisin in the pathogenesis of leprosy. This case-control study was conducted between January 2024 and July 2024 and compared 29 newly diagnosed leprosy patients with 29 healthy controls. The participants' demographic information and disease history, such as the duration of the disease and whether any additional family members had leprosy, were documented. The subjects' serum irisin levels were quantified via enzyme-linked immunosorbent assay (ELISA). The serum level of irisin was significantly lower in the patient group than in the control group (p value < 0.001). We found lower Irisin levels in leprosy patients than healthy controls, suggesting potential as role as a biomarker for leprosy. Further investigations, involving a large sample sized assessed both during and after therapy, are necessary to clarify the function and predictive significance of irisin in leprosy.
Collapse
Affiliation(s)
- Mahmoud Ahmed Ali
- Dermatology, Venereology Andrology Department, Faculty of Medicine, Aswan University, Aswan, Egypt.
- Venereology, and Andrology Department, Faculty of Medicine, Aswan University, Aswan, Egypt.
- Dermatology, Venereology, and Andrology Department, Faculty of Medicine, Aswan University, New Aswan, Aswan, 81528, Egypt.
| | - Moustafa Adam El Taieb
- Dermatology, Venereology Andrology Department, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Ali Mohamed Younis
- Dermatology, Venereology Andrology Department, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Esraa Nagy Zaki
- Dermatology, Venereology Andrology Department, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Nour Mohammed Ahmed
- Clinical Pathology Department, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Ahmed K Ibrahim
- Public Health Department, Faculty of Medicine, Basic Medical Science Department, Faculty of Medicine, Assiut University, Aqaba Medical Sciences University, Aqaba, Jordan
| | | |
Collapse
|
2
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
3
|
Tao L, Wang J, Wang K, Liu Q, Li H, Xu S, Gu C, Zhu Y. Exerkine FNDC5/irisin-enriched exosomes promote proliferation and inhibit ferroptosis of osteoblasts through interaction with Caveolin-1. Aging Cell 2024; 23:e14181. [PMID: 38689463 PMCID: PMC11320359 DOI: 10.1111/acel.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Postmenopausal osteoporosis is a prevalent metabolic bone disorder characterized by a decrease in bone mineral density and deterioration of bone microstructure. Despite the high prevalence of this disease, no effective treatment for osteoporosis has been developed. Exercise has long been considered a potent anabolic factor that promotes bone mass via upregulation of myokines secreted by skeletal muscle, exerting long-term osteoprotective effects and few side effects. Irisin was recently identified as a novel myokine that is significantly upregulated by exercise and could increase bone mass. However, the mechanisms underlying exercise-induced muscle-bone crosstalk remain unclear. Here, we identified that polyunsaturated fatty acids (arachidonic acid and docosahexaenoic acid) are increased in skeletal muscles following a 10-week treadmill exercise programme, which then promotes the expression and release of FNDC5/irisin. In osteoblasts, irisin binds directly to Cav1, which recruits and interacts with AMP-activated protein kinase α (AMPKα) to activate the AMPK pathway. Nrf2 is the downstream target of the AMPK pathway and increases the transcription of HMOX1 and Fpn. HMOX1 is involved in regulating the cell cycle and promotes the proliferation of osteoblasts. Moreover, upregulation of Fpn in osteoblasts enhanced iron removal, thereby suppressing ferroptosis in osteoblasts. Additionally, we confirmed that myotube-derived exosomes are involved in the transportation of irisin and enter osteoblasts through caveolae-mediated endocytosis. In conclusion, our findings highlight the crucial role of irisin, present in myotube-derived exosomes, as a crucial regulator of exercise-induced protective effects on bone, which provides novel insights into the mechanisms underlying exercise-dependent treatment of osteoporosis.
Collapse
Affiliation(s)
- Lin Tao
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Jinpeng Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Ke Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Qichang Liu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Hongyang Li
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Site Xu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Chunjian Gu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Yue Zhu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
4
|
Zhang T, Yi Q, Huang W, Feng J, Liu H. New insights into the roles of Irisin in diabetic cardiomyopathy and vascular diseases. Biomed Pharmacother 2024; 175:116631. [PMID: 38663105 DOI: 10.1016/j.biopha.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent chronic disease in the 21st century due to increased lifespan and unhealthy lifestyle choices. Extensive research indicates that exercise can play a significant role in regulating systemic metabolism by improving energy metabolism and mitigating various metabolic disorders, including DM. Irisin, a well-known exerkine, was initially reported to enhance energy expenditure by indicating the browning of white adipose tissue (WAT) through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) signaling. In this review, we summarize the potential mechanisms underlying the beneficial effects of Irisin on glucose dysmetabolism, including reducing gluconeogenesis, enhancing insulin energy expenditure, and promoting glycogenesis. Additionally, we highlight Irisin's potential to improve diabetic vascular diseases by stimulating nitric oxide (NO) production, reducing oxidative and nitrosative stress, curbing inflammation, and attenuating endothelial cell aging. Furthermore, we discuss the potential of Irisin to improve diabetic cardiomyopathy by preventing cardiomyocyte loss and reducing myocardial hypertrophy and fibrosis. Given Irisin's promising functions in managing diabetic cardiomyopathy and vascular diseases, targeting Irisin for therapeutic purposes could be a fruitful avenue for future research and clinical interventions.
Collapse
Affiliation(s)
- Tiandong Zhang
- Collage of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenhua Huang
- Collage of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; The Third People's Hospital of Longmatan District, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
Cosio PL, Moreno-Simonet L, Porcelli A, Lloret M, Padulles X, Padulles JM, Farran-Codina A, Cadefau JA. Assessment of inter-individual variability in hamstring muscle recovery after a sport-specific sprint training in women and men. Front Physiol 2024; 14:1331878. [PMID: 38264326 PMCID: PMC10803508 DOI: 10.3389/fphys.2023.1331878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Hamstring muscles are most affected by multiple sprint-based sports as a result of muscle strain during sprinting, leading to reduced performance and increased risk of injury. Therefore, the purpose of the study was to assess inter-individual variability in hamstrings recovery after a sport-specific repeated-sprint training (RST), through sprint-specific markers of muscle recovery and associated muscle damage biomarkers in women and men. Methods: Healthy females (n = 14) and males (n = 15) underwent 10 repeated 40-m sprints with a 3-min rest pause between each repetition. Force-generating capacity (FGC) by the 90° hip :20° knee test and range of motion Jurdan test, together with serum biomarkers [sarcomeric mitochondrial creatine kinase (sMtCK), oxidative stress, irisin] were tested at baseline and 24-, 48- and 72-h post-exercise through a repeated measures design. Participants were classified according to FGC loss into high responders (HR) and low responders (LR). Results: 21 individuals (10 females, 11 males) were classified as HR (FGC loss >20% and recovery >48 h), while 8 individuals (4 females, 4 males) were classified as LR. HR individuals showed unrecovered maximal voluntary isometric contraction (MVIC) torque until 72 h post-training (p = 0.003, np 2 = 0.170), whereas only HR males showed decreased range of motion (p = 0.026, np 2 = 0.116). HR individuals also showed increased sMtCK (p = 0.016, np 2 = 0.128), oxidative stress (p = 0.038, np 2 = 0.106) and irisin (p = 0.019, np 2 = 0.123). Conclusion: There is inter-individual variability in the muscular response to a sport-specific RST, identifiable by MVIC torque assessment. The findings support that the 90° hip :20° knee test is a powerful indirect test to screen hamstrings recovery in both women and men, in a cost-effective way. However, the Jurdan test might not be able to monitor hamstrings recovery in sportswomen after RST. Decreases in muscle capacity are linked to damage to muscle sarcolemma and mitochondria until 72 h post-exercise. Overall, 72 h will not be adequate time to restore hamstrings structure and function after a sport-specific RST in both female and male responders.
Collapse
Affiliation(s)
- Pedro L. Cosio
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Lia Moreno-Simonet
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Aniello Porcelli
- Department of Nutrition, Food Science and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mario Lloret
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Padulles
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep M. Padulles
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Joan A. Cadefau
- Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
6
|
Dong H, Lv X, Gao P, Hao Y. Potential role of irisin in lung diseases and advances in research. Front Pharmacol 2023; 14:1307651. [PMID: 38143500 PMCID: PMC10746167 DOI: 10.3389/fphar.2023.1307651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Irisin, a myokine, is secreted by the movement of skeletal muscles. It plays an important role in metabolic homeostasis, insulin resistance, anti-inflammation, oxidative stress, and bone metabolism. Several studies have reported that irisin-related signaling pathways play a critical role in the treatment of various diseases, including obesity, cardiovascular disease, diabetes, and neurodegenerative disorders. Recently, the potential role of irisin in lung diseases, including chronic obstructive pulmonary disease, acute lung injury, lung cancer, and their associated complications, has received increasing attention. This article aims to explore the role of irisin in lung diseases, primarily focusing on the underlying molecular mechanisms, which may serve as a marker for the diagnosis as well as a potential target for the treatment of lung diseases, thus providing new strategies for their treatment.
Collapse
Affiliation(s)
| | | | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Pelczyńska M, Miller-Kasprzak E, Piątkowski M, Mazurek R, Klause M, Suchecka A, Bucoń M, Bogdański P. The Role of Adipokines and Myokines in the Pathogenesis of Different Obesity Phenotypes-New Perspectives. Antioxidants (Basel) 2023; 12:2046. [PMID: 38136166 PMCID: PMC10740719 DOI: 10.3390/antiox12122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a characteristic disease of the twenty-first century that is affecting an increasing percentage of society. Obesity expresses itself in different phenotypes: normal-weight obesity (NWO), metabolically obese normal-weight (MONW), metabolically healthy obesity (MHO), and metabolically unhealthy obesity (MUO). A range of pathophysiological mechanisms underlie the occurrence of obesity, including inflammation, oxidative stress, adipokine secretion, and other processes related to the pathophysiology of adipose tissue (AT). Body mass index (BMI) is the key indicator in the diagnosis of obesity; however, in the case of the NWO and MONW phenotypes, the metabolic disturbances are present despite BMI being within the normal range. On the other hand, MHO subjects with elevated BMI values do not present metabolic abnormalities. The MUO phenotype involves both a high BMI value and an abnormal metabolic profile. In this regard, attention has been focused on the variety of molecules produced by AT and their role in the development of obesity. Nesfatin-1, neuregulin 4, myonectin, irisin, and brain-derived neurotrophic factor (BDNF) all seem to have protective effects against obesity. The primary mechanism underlying the action of nesfatin-1 involves an increase in insulin sensitivity and reduced food intake. Neuregulin 4 sup-presses lipogenesis, decreases lipid accumulation, and reduces chronic low-grade inflammation. Myonectin lowers the amount of fatty acids in the bloodstream by increasing their absorption in the liver and AT. Irisin stimulates the browning of white adipose tissue (WAT) and consequently in-creases energy expenditure, additionally regulating glucose metabolism. Another molecule, BDNF, has anorexigenic effects. Decorin protects against the development of hyperglycemia, but may also contribute to proinflammatory processes. Similar effects are shown in the case of visfatin and chemerin, which may predispose to obesity. Visfatin increases adipogenesis, causes cholesterol accumulation in macrophages, and contributes to the development of glucose intolerance. Chemerin induces angiogenesis, which promotes the expansion of AT. This review aims to discuss the role of adipokines and myokines in the pathogenesis of the different obesity phenotypes.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Ewa Miller-Kasprzak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Marcin Piątkowski
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Roksana Mazurek
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Mateusz Klause
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Anna Suchecka
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Magdalena Bucoń
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| |
Collapse
|
8
|
Wang Y, Wang M, Wang Y. Irisin: A Potentially Fresh Insight into the Molecular Mechanisms Underlying Vascular Aging. Aging Dis 2023; 15:2491-2506. [PMID: 38029393 PMCID: PMC11567262 DOI: 10.14336/ad.2023.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Aging is a natural process that affects all living organisms, including humans. Aging is a complex process that involves the gradual deterioration of various biological processes and systems, including the cardiovascular system. Vascular aging refers to age-related changes in blood vessels. These changes can increase the risk of developing cardiovascular diseases, such as hypertension, atherosclerosis, and stroke. Recently, an exercise-induced muscle factor, irisin, was found to directly improve metabolism and regulate the balance of glucolipid metabolism, thereby counteracting obesity and insulin resistance. Based on a growing body of evidence, irisin modulates vascular aging. Adenosine monophosphate-activated protein kinase (AMPK) serves as a pivotal cellular energy sensor and metabolic modulator, acting as a central signaling cascade to coordinate various cellular processes necessary for maintaining vascular homeostasis. The vascular regulatory effects of irisin are closely intertwined with its interaction with the AMPK pathway. In conclusion, understanding the molecular processes used by irisin to regulate changes in vascular diseases caused by aging may inspire the development of techniques that promote healthy vascular aging. This review sought to describe the impact of irisin on the molecular mechanisms of vascular aging, including inflammation, oxidative stress, and epigenetics, from the perspective of endothelial cell function and vascular macroregulation, and summarize the multiple signaling pathways used by irisin to regulate vascular aging.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Han F, Ding ZF, Shi XL, Zhu QT, Shen QH, Xu XM, Zhang JX, Gong WJ, Xiao WM, Wang D, Chen WW, Hu LH, Lu GT. Irisin inhibits neutrophil extracellular traps formation and protects against acute pancreatitis in mice. Redox Biol 2023; 64:102787. [PMID: 37392517 DOI: 10.1016/j.redox.2023.102787] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023] Open
Abstract
INTRODUCTION Irisin is a newly discovered myokine which links exercise to inflammation and inflammation-related diseases through macrophage regulation. However, the effect of irisin on the activity of inflammation related immune cells (such as neutrophils) has not been clearly described. OBJECTIVES The objective of our study was to explore the effect of irisin on the neutrophil extracellular traps (NETs) formation. METHODS Phorbol-12-myristate-13-acetate (PMA) was used to construct a classic neutrophil inflammation model that was used to observe the formation of NETs in vitro. We studied the effect of irisin on NETs formation and its regulation mechanism. Subsequently, acute pancreatitis (AP) was used to verify the protective effect of irisin in vivo, which was an acute aseptic inflammatory response disease model closely related to NETs. RESULTS Our study found that addition of irisin significantly reduced the formation of NETs via regulation of the P38/MAPK pathway through integrin αVβ5, which might be the one of key pathways in NETs formation, and which could theoretically offset the immunoregulatory effect of irisin. Systemic treatment with irisin reduced the severity of tissue damage common in the disease and inhibited the formation of NETs in pancreatic necrotic tissue of two classical AP mouse models. CONCLUSION The findings confirmed for the first time that irisin could inhibit NETs formation and protect mice from pancreatic injury, which further elucidated the protective effect of exercise on acute inflammatory injury.
Collapse
Affiliation(s)
- Fei Han
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zi-Fan Ding
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; International Sport Management, Health and Life Sciences, Northumbria University Newcastle, NE1 8ST, UK
| | - Xiao-Lei Shi
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qing-Tian Zhu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qin-Hao Shen
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xing-Meng Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Xian Zhang
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei-Juan Gong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei-Ming Xiao
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Wang
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wei-Wei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Liang-Hao Hu
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Guo-Tao Lu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
10
|
Zhang Y, Wang L, Kang H, Lin CY, Fan Y. Unlocking the Therapeutic Potential of Irisin: Harnessing Its Function in Degenerative Disorders and Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24076551. [PMID: 37047523 PMCID: PMC10095399 DOI: 10.3390/ijms24076551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Physical activity is well-established as an important protective factor against degenerative conditions and a promoter of tissue growth and renewal. The discovery of Fibronectin domain-containing protein 5 (FNDC5) as the precursor of Irisin in 2012 sparked significant interest in its potential as a diagnostic biomarker and a therapeutic agent for various diseases. Clinical studies have examined the correlation between plasma Irisin levels and pathological conditions using a range of assays, but the lack of reliable measurements for endogenous Irisin has led to uncertainty about its prognostic/diagnostic potential as an exercise surrogate. Animal and tissue-engineering models have shown the protective effects of Irisin treatment in reversing functional impairment and potentially permanent damage, but dosage ambiguities remain unresolved. This review provides a comprehensive examination of the clinical and basic studies of Irisin in the context of degenerative conditions and explores its potential as a therapeutic approach in the physiological processes involved in tissue repair/regeneration.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence:
| | - Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chia-Ying Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Department of Biomedical, Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
11
|
Jiao R, Han Z, Ma J, Wu S, Wang Z, Zhou G, Liu X, Li J, Yan X, Meng A. Irisin attenuates fine particulate matter induced acute lung injury by regulating Nod2/NF-κB signaling pathway. Immunobiology 2023; 228:152358. [PMID: 37003140 DOI: 10.1016/j.imbio.2023.152358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 04/03/2023]
Abstract
Air pollution consisting of fine particulate matter (PM2.5) can induce or aggravate pulmonary inflammatory injury. Irisin has been shown to inhibit inflammation and help to protect against acute kidney, lung or brain injury. However, the role of irisin in lung inflammation after exposure to PM2.5 remains unclear. The aim of this study was to investigate the effect and molecular mechanism of irisin supplementation on in vitro and in vivo models of PM2.5-induced acute lung injury(ALI). C57BL/6 mice and alveolar macrophage cell line (MH-S) were treated with PM2.5. Histopathological examination and FNDC5/ irisin immunofluorescence staining was performed on lung tissue sections. MH-S cell viability was determined by CCK-8 assay. The levels of Nod2, NF-κB p65 and NLRP3 were detected by qRT-PCR and western blotting. The levels of cytokines (IL-1β, IL-18 and TNF-α) were detected by ELISA. PM2.5 exposure induced increased secretion of pro-inflammatory factors and activation of Nod2, NF-κB p65 and NLRP3 as well as endogenous levels of irisin. In vivo and in vitro inflammation was alleviated by irisin supplementation. Irisin significantly decreased IL-1β, IL-18, and TNF-α production at both mRNA and protein level. Expression levels of Nod2, NF-κB p65, and NLRP3 were all significantly affected by irisin. In vivo the degree of pulmonary injury and inflammatory infiltration was weakened after irisin administration. In vitro, irisin could inhibit the activation of the NLRP3 inflammasome for a sustained period of 24 h, and its inhibitory ability was gradually enhanced. In conclusion, our findings indicate that irisin can modulate the inflammatory injury of lung tissue caused by PM2.5 through the Nod2/NF-κB signaling pathway, suggesting that irisin can be a candidate for the therapeutic or preventive intervention in acute lung inflammation.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhuoxiao Han
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jiao Ma
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Siyu Wu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zheng Wang
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Guangwei Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xinxiu Liu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xixin Yan
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Aihong Meng
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
12
|
Cytotoxic and Antioxidant Activity of Hypericum perforatum L. Extracts against Human Melanoma Cells from Different Stages of Cancer Progression, Cultured under Normoxia and Hypoxia. Molecules 2023; 28:molecules28031509. [PMID: 36771178 PMCID: PMC9921514 DOI: 10.3390/molecules28031509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
Oxidative stress and the hypoxic microenvironment play a key role in the progression of human melanoma, one of the most aggressive skin cancers. The aim of our study was to evaluate the effect of Hypericum perforatum extracts of different origins (both commercially available (HpEx2) and laboratory-prepared from wild grown (HpEx12) and in vitro cultured (HpEx13) plants) and hyperforin salt on WM115 primary and WM266-4 lymph node metastatic human melanoma cells cultured under normoxic and hypoxic conditions. The polyphenol content, radical scavenging activity, and hyperforin concentration were determined in the extracts, while cell viability, apoptosis, ROS production, and expression of NRF2 and HO-1, important oxidative stress-related factors, were analyzed after 24 h of cell stimulation with HpExs and hyperforin salt. We found that cytotoxic, pro-apoptotic and antioxidant effects depend on the extract composition, the stage of melanoma progression, and the oxygen level. Hyperforin salt showed lower activity than H. perforatum extracts. Our study for the first time showed that the anticancer activity of H. perforatum extracts differs in normoxia and hypoxia. Importantly, the composition of extracts of various origins, including in vitro cultured, resulting in their unique properties, may be important in the selection of plants for therapeutic application.
Collapse
|
13
|
Cosio PL, Pelaez M, Cadefau JA, Farran-Codina A. Systematic Review and Meta-Analysis of Circulating Irisin Levels Following Endurance Training: Results of Continuous and Interval Training. Biol Res Nurs 2022:10998004221142580. [DOI: 10.1177/10998004221142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Irisin has been suggested as a helpful hormone for adverse metabolic conditions. However, the interaction between acute endurance exercises and irisin is still unclear. The purpose of this systematic review and meta-analysis was to determine the acute effect of endurance training, either continuous or interval training, on circulating irisin in healthy adults. Methods Literature search was conducted in Web of Science, PubMed, Scopus and CINAHL until September 2022. Clinical trials measuring irisin levels following a single session of interval or continuous endurance training in healthy adults were eligible. Cohen’s d effect size (95% confidence level), subgroup analyses and univariate meta-regression were calculated using a random-effects model. The procedures described by PRISMA were followed and the protocol was prospectively registered with PROSPERO (CRD 42021240971). Results Data of the 16 included studies comprising 412 individuals showed a significant increase following one session of continuous endurance training (d = 0.33, 95% CI: 0.20 to 0.46 , p < 0.001), while interval training did not change circulating irisin (d = 0.16, 95% CI: −0.12 to 0.44 , p = 0.202). Both subgroup and univariate meta-regression analyses showed non-significant differences in the change of circulating irisin comparing blood measurement, exercise mode or previous level of physical activity of the participants and circulating irisin at baseline, duration, or intensity of the exercise, respectively. Conclusion Continuous method for endurance training increases circulating irisin in healthy adults, while studies measuring circulating irisin following interval training in healthy adults are still limited to be conclusive.
Collapse
Affiliation(s)
- Pedro L. Cosio
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Mireia Pelaez
- Faculty of Health Sciences, Universidad Europea del Atlántico, Santander, Spain
- Onkologikoa Fundazioa, Donostia, Spain
| | - Joan A. Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, XIA, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
14
|
Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target. Int J Mol Sci 2022; 23:ijms231710055. [PMID: 36077452 PMCID: PMC9456355 DOI: 10.3390/ijms231710055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is one of the most common causes of chronic liver disease worldwide. To date, there is no FDA-approved treatment, so there is an urgent need to determine its pathophysiology and underlying molecular mechanisms. Autophagy is a lysosomal degradation pathway that removes damaged organelles and misfolded proteins after cell injury through endoplasmic reticulum stress or starvation, which inhibits apoptosis and promotes cell survival. Recent studies have shown that autophagy plays an important role in removing lipid droplets from hepatocytes. Autophagy has also been reported to inhibit the production of pro-inflammatory cytokines and provide energy for the hepatic stellate cells activation during liver fibrosis. Thyroid hormone, irisin, melatonin, hydrogen sulfide, sulforaphane, DA-1241, vacuole membrane protein 1, nuclear factor erythroid 2-related factor 2, sodium-glucose co-transporter type-2 inhibitors, immunity-related GTPase M, and autophagy-related gene 7 have been reported to ameliorate MAFLD via autophagic induction. Lipid receptor CD36, SARS-CoV-2 Spike protein and leucine aminopeptidase 3 play a negative role in the autophagic function. This review summarizes recent advances in the role of autophagy in MAFLD. Autophagy modulates major pathological changes, including hepatic lipid metabolism, inflammation, and fibrosis, suggesting the potential of modulating autophagy for the treatment of MAFLD.
Collapse
|
15
|
Peng J, Wu J. Effects of the FNDC5/Irisin on Elderly Dementia and Cognitive Impairment. Front Aging Neurosci 2022; 14:863901. [PMID: 35431908 PMCID: PMC9009536 DOI: 10.3389/fnagi.2022.863901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Population aging is an inevitable problem nowadays, and the elderly are going through a lot of geriatric symptoms, especially cognitive impairment. Irisin, an exercise-stimulating cleaved product from transmembrane fibronectin type III domain-containing protein 5 (FNDC5), has been linked with favorable effects on many metabolic diseases. Recently, mounting studies also highlighted the neuroprotective effects of irisin on dementia. The current evidence remains uncertain, and few clinical trials have been undertaken to limit its clinical practice. Therefore, we provided an overview of current scientific knowledge focusing on the preventive mechanisms of irisin on senile cognitive decline and dementia, in terms of the possible connections between irisin and neurogenesis, neuroinflammation, oxidative stress, and dementia-related diseases. This study summarized the recent advances and ongoing studies, aiming to provide a better scope into the effectiveness of irisin on dementia progression, as well as a mediator of muscle brain cross talk to provide theoretical support for exercise therapy for patients with dementia. Whether irisin is a diagnostic or prognostic factor for dementia needs more researches.
Collapse
|
16
|
Yan Y, Dong R, Zhang C, Jiang Q. Interleukin-6 mediates lipopolysaccharide-inhibited irisin secretion in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 121:99-107. [PMID: 34965444 DOI: 10.1016/j.fsi.2021.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Irisin is a novel immunomodulatory adipomyokine released upon cleavage of the fibronectin type III domain-containing protein 5 (FNDC5). We aimed to examine interleukin-6 (IL-6) role in mediating irisin secretion in immunologically challenged animal and primary head kidney leukocytes cultured from tilapia. Intraperitoneal injection of lipopolysaccharide (LPS) increased plasma IL-6 levels and decreased irisin secretion, suggesting a causal relationship between the induction of IL-6 and irisin. To address this relationship, we further produced recombinant tilapia IL-6 and the anti-tilapia IL-6 polyclonal antiserum. Intraperitoneal injection of recombinant tilapia IL-6 inhibited plasma irisin levels. Consistent with this observation, LPS-induced inhibition of plasma irisin was significantly attenuated by neutralizing circulating IL-6 using an IL-6 antiserum. Besides, IL-6 treatment could inhibit irisin secretion and FNDC5 gene expression in primary cultures of tilapia head kidney leukocytes. In parallel experiments, both LPS and IL-6 blockade of irisin secretion could be reverted by IL-6 receptor antagonism. At the level of the leukocyte, IL-6 treatment also triggered rapid phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), whereas IL-6-reduced irisin secretion could be negated by inhibiting the JAK2 and STAT3 signaling pathways. These results, as a whole, provide the first evidence that IL-6 is the mediator of LPS-inhibited irisin secretion via activation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Chaoyi Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
17
|
Raafat Ibrahim R, Shafik NM, El-Esawy RO, El-Sakaa MH, Arakeeb HM, El-Sharaby RM, Ali DA, Safwat El-deeb O, Ragab Abd El-Khalik S. The emerging role of irisin in experimentally induced arthritis: a recent update involving HMGB1/MCP1/Chitotriosidase I–mediated necroptosis. Redox Rep 2022; 27:21-31. [PMID: 35094663 PMCID: PMC8803109 DOI: 10.1080/13510002.2022.2031516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Objectives Methods Results Conclusions Abbreviations
Collapse
Affiliation(s)
- Rowida Raafat Ibrahim
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noha M. Shafik
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Mervat H. El-Sakaa
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M. Arakeeb
- Anatomy & Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Dina Adam Ali
- Clinical pathology department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia Safwat El-deeb
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sara Ragab Abd El-Khalik
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Yu Q, Li G, Li J, Sun L, Yang Y, Tao L. Irisin Protects Cerebral Neurons from Hypoxia/Reoxygenation via Suppression of Apoptosis and Expression of Pro-Inflammatory Cytokines. Neuroimmunomodulation 2022; 29:425-432. [PMID: 35705003 DOI: 10.1159/000524273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Ischemic stroke is a major health issue that causes high incidents of morbidity and mortality worldwide. Irisin is an excise-induced protein that has exhibited pleiotropic properties. Accumulating evidence reveals its critical roles in the regulation of various cellular functions, including nervous system functions. This study aims to disclose the effect of irisin on rat cerebral neurons suffering from hypoxia/reoxygenation (H/R) treatment and to explore the potential underlying molecular mechanisms. METHODS The percentage of rat cerebral neuron cell death was determined by flow cytometry analysis and MTT assay. The expression levels of target genes were measured by western blotting and real-time quantitative reverse transcription PCR assay. RESULTS Our results demonstrated that irisin treatment substantially reduced H/R-induced apoptosis of rat cerebral neurons. Further investigation revealed that irisin treatment markedly decreased mitogen-activated protein kinase (MAPK) signaling pathway activation and suppressed pro-informatory cytokine expression in cerebral neurons with H/R challenge. Finally, we showed that the neuroprotective effect and anti-inflammatory effect of irisin were comparable with three MAPK signaling inhibitors. CONCLUSION Irisin exerts profound neuroprotective and anti-inflammatory effects on H/R-stimulated cerebral neurons by inhibiting the MAPK signaling activation. Therefore, irisin may serve as a potential drug for the treatment of patients with ischemic stroke.
Collapse
Affiliation(s)
- Qian Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guangyao Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yonghui Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Lei Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
19
|
Wang Y, Liu H, Sun N, Li J, Peng X, Jia Y, Karch J, Yu B, Wehrens XHT, Tian J. Irisin: A Promising Target for Ischemia-Reperfusion Injury Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5391706. [PMID: 34745418 PMCID: PMC8570861 DOI: 10.1155/2021/5391706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022]
Abstract
Ischemia-reperfusion injury (IRI) is defined as the total combined damage that occurs during a period of ischemia and following the recovery of blood flow. Oxidative stress, mitochondrial dysfunction, and an inflammatory response are factors contributing to IRI-related damage that can each result in cell death. Irisin is a polypeptide that is proteolytically cleaved from the extracellular domain of fibronectin type III domain-containing protein 5 (FNDC5). Irisin acts as a myokine that potentially mediates beneficial effects of exercise by reducing oxidative stress, improving mitochondrial fitness, and suppressing inflammation. The existing literature also suggests a possible link between irisin and IRI, involving mechanisms similar to those associated with exercise. This article will review the pathogenesis of IRI and the potential benefits and current limitations of irisin as a therapeutic strategy for IRI, while highlighting the mechanistic correlations between irisin and IRI.
Collapse
Affiliation(s)
- Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Huibin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jing Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology & Biophysics, Medicine, Neuroscience, Pediatrics, And Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| |
Collapse
|
20
|
Serum irisin levels in patients with myasthenia gravis. Neurol Sci 2021; 43:2785-2790. [PMID: 34709479 DOI: 10.1007/s10072-021-05652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Myasthenia gravis (MG) is an autoimmune disorder whose main symptoms are muscle weakness and fatigue. Irisin is a novel skeletal muscle-derived myokine participating in several physiological and pathological processes. The initial objective of the project was to explore serum levels of irisin in patients with MG, as well as its correlation with disease severity. METHODS We retrospectively evaluated serum levels of irisin in 77 MG patients and 57 healthy controls (HCs) by enzyme-linked immunosorbent assay. Further, clinical parameters were measured properly. RESULTS Serum irisin levels were significantly elevated in MG patients compared with HCs (p < 0.001). Furthermore, serum irisin levels were associated with the myasthenia gravis activities of daily living score in ocular myasthenia gravis (OMG) patients (r = 0.476, p = 0.004), but there was no relationship to be considered of any relevant value in generalized myasthenia gravis (GMG) patients. Acetylcholine receptor antibody-positive MG patients had higher serum irisin levels compared with HCs. Thymoma, endotracheal intubation, or intensive care unit treatments subsequently were not found to have effect on serum levels of irisin, but tendencies of increase were observed in negative ones. CONCLUSIONS Serum irisin levels were elevated in patients with MG, suggesting its possible involvement in MG. And irisin is expected to be a signal to evaluate the activities of daily living of OMG patients, while its effect needs further study.
Collapse
|
21
|
Abstract
Irisin, a novel hormone like polypeptide, is cleaved and secreted by an unknown protease from a membrane‐spanning protein, FNDC5 (fibronectin type III domain‐containing protein 5). The current knowledge on the biological functions of irisin includes browning white adipose tissue, regulating insulin use, and anti‐inflammatory and antioxidative properties. Dysfunction of irisin has shown to be involved in cardiovascular diseases such as hypertension, coronary artery disease, myocardial infarction, and myocardial ischemia–reperfusion injury. Moreover, irisin gene variants are also associated with cardiovascular diseases. In this review, we discuss the current knowledge on irisin‐mediated regulatory mechanisms and their roles in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinjuan Fu
- Department of Cardiology The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong University Chengdu Sichuan China
| | - Fangtang Li
- Department of Cardiology The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong University Chengdu Sichuan China
| | - Yuanjuan Tang
- Department of Cardiology The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong University Chengdu Sichuan China
| | - Lin Cai
- Department of Cardiology The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong University Chengdu Sichuan China
| | - Chunyu Zeng
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing China.,State Key Laboratory of Trauma, Burns and Combined Injury Daping Hospital The Third Military Medical University Chongqing China.,Department of Cardiology of Chongqing General Hospital Cardiovascular Research Center of Chongqing CollegeUniversity of Chinese Academy of Sciences Chongqing China
| | - Yongjian Yang
- Department of Cardiovascular Medicine The General Hospital of Western Theater Command PLA Chengdu China
| | - Jian Yang
- Department of Clinical Nutrition The Third Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
22
|
Cheng ZB, Huang L, Xiao X, Sun JX, Zou ZK, Jiang JF, Lu C, Zhang HY, Zhang C. Irisin in atherosclerosis. Clin Chim Acta 2021; 522:158-166. [PMID: 34425103 DOI: 10.1016/j.cca.2021.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Irisin, a novel exercise-induced myokine, has been shown to play important roles in increasing white adipose tissue browning, regulating energy metabolism and improving insulin resistance. Growing evidence suggests a direct role for irisin in preventing atherosclerosis (AS) by inhibiting oxidative stress, improving dyslipidemia, facilitating anti-inflammation, reducing cellular damage and recovering endothelial function. In addition, some studies have noted that serum irisin levels play an essential role in cardiovascular diseases (CVDs) risk prediction, highlighting that irisin has the potential to be a useful predictive marker and therapeutic target of AS, especially in monitoring therapeutic efficacy. This review summarizes the understanding of irisin-mediated regulation in essential biological pathways and functions in atherosclerosis and prompts further exploitation of the biological properties of irisin in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jia-Xiang Sun
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zi-Kai Zou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jie-Feng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Lu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hai-Ya Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
23
|
Role of Irisin in Myocardial Infarction, Heart Failure, and Cardiac Hypertrophy. Cells 2021; 10:cells10082103. [PMID: 34440871 PMCID: PMC8392379 DOI: 10.3390/cells10082103] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Irisin is a myokine derived from the cleavage of fibronectin type III domain-containing 5. Irisin regulates mitochondrial energy, glucose metabolism, fatty acid oxidation, and fat browning. Skeletal muscle and cardiomyocytes produce irisin and affect various cardiovascular functions. In the early phase of acute myocardial infarction, an increasing irisin level can reduce endothelial damage by inhibiting inflammation and oxidative stress. By contrast, higher levels of irisin in the later phase of myocardial infarction are associated with more cardiovascular events. During different stages of heart failure, irisin has various influences on mitochondrial dysfunction, oxidative stress, metabolic imbalance, energy expenditure, and heart failure prognosis. Irisin affects blood pressure and controls hypertension through modulating vasodilatation. Moreover, irisin can enhance vasoconstriction via the hypothalamus. Because of these dual effects of irisin on cardiovascular physiology, irisin can be a critical therapeutic target in cardiovascular diseases. This review focuses on the complex functions of irisin in myocardial ischemia, heart failure, and cardiac hypertrophy.
Collapse
|
24
|
Ma LY, Liu JM, Du GL, Dang XB. Irisin attenuates lipopolysaccharide-induced acute lung injury by downregulating inflammatory cytokine expression through miR-199a-mediated Rad23b overexpression. Exp Cell Res 2021; 404:112593. [PMID: 33961841 DOI: 10.1016/j.yexcr.2021.112593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
AIMS Acute lung injury (ALI) is a leading cause of mortality as a result of inflammatory cytokine overexpression and increased rates of apoptosis. Therapies for ALI are yet to be thoroughly investigated. Recent evidence has shown that irisin exerts protective effects against many types of pathologies. The present study aimed to determine the function of irisin in an ALI mouse model induced by lipopolysaccharide (LPS) and the corresponding underlying mechanisms at the tissue, cellular, and molecular levels. MAIN METHODS We assessed irisin function in A549 cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. The cell apoptosis was evaluated by flow cytometry. Western blotting and RT-PCR were used to test expression level. Animal models of ALI was established. KEY FINDINGS We found that irisin treatment maintained lung weight, significantly reduced inflammatory cytokine expression, and alleviated lung injury by downregulating miR-199a. In LPS-stimulated cells, forced miR-199a expression downregulated Rad23b expression by targeting its 3' untranslated region, indicating that Rad23b is a direct target of miR-199a. SIGNIFICANCE These findings reveal that irisin can alleviate ALI by inhibiting miR-199a and upregulating Rad23b expression, suggesting that irisin has clinical potential for the treatment of ALI.
Collapse
Affiliation(s)
- Long-Yang Ma
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jian-Min Liu
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Gong-Liang Du
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xing-Bo Dang
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
25
|
Xu LB, Xiong J, Zhang YH, Dai Y, Ren XP, Ren YJ, Han D, Wei SH, Qi M. miR‑205‑3p promotes lung cancer progression by targeting APBB2. Mol Med Rep 2021; 24:588. [PMID: 34165160 PMCID: PMC8222966 DOI: 10.3892/mmr.2021.12227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), a leading cause of cancer-associated mortality, has resulted in low survival rates and a high mortality worldwide. Accumulating evidence has suggested that microRNAs (miRs) play critical roles in the regulation of cancer progression and the present study aimed to explore the underlying mechanism of miR-205 in NSCLC. Reverse transcription-quantitative PCR was performed, which determined that miR-205 expression was upregulated in NSCLC, and the present study detected the upregulation of miR-205-3p in a number of NSCLC cell lines and NSCLC tissues. In addition, the mediation of amyloid β precursor protein-binding family B member 2 (APBB2) by miR-205-3p was demonstrated. Moreover, miR-205-3p was predicted to directly target the 3′untranslated region of APBB2, which was confirmed using a dual-luciferase reporter assay. It was found that lentivirus mediated-APBB2 knockdown could promote cellular viability and suppress apoptosis in NSCLC cells, as determined via MTT, TUNEL and flow cytometry assays. Thus, the current findings highlighted the potential promotive impact of miR-205-3p on NSCLC processes and may provide theoretical evidence for miR-205-3p as a potential clinical gene therapy target.
Collapse
Affiliation(s)
- Ling-Bin Xu
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jie Xiong
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ya-Hui Zhang
- Department of Orthopaedics, Xi'an Daxing Hospital, Xi'an, Shaanxi 710016, P.R. China
| | - Yun Dai
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Ping Ren
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ya-Juan Ren
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Dong Han
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sheng-Hong Wei
- Department of Pulmonary and Critical Care Medicine No. 2, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Min Qi
- Imaging Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
26
|
Li H, Wang F, Yang M, Sun J, Zhao Y, Tang D. The Effect of Irisin as a Metabolic Regulator and Its Therapeutic Potential for Obesity. Int J Endocrinol 2021; 2021:6572342. [PMID: 33790964 PMCID: PMC7997758 DOI: 10.1155/2021/6572342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a worldwide health problem due to the imbalance of energy intake and energy expenditure. Irisin, a newly identified exercise-responsive myokine, which is produced by the proteolytic cleavage of fibronectin type III domain-containing protein 5 (FNDC5), has emerged as a promising therapeutic strategy to combat obesity and obesity-related complications. Various studies in mice have shown that irisin could respond to systematic exercise training and promote white-to-brown fat transdifferentiation, but the role and function of irisin in humans are controversial. In this review, we systematically introduced and analyzed the factors that may contribute to these inconsistent results. Furthermore, we also described the potential anti-inflammatory properties of irisin under a variety of inflammatory conditions. Finally, the review discussed the existing unresolved issues and controversies about irisin, including the transcription of the irisin precursor FNDC5 gene in humans, the cleavage site of the yet unknown proteolytic enzyme that cleaves irisin from FNDC5, and the reliability of irisin levels measured with available detection methods.
Collapse
Affiliation(s)
- Hui Li
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Fang Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Mu Yang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Jiao Sun
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yi Zhao
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| |
Collapse
|
27
|
Myint PK, Ito A, Appiah MG, Obeng G, Darkwah S, Kawamoto E, Gaowa A, Park EJ, Shimaoka M. Irisin supports integrin-mediated cell adhesion of lymphocytes. Biochem Biophys Rep 2021; 26:100977. [PMID: 33732908 PMCID: PMC7944048 DOI: 10.1016/j.bbrep.2021.100977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Irisin, a myokine released from skeletal muscle, has recently been found to act as a ligand for the integrins αVβ5, αVβ1, and α5β1 expressed on mesenchymal cells, thereby playing an important role in the metabolic remodeling of the bone, skeletal muscle and adipose tissues. Although the immune-modulatory effects of irisin in chronic inflammation have been documented, its interactions with lymphocytic integrins have yet to be elucidated. Here, we show that irisin supports the cell adhesion of human and mouse lymphocytes. Cell adhesion assays using a panel of inhibitory antibodies to integrins have shown that irisin-mediated lymphocyte adhesion involves multiple integrins including not only α4β1 and α5β1, but also leukocyte-specific αLβ2 and α4β7. Importantly, mouse lymphocytic TK-1 cells that lack the expression of β1 integrins have exhibited αLβ2- and α4β7-mediated cell adhesion to irisin. Irisin has also been demonstrated to bind to purified recombinant integrin αLβ2 and α4β7 proteins. Thus, irisin represents a novel ligand for integrin αLβ2 and α4β7, capable of supporting lymphocyte cell adhesion independently of β1 integrins. These results suggest that irisin may play an important role in regulating lymphocyte adhesion and migration in the inflamed vasculature. Irisin, a myokine released from skeletal muscle, binds to integrins αLβ2 and α4β7 in addition to integrins α4β1 and α5β1. Irisin acts as an integrin ligand capable of supporting cell adhesion of human and mouse lymphocytes. The results of this study significantly expand upon the role of irisin as a contributor to metabolic regulation. Irisin deposited on the inflamed vasculature may participate in the metabolic regulation of lymphocyte migration.
Collapse
Affiliation(s)
- Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan.,Department of Cardiothoracic and Vascular Surgery, Mie University Graduate School of Medicine, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan.,Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Japan
| |
Collapse
|
28
|
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Front Physiol 2021; 12:620608. [PMID: 33597894 PMCID: PMC7882619 DOI: 10.3389/fphys.2021.620608] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Exercise not only produces beneficial effects on muscle itself via various molecular pathways, but also mediates the interaction between muscles and other organs in an autocrine/paracrine manner through myokines, which plays a positive role in maintaining overall health. Irisin, an exercise-derived myokine, has been found involved in the regulation of some cardiovascular diseases. However, the relationship between irisin and cardiovascular health is not fully elucidated and there are some divergences on the regulation of irisin by exercise. In this review, we present the current knowledge on the origin and physiology of irisin, describe the regulation of irisin by acute and chronic exercises, and discuss the divergences of the related research results. Importantly, we discuss the role of irisin as a biomarker in the diagnosis of cardiovascular diseases and describe its treatment and molecular mechanism in some cardiovascular diseases. It is expected that irisin will be used as a therapeutic agent to combat cardiovascular diseases or other disorders caused by inactivity in the near future.
Collapse
Affiliation(s)
- Chunlian Ma
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Haichao Ding
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yuting Deng
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaoling Xiong
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
29
|
Mazur-Bialy AI, Pocheć E. The Time-Course of Antioxidant Irisin Activity: Role of the Nrf2/HO-1/HMGB1 Axis. Antioxidants (Basel) 2021; 10:antiox10010088. [PMID: 33440644 PMCID: PMC7827448 DOI: 10.3390/antiox10010088] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The production of free radicals is one of the basic mechanisms giving rise to the antimicrobial activity of macrophages; however, excessive accumulation of reactive oxygen species (ROS) can lead to cell damage, cell death, and release of the highly proinflammatory alarmin high-mobility group box 1 (HMGB1). This study aimed to evaluate the kinetics of antioxidant properties of the adipomyokine irisin administered shortly before or after macrophage activation to assess its effect on the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/HMGB1 pathway. The studies were performed on RAW 264.7 mouse macrophages treated with irisin (0, 25, and 50 nM) 2 h before or after lipopolysaccharide (LPS) stimulation. The effectiveness of respiratory burst and the expression of key factors of the antioxidant pathway, such as HO-1, Nrf2, superoxide dismutase 1 (SOD-1), SOD-2, glutathione peroxidase (GPx), catalase-9 (Cat-9), and HMGB1, were assessed. Irisin (50 nM) effectively reduced the free-radical production by macrophages. Furthermore, in both models, irisin altered the kinetics of expression of key factors of the downstream Nrf2/HO-1/HMGB1 pathway, leading to the increased production of Nrf2 and HO-1 and significantly reduced expression and release of HMGB1. In conclusion, irisin is a modulator of the Nrf2/HO-1/HMGB1 pathway and shows antioxidative and anti-inflammatory effects when administered both before and shortly after the activation of inflammatory mechanisms in mouse macrophages.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Biomechanics and Kinesiology, Institute of Physiotherapy, Faculty of Health Science, Jagiellonian University Medical College, Grzegorzecka 20, 31-531 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-9351
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| |
Collapse
|
30
|
Basini G, Bussolati S, Iannarelli M, Ragionieri L, Grolli S, Ramoni R, Dodi A, Gazza F, Grasselli F. The myokine irisin: localization and effects in swine late medium and large antral ovarian follicle. Domest Anim Endocrinol 2021; 74:106576. [PMID: 33120167 DOI: 10.1016/j.domaniend.2020.106576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
Irisin is mainly synthesized by skeletal muscle tissue, where it is believed to be responsible for the benefits of exercise on metabolism and cardiovascular system. In adipose tissue, its best-known effect is the browning of white adipocytes, resulting in the increase of thermogenesis and energy expenditure. As it has been largely documented that metabolic dysfunctions can frequently be associated with reductions in fertility, the possible involvement of this molecule in the regulation of reproductive processes represents an issue to be addressed. On this basis, the first aim of this work was the evaluation of the presence of irisin in the swine ovary; then, we investigated the expression of the associated molecules FNDC5, PGC-1α, and PPAR-γ. To verify a potential modulatory role both on ovarian function and on redox status, cell growth, steroidogenesis, production of superoxide anion and nitric oxide, the nonenzymatic antioxidant scavengers, were assessed in vitro on granulosa cells treated with increasing concentrations of irisin (50, 100, and 150 ng/mL). The data collected demonstrate the presence of irisin in swine ovarian follicle. Moreover, the highest concentrations tested stimulated metabolic activity and inhibited cell proliferation (P < 0.05); the peptide exerted a biphasic effect on progesterone (P < 0.01) production and, at the highest concentrations, inhibited nitric oxide while stimulated the nonenzymatic antioxidant power (P < 0.05). Superoxide anion and estradiol 17β were unaffected. The demonstration of the local presence of irisin at the ovarian level and the highlighted effects allow us to qualify this molecule as a potential physiological regulator of follicular function.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - M Iannarelli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Dodi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
31
|
A brief overview about the physiology of fibronectin type III domain-containing 5. Cell Signal 2020; 76:109805. [PMID: 33031934 DOI: 10.1016/j.cellsig.2020.109805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
|
32
|
de Oliveira M, De Sibio MT, Mathias LS, Rodrigues BM, Sakalem ME, Nogueira CR. Irisin modulates genes associated with severe coronavirus disease (COVID-19) outcome in human subcutaneous adipocytes cell culture. Mol Cell Endocrinol 2020; 515:110917. [PMID: 32593740 PMCID: PMC7315947 DOI: 10.1016/j.mce.2020.110917] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Obesity patients are more susceptible to develop COVID-19 severe outcome due to the role of angiotensin-converting enzyme 2 (ACE2) in the viral infection. ACE2 is regulated in the human cells by different genes associated with increased (TLR3, HAT1, HDAC2, KDM5B, SIRT1, RAB1A, FURIN and ADAM10) or decreased (TRIB3) virus replication. RNA-seq data revealed 14857 genes expressed in human subcutaneous adipocytes, including genes mentioned above. Irisin treatment increased by 3-fold the levels of TRIB3 transcript and decreased the levels of other genes. The decrease in FURIN and ADAM10 expression enriched diverse biological processes, including extracellular structure organization. Our results, in human subcutaneous adipocytes cell culture, indicate a positive effect of irisin on the expression of multiple genes related to viral infection by SARS-CoV-2; furthermore, translatable for other tissues and organs targeted by the novel coronavirus and present, thus, promising approaches for the treatment of COVID-19 infection as therapeutic strategy to decrease ACE2 regulatory genes.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas Solla Mathias
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Moretto Rodrigues
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marna Eliana Sakalem
- Department of Anatomy, Londrina State University (UEL), Londrina, Parana, Brazil
| | - Célia Regina Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
33
|
Abstract
The ongoing Coronavirus disease 2019 (COVID-19) outbreak in China has become the
world's leading health headline and is causing major panic and public concerns. After emerging in the
City of Wuhan, China, COVID-19 has spread to several countries becoming a worldwide pandemia.
Among the studies on COVID-19, it has been demonstrated that novel coronavirus pneumonia is closely
associated with inflammatory storms. Controlling the inflammatory response may be as important as
targeting the virus. Irisin is a muscle-contraction-induced immunomodulatory myokine related to physical
activity. Irisin drives the “browning” of white adipocytes, so enhancing metabolic uncoupling and
hence caloric expenditure. Irisin has been clearly shown to be a handyman molecule by exerting beneficial
effects on adipose tissues, pancreas, and bone through “cross-talk” between skeletal muscleadipocyte,
skeletal muscle-pancreas, and skeletal muscle-bone, respectively. Irisin has been proposed as
a promising strategy for early diagnosis and treatment of various types of cancers, neurological diseases
and inflammatory conditions. Irisin has been demonstrated to suppress the immune response, too. The
importance of irisin is demonstrated by the increase in the number of scientific papers and patents in
recent years. The identification of irisin receptor should greatly facilitate the understanding of irisin’s
function in exercise and human health. This review examines the structure and recent advances in activities
of irisin, suggesting it for further studies on the prevention and cure of COVID-19. Nowadays, studies
on irisin plasma levels and physical activity may be useful tools to further investigate the prevention
of COVID-19. Irisin may be suggested as a potential novel intervention for COVID-19 by mitigating
inflammatory storms, suppressing the immune response and simultaneously alleviating neurological disorders
such as depression and anxiety.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari, 70126, Bari, Italy
| |
Collapse
|
34
|
Frühbeck G, Fernández-Quintana B, Paniagua M, Hernández-Pardos AW, Valentí V, Moncada R, Catalán V, Becerril S, Gómez-Ambrosi J, Portincasa P, Silva C, Salvador J, Rodríguez A. FNDC4, a novel adipokine that reduces lipogenesis and promotes fat browning in human visceral adipocytes. Metabolism 2020; 108:154261. [PMID: 32407726 DOI: 10.1016/j.metabol.2020.154261] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Fibronectin type IIIdomain-containing protein 4 (FNDC4) constitutes a secreted factor showing a high homology in the fibronectin type III and transmembrane domains with the exercise-associated myokine irisin (FNDC5). We sought to evaluate whether FNDC4 mimics the anti-obesity effects of FNDC5/irisin in human adipose tissue. METHODS Plasma and adipose tissue samples of 78 patients with morbid obesity undergoing bariatric surgery and 26 normal-weight individuals were used in the present study. RESULTS Plasma FNDC4 was decreased in patients with morbid obesity, related to obesity-associated systemic inflammation and remained unchanged six months after bariatric surgery. Visceral adipose tissue from patients with morbid obesity showed higher expression of FNDC4 and its putative receptor GPR116 regardless of the degree of insulin resistance. FNDC4 content was regulated by lipogenic, lipolytic and proinflammatory stimuli in human visceral adipocytes. FNDC4 reduced intracytosolic lipid accumulation and stimulated a brown-like pattern in human adipocytes, as evidenced by an upregulated expression of UCP-1 and the brown/beige adipocyte markers PRDM16, TMEM26 and CD137. Moreover, FNDC4 treatment upregulated mitochondrial DNA content and factors involved in mitochondrial biogenesis (TFAM, NRF1 and NRF2). Human FNDC4-knockdown adipocytes exhibited an increase in lipogenesis and a reduction of brown/beige-specific fat markers as well as factors involved in mitochondrial biogenesis. CONCLUSIONS Taken together, the novel adipokine FNDC4 reduces lipogenesis and increases fat browning in human visceral adipocytes. The upregulation of FNDC4 in human visceral fat might constitute an attempt to attenuate the adipocyte hypertrophy, inflammation and impaired beige adipogenesis in the obese state.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | | | - Mirla Paniagua
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | | | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Surgery, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Anesthesia, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology University of Bari Medical School, Policlinico Hospital, Bari, Italy
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
35
|
Louzada RA, Bouviere J, Matta LP, Werneck-de-Castro JP, Dupuy C, Carvalho DP, Fortunato RS. Redox Signaling in Widespread Health Benefits of Exercise. Antioxid Redox Signal 2020; 33:745-760. [PMID: 32174127 DOI: 10.1089/ars.2019.7949] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Exercise-induced reactive oxygen species (ROS) production activates multiple intracellular signaling pathways through genomic and nongenomic mechanisms that are responsible for the beneficial effects of exercise in muscle. Beyond the positive effect of exercise on skeletal muscle cells, other tissues such as white and brown adipose, liver, central nervous system, endothelial, heart, and endocrine organ tissues are also responsive to exercise. Recent Advances: Crosstalk between different cells is essential to achieve homeostasis and to promote the benefits of exercise through paracrine or endocrine signaling. This crosstalk can be mediated by different effectors that include the secretion of metabolites of muscle contraction, myokines, and exosomes. During the past 20 years, it has been demonstrated that contracting muscle cells produce and secrete different classes of myokines, which functionally link muscle with nearly all other cell types. Critical Issues: The redox signaling behind this exercise-induced crosstalk is now being decoded. Many of these widespread beneficial effects of exercise require not only a complex ROS-dependent intramuscular signaling cascade but simultaneously, an integrated network with many remote tissues. Future Directions: Strong evidence suggests that the powerful beneficial effect of regular physical activity for preventing (or treating) a large range of disorders might also rely on ROS-mediated signaling. Within a contracting muscle, ROS signaling may control exosomes and myokines secretion. In remote tissues, exercise generates regular and synchronized ROS waves, creating a transient pro-oxidative environment in many cells. These new concepts integrate exercise, ROS-mediated signaling, and the widespread health benefits of exercise.
Collapse
Affiliation(s)
- Ruy A Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo P Matta
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Corinne Dupuy
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Denise P Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Zhu J, Wang Y, Cao Z, Du M, Hao Y, Pan J, He H. Irisin promotes cementoblast differentiation via p38 MAPK pathway. Oral Dis 2020; 26:974-982. [DOI: 10.1111/odi.13307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Jiaqi Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Yunlong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Yunru Hao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Jiawen Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
37
|
Ye W, Wang J, Lin D, Ding Z. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int J Biol Macromol 2019; 146:25-35. [PMID: 31843619 DOI: 10.1016/j.ijbiomac.2019.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/18/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Bone healing is thought to be closely related to macrophages. Irisin, a cleaved hormone-like myokine, is well known to participate in immunoregulation and regulates bone metabolism. However, whether irisin could influence osteogenesis by affecting macrophage polarization is remain unknown. Here, the present study aims to investigate the potential immunomodulatory role of irisin on macrophages polarization and its subsequent impact on osteogenesis. We demonstrated that irisin increased cell viability without toxic effect in both Raw264.7 macrophages and MC3T3-E1 cells. Furthermore, irisin treatment polarized M0 and M1 macrophages towards M2 phenotype, with increased expression of CD206-APC, ARG-1 and TGF-β1, and decreased expression of CD86-PE and TNF-α. In addition, the direct co-cultured test of Raw264.7 macrophages and pre-osteoblastic MC3T3-E1 cells showed that irisin-treated M0 and M1 macrophages promoted osteogenesis with obvious formation of mineralized particles. Interestingly, irisin exposure robustly activated AMPK-α signaling, as manifested by increased expression of phosphorylated AMPK-α. Knockdown of AMPK-α by siRNA significantly suppressed the phosphorylation of AMPK-α, abrogated irisin-induced polarization of M2 phenotype, and inhibited the osteogenic ability of Raw264.7 macrophages. Taken together, our findings showed that irisin-induced M2 polarization enhanced osteogenesis in osteoblasts, and this effect might be associated with activation of AMPK.
Collapse
Affiliation(s)
- Wenbin Ye
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Jiangze Wang
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Dasheng Lin
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China; Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University, Munich, Germany.
| | - Zhenqi Ding
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China.
| |
Collapse
|
38
|
Karampela I, Christodoulatos GS, Dalamaga M. The Role of Adipose Tissue and Adipokines in Sepsis: Inflammatory and Metabolic Considerations, and the Obesity Paradox. Curr Obes Rep 2019; 8:434-457. [PMID: 31637623 DOI: 10.1007/s13679-019-00360-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Sepsis has become a global health problem with rising incidence and high mortality, creating a substantial social and economic burden. Early diagnosis and treatment can improve outcome, but reliable sepsis biomarkers are lacking. This review summarizes current evidence of the pathophysiological mechanisms linking adipose tissue to sepsis and presents experimental and clinical data on adipokines and sepsis along with important insights into the obesity paradox in sepsis survival. RECENT FINDINGS Sepsis is characterized by significant alterations in circulating cytokines and adipokines, biologically active molecules produced by the adipose tissue, being implicated in metabolic and inflammatory processes. Although data are inconclusive regarding classic adipokines such as leptin and adiponectin, recent evidence have highlighted the striking elevation of resistin and visfatin in critical illness and sepsis as well as their association with sepsis severity and outcomes. Given that inflammatory and metabolic pathways are involved in sepsis, studying adipokines presents an attractive, innovative, and promising research field that may provide more powerful diagnostic and prognostic biomarkers as well as novel therapeutic targets, empowering the therapeutic armamentarium for sepsis management in order to improve survival.
Collapse
Affiliation(s)
- Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
39
|
Gamal RM, Mohamed ME, Hammam N, El Fetoh NA, Rashed AM, Furst DE. Preliminary study of the association of serum irisin levels with poor sleep quality in rheumatoid arthritis patients. Sleep Med 2019; 67:71-76. [PMID: 31918120 DOI: 10.1016/j.sleep.2019.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 01/25/2023]
Abstract
STUDY OBJECTIVES Sleep disorders are significant problems in patients with rheumatoid arthritis (RA) and are associated with poor quality of life. Irisin is myokine which may have anti-inflammatory and energy regulatory roles. This study assessed the association of serum irisin levels with the quality of sleep and disease activity in RA patients. METHODS In sum, 58 RA patients and 30 matched healthy controls were included. Disease activity score in 28 joints (DAS28-ESR) and the patients' global score were calculated. RA patients were grouped according to the Pittsburgh Sleep Quality Index score (PSQI) into good-sleepers (group 1) defined as a PQSI score≤5 and poor sleepers (group 2) with a PSQI > 5. Serum irisin levels were measured for both patients and controls by commercially available enzyme-linked immunosorbent assay kits. RESULTS Poor sleep quality was found in 26 (45%) of the RA patients. Irisin levels were significantly lower in RA patients with poor sleep compared to those with good sleep and healthy controls (p < 0.001). Serum irisin levels correlated inversely with disease duration, morning stiffness duration, DAS28-ESR, global score, and total PSQI score (r = -0.722 to -0.263 & p values≤0.001-0.04) indicating a possible anti-inflammatory role of irisin in RA patients. The analysis employed Student's t-test, ANOVA, and Pearson correlation. CONCLUSIONS Irisin levels were decreased in RA patients with poor sleep quality compared to RA patients with good sleep quality and healthy controls, indicating a possible association of decreased serum irisin with sleep impairment in RA patients.
Collapse
Affiliation(s)
- Rania M Gamal
- Rheumatology& Rehabilitation Department, Assuit University Hospitals, 71515, Egypt.
| | - Mona Embarek Mohamed
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University, 71515, Assiut, Egypt
| | - Nevin Hammam
- Rheumatology& Rehabilitation Department, Assuit University Hospitals, 71515, Egypt
| | - Noha Abo El Fetoh
- Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt
| | - Ahmed M Rashed
- Rheumatology& Rehabilitation Department, Assuit University Hospitals, 71515, Egypt
| | - Daniel E Furst
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles (emeritus), Los Angeles, CA, USA; Department of Rheumatology, Division of Rheumatology, University of Washington, Seattle, WA, USA; Division of Rheumatology and Experimental Medicine, University of Florence, Florence, Italy
| |
Collapse
|
40
|
Mazur-Bialy AI. Superiority of the Non-Glycosylated Form Over the Glycosylated Form of Irisin in the Attenuation of Adipocytic Meta-Inflammation: A Potential Factor in the Fight Against Insulin Resistance. Biomolecules 2019; 9:biom9090394. [PMID: 31438646 PMCID: PMC6770638 DOI: 10.3390/biom9090394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Irisin is an adipomyokine that promotes the browning of white adipose tissue and exhibits protective potential against the development of insulin resistance and type 2 diabetes. In our bodies, it occurs in its glycosylated form (G-IR): its activity is still poorly understood, because the majority of studies have used its non-glycosylated counterpart (nG-IR). Glycosylation can affect protein function: therefore, the present study attempted to compare the actions of both forms of irisin toward inflammatory activation of the main component of adipose tissue. The study was carried out in a coculture of 3T3 adipocytes and RAW 264.7 macrophages maintained in the presence of nG-IR or G-IR. The impact on vitality and the expression and release of key inflammatory mediators important for insulin resistance and diabetes development were assessed. The studies showed that both forms effectively inhibited the expression and release of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, macrophage chemotactic protein (MCP)-1, high-mobility group box (HMGB1), leptin, and adiponectin. However, in the case of TNF-α, IL-1β, MCP-1, and HMGB1, the inhibition exerted by nG-IR was more prominent than that by G-IR. In addition, only nG-IR significantly inhibited macrophage migration. Here, nG-IR seemed to be the stronger inhibitor of the development of obesity-related inflammation; however, G-IR also had anti-inflammatory potential.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Institute of Physiotherapy, Faculty of Health Science, Jagiellonian University Medical College, Grzegorzecka 20, 31-531 Krakow, Poland.
| |
Collapse
|
41
|
Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. ACTA ACUST UNITED AC 2019; 55:medicina55080485. [PMID: 31443222 PMCID: PMC6722973 DOI: 10.3390/medicina55080485] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023]
Abstract
Sedentary life style is considered to be an independent risk factor for many disorders, including development of type 2 diabetes, obesity, immune dysfunction, asthma, and neurological or coronary heart disease. Irisin is released from myocytes during physical activity, and acts as a link between muscles and other tissues and organs. This myokine is produced as a result of proteolytic cleavage of FNDC5 protein present in the membrane of myocytes. Secretion of irisin is regulated by N-linked oligosaccharides attached to the protein molecule. The two N-glycan molecules, which constitute a significant part of the irisin glycoprotein, regulate the browning of adipocytes, which is the most important function of irisin. A receptor specific for irisin has still not been discovered. In some tissues irisin probably acts via integrins, which are widely expressed transmembrane receptors. Many studies have confirmed the multifunctional role of irisin and the beneficial effects of this molecule on body homeostasis. Irisin reduces systemic inflammation, maintains the balance between resorption and bone formation, and modulates metabolic processes and the functioning of the nervous system. It suppresses the expression and release of pro-inflammatory cytokines in obese individuals and attenuates inflammation in adipose tissue. The impact of irisin on cancer cell proliferation, migration, and invasion has also been demonstrated in numerous studies, which proves its role in carcinogenesis. Owing to these pleiotropic and beneficial properties, irisin may be a potential option to prevent and treat civilization-related diseases which are, nowadays, considered to be the major health problems in Western societies.
Collapse
|
42
|
Association between Irisin, hs-CRP, and Metabolic Status in Children and Adolescents with Type 2 Diabetes Mellitus. Mediators Inflamm 2019; 2019:6737318. [PMID: 31015797 PMCID: PMC6446111 DOI: 10.1155/2019/6737318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Proinflammatory cytokines and the novel myokine irisin, a cleavage product of FNDC5, have been found to play a role in obesity and type 2 diabetes mellitus (T2DM). Irisin has been shown to increase browning of adipose tissue, thermogenesis, energy expenditure, and insulin sensitivity, yet its association with inflammatory markers is still limited. Circulating irisin has been found to be increased in obesity, while in adult subjects with T2DM decreased levels have been found. However, data establishing the association of circulating irisin in children and adolescents with T2DM has not been described in the literature. The objective of this study was to determine irisin plasma concentration and its association with metabolic and adiposity markers and with hs-CRP, a surrogate marker of inflammation used in clinical practice, in a pediatric population with T2DM. A cross-sample of 40 Mexican children and adolescents aged 7-17 were recruited, 20 diagnosed with T2DM and 20 healthy controls. Plasma irisin levels were found to be lower in the T2DM group compared with controls, which could be attributed to a reduced PGC-1α activity in muscle tissue with a consequent decrease in FNDC5 and irisin expression. Irisin concentration was found to be positively correlated with HDL-c, LDL-c, and total cholesterol, while negatively correlated with BMI, waist circumference, and triglycerides. However, after multiple regression analysis, only HDL-c correlation remained significant. hs-CRP was higher in the T2DM group and positively associated with adiposity markers, unfavorable lipid profile, insulin levels, and HOMA-IR, but no association with irisin was found. Given the favorable metabolic effects attributed to irisin, the low plasma levels found in children and adolescents with T2DM could exacerbate the inflammatory and metabolic imbalances and the intrinsic cardiovascular risk of this disease. We propose an "irisin-proinflammatory/anti-inflammatory axis" to explain the role of irisin as a metabolic regulator in obesity and T2DM.
Collapse
|
43
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
44
|
Buscemi S, Corleo D, Buscemi C, Giordano C. Does iris(in) bring bad news or good news? Eat Weight Disord 2018; 23:431-442. [PMID: 28933009 DOI: 10.1007/s40519-017-0431-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/12/2017] [Indexed: 12/15/2022] Open
Abstract
Irisin, a novel myokine produced in response to physical activity, promotes white-to-brown fat transdifferentiation. The name irisin referred to the ancient Greek goddess Iris, the messenger who delivered (bad) news from the gods. In mice, it has been demonstrated that irisin plays a key role in metabolic regulation, energy expenditure and glucose homeostasis. New findings from various studies carried out in both animals and humans suggest that irisin might also have other favorable effects, such as increasing bone cortical mass, preventing hepatic lipid accumulation, and improving cognitive functions, thus mediating many exercise-induced health benefits. However, data on the role and function of irisin in humans have prompted controversy, due mostly to the only recent confirmation of the presence of irisin in humans. Another strong limitation to the understanding of irisin mechanisms of action is the lack of knowledge about its receptor, which until now remains unidentified in humans and in animals. This review presents an overall analysis of the history of irisin, its expression, and its involvement in health, especially in humans. Level of Evidence Level V, review.
Collapse
Affiliation(s)
- Silvio Buscemi
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy. .,Unit of Malattie Endocrine, del Ricambio e della Nutrizione, AOU Policlinico "P. Giaccone", Piazza delle cliniche 2, 90127, Palermo, Italy.
| | - Davide Corleo
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy.,Unit of Malattie Endocrine, del Ricambio e della Nutrizione, AOU Policlinico "P. Giaccone", Piazza delle cliniche 2, 90127, Palermo, Italy
| | - Carola Buscemi
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy.,Unit of Malattie Endocrine, del Ricambio e della Nutrizione, AOU Policlinico "P. Giaccone", Piazza delle cliniche 2, 90127, Palermo, Italy
| | - Carla Giordano
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy.,Unit of Malattie Endocrine, del Ricambio e della Nutrizione, AOU Policlinico "P. Giaccone", Piazza delle cliniche 2, 90127, Palermo, Italy
| |
Collapse
|
45
|
|
46
|
Fatouros IG. Is irisin the new player in exercise-induced adaptations or not? A 2017 update. ACTA ACUST UNITED AC 2017; 56:525-548. [DOI: 10.1515/cclm-2017-0674] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022]
Abstract
Abstract
Irisin is produced by a proteolytic cleavage of fibronectin type III domain-containing protein 5 (FNDC5) and has emerged as a potential mediator of exercise-induced energy metabolism. The purpose of this study was to review the results of studies that investigated irisin responses to acute and chronic exercise and provide an update. A comprehensive search in the databases of MEDLINE was performed (74 exercise studies). The focus of the analysis was on data concerning FNDC5 mRNA expression in skeletal muscle and circulating irisin concentration relatively to exercise mode, intensity, frequency and duration and the characteristics of the sample used. Circulating irisin levels may either not relate to FNDC5 transcription or expression of the later precedes irisin rise in the blood. Acute speed/strength and endurance exercise protocols represent potent stimuli for irisin release if they are characterized by adequate intensity and/or duration. There are no reports regarding irisin responses to field sport activities. Although animal studies suggest that irisin may also respond to systematic exercise training, the majority of human studies has produced contradictory results. Certain methodological issues need to be considered here such as the analytical assays used to measure irisin concentration in the circulation. Results may also be affected by subjects’ age, conditioning status and exercise intensity. The role of irisin as a moderator of energy metabolism during exercise remains to be seen.
Collapse
Affiliation(s)
- Ioannis G. Fatouros
- School of Physical Education and Sports Sciences , University of Thessaly , Karies 42100 , Trikala , Greece
| |
Collapse
|
47
|
Shao L, Meng D, Yang F, Song H, Tang D. Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem Biophys Res Commun 2017; 487:194-200. [DOI: 10.1016/j.bbrc.2017.04.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
|
48
|
Anti-Inflammatory Properties of Irisin, Mediator of Physical Activity, Are Connected with TLR4/MyD88 Signaling Pathway Activation. Int J Mol Sci 2017; 18:ijms18040701. [PMID: 28346354 PMCID: PMC5412287 DOI: 10.3390/ijms18040701] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/09/2023] Open
Abstract
Irisin, an adipomiokine known as a mediator of physical activity, induces the browning of adipose tissue and it has potentially protective properties in the development of obesity-related states, such as insulin resistance, arteriosclerosis, and type 2 diabetes. Despite numerous studies conducted on this factor, still little is known about its impact on the functioning of immunocompetent cells, but its potential anti-inflammatory properties were previously suggested. In the current study we investigated the role of irisin (0-100 nM) in the downstream pathway activation of Toll-like receptor 4 (TLR4) in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS; 100 ng/mL). The results have shown that irisin in high concentrations (50, 100 nM) significantly decreased the TLR4 and MyD88 protein levels, as well as the phosphorylation of nuclear factor-κB (NF-κB), consequently leading to the reduction in the release of crucial pro-inflammatory cytokines. The above was confirmed for interleukin 1β (IL-1β), tumor necrosis factor α (TNFα), interleukin 6 (IL-6), keratinocyte chemoattractant (KC), monocyte chemotactic protein 1 (MCP-1), as well as for high mobility group box 1 (HMGB1). Moreover, our results indicate that this effect is connected with irisin's impact on the phosphorylation of mitogen-activated protein kinases (MAPKs), where a significant reduction in p-JNK and p-ERK but not p-p38 was observed. In conclusion, these data suggest that irisin has potentially anti-inflammatory properties connected with the downregulation of downstream pathways of TLR4/MyD88.
Collapse
|