1
|
Guo R, Shi L, Chen Y, Lin C, Yin W. Exploring the roles of ncRNAs in prostate cancer via the PI3K/AKT/mTOR signaling pathway. Front Immunol 2025; 16:1525741. [PMID: 40170845 PMCID: PMC11959002 DOI: 10.3389/fimmu.2025.1525741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Although various treatment options are available for prostate cancer (PCa), including androgen deprivation therapy (ADT) and chemotherapy, these approaches have not achieved the desired results clinically, especially in the treatment of advanced chemotherapy-resistant PCa. The PI3K/AKT/mTOR (PAM) signaling pathway is a classical pathway that is aberrantly activated in cancer cells and promotes the tumorigenesis, metastasis, resistance to castration therapy, chemoresistance, and recurrence of PCa. Noncoding RNAs (ncRNAs) are a class of RNAs that do not encode proteins. However, some ncRNAs have recently been shown to be differentially expressed in tumor tissues compared with noncancerous tissues and play important roles at the transcription and posttranscription levels. Among the types of ncRNAs, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), and Piwi-interacting RNAs (piRNAs) can participate in the PAM pathway to regulate PCa growth, metastasis, angiogenesis, and tumor stemness. Therefore, ncRNA therapy that targets the PAM signaling pathway is expected to be a novel and effective approach for treating PCa. In this paper, we summarize the types of ncRNAs that are associated with the PAM pathway in PCa cells as well as the functions and clinical roles of these ncRNAs in PCa. We hope to provide novel and effective strategies for the clinical diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Rongwang Guo
- Nanchang University, 999 University Avenue, Honggutan District, Nanchang, China
| | - Liji Shi
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Yonghui Chen
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Canling Lin
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Weihua Yin
- Department of Oncology, Baoan Central Hospital of Shenzhen, Bao’ an District, Shenzhen, China
| |
Collapse
|
2
|
Hassani A, Ghorbian S. Validation of gene polymorphisms (rs2682818 and rs2043556) in has-miR-618 and has-miR-605 with the breast cancer susceptibility. HUMAN GENE 2024; 42:201343. [DOI: 10.1016/j.humgen.2024.201343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
3
|
Chen D, Yin R. Engrailed 2 facilitates progression of triple-negative and HER2-enriched breast cancer by binding to enhancer region of Tenascin-C. Discov Oncol 2024; 15:705. [PMID: 39581954 PMCID: PMC11586318 DOI: 10.1007/s12672-024-01471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
Engrailed 2 (EN2) is a homeodomain-containing protein whose aberrant expression is observed in various cancer types, yet its role in breast cancer remains unclear. This study investigates the roles and mechanisms of EN2 in breast cancer progression. Using online dataset analysis, we assessed the correlation between EN2 expression and breast cancer progression and chemotherapeutic sensitivity. Functional assays, including RT-qPCR, Western blot, cell viability, transwell migration and invasion, spheroid formation, and flow cytometry, were conducted to explore EN2's role. Mechanistic insights were obtained through luciferase reporter assays, ChIP, and Caspase 3 activity detection. Our results showed that EN2 is highly expressed in breast cancer patients, negatively correlating with survival rates and positively with disease progression and reduced chemotherapy sensitivity. Functional experiments confirmed EN2's oncogenic role, and it was found to promote the expression of the oncogenic Tenascin-C (TNC) gene. Notably, EN2 directly interacts with the super-enhancer region within the TNC locus. Elevated TNC expression mitigated the effects of EN2 knockdown on breast cancer cell progression. Our study unveils a novel mechanism by which EN2 regulates the TNC locus super-enhancer, thereby activating oncogenic pathways in breast cancer.
Collapse
Affiliation(s)
- Dandan Chen
- Medical College, Taizhou Polytechnic College, No. 8 Tianxing Road, Medical High Tech Zone, Taizhou, 225300, China
| | - Rongping Yin
- Medical College, Taizhou Polytechnic College, No. 8 Tianxing Road, Medical High Tech Zone, Taizhou, 225300, China.
| |
Collapse
|
4
|
Song H, Adu-Amankwaah J, Zhao Q, Yang D, Liu K, Bushi A, Zhao J, Yuan J, Tan R. Decoding long non‑coding RNAs: Friends and foes in cancer development (Review). Int J Oncol 2024; 64:61. [PMID: 38695241 PMCID: PMC11095623 DOI: 10.3892/ijo.2024.5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer remains a formidable adversary, challenging medical advancements with its dismal prognosis, low cure rates and high mortality rates. Within this intricate landscape, long non‑coding RNAs (lncRNAs) emerge as pivotal players, orchestrating proliferation and migration of cancer cells. Harnessing the potential of lncRNAs as therapeutic targets and prognostic markers holds immense promise. The present comprehensive review delved into the molecular mechanisms underlying the involvement of lncRNAs in the onset and progression of the top five types of cancer. By meticulously examining lncRNAs across diverse types of cancer, it also uncovered their distinctive roles, highlighting their exclusive oncogenic effects or tumor suppressor properties. Notably, certain lncRNAs demonstrate diverse functions across different cancers, confounding the conventional understanding of their roles. Furthermore, the present study identified lncRNAs exhibiting aberrant expression patterns in numerous types of cancer, presenting them as potential indicators for cancer screening and diagnosis. Conversely, a subset of lncRNAs manifests tissue‑specific expression, hinting at their specialized nature and untapped significance in diagnosing and treating specific types of cancer. The present comprehensive review not only shed light on the intricate network of lncRNAs but also paved the way for further research and clinical applications. The unraveled molecular mechanisms offer a promising avenue for targeted therapeutics and personalized medicine, combating cancer proliferation, invasion and metastasis.
Collapse
Affiliation(s)
- Hequn Song
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qizhong Zhao
- Department of Emergency, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Dongqi Yang
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Kuntao Liu
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinxiang Yuan
- Lin He Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
5
|
Mendivelso González DF, Sánchez Villalobos SA, Ramos AE, Montero Ovalle WJ, Serrano López ML. Single Nucleotide Polymorphisms Associated with Prostate Cancer Progression: A Systematic Review. Cancer Invest 2024; 42:75-96. [PMID: 38055319 DOI: 10.1080/07357907.2023.2291776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND New biomarkers of progression in patients with prostate cancer (PCa) are needed to improve their classification and clinical management. This systematic review investigated the relationship between single nucleotide polymorphisms (SNPs) and PCa progression. METHODS A keyword search was performed in Pubmed, EMBASE, Scopus, Web of Science, and Cochrane for publications between 2007 and 2022. We included articles with adjusted and significant associations, a median follow-up greater than or equal to 24 months, patients taken to radical prostatectomy (RP) as a first therapeutic option, and results presented based on biochemical recurrence (BCR). RESULTS In the 27 articles selected, 73 SNPs were identified in 39 genes, organized in seven functional groups. Of these, 50 and 23 SNPs were significantly associated with a higher and lower risk of PCa progression, respectively. Likewise, four haplotypes were found to have a significant association with PCa progression. CONCLUSION This article highlights the importance of SNPs as potential markers of PCa progression and their possible functional relationship with some genes relevant to its development and progression. However, most variants were identified only in cohorts from two countries; no additional studies reproduce these findings.
Collapse
Affiliation(s)
| | | | | | | | - Martha Lucía Serrano López
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Department of Chemistry, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Bozgeyik E, Bozgeyik İ. Non-coding RNA variations in oral cancers: a comprehensive review. Gene 2022; 851:147012. [PMID: 36349577 DOI: 10.1016/j.gene.2022.147012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
7
|
Wang W, Liu W, Xu J, Jin H. MiR-33a targets FOSL1 and EN2 as a clinical prognostic marker for sarcopenia by glioma. Front Genet 2022; 13:953580. [PMID: 36061185 PMCID: PMC9428793 DOI: 10.3389/fgene.2022.953580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/30/2023] Open
Abstract
To determine the relationship between glioma and muscle aging and to predict prognosis by screening for co-expressed genes, this study examined the relationship between glioma and sarcopenia. The study identified eight co-downregulated miRNAs, three co-upregulated miRNAs, and seven genes associated with overall glioma survival, namely, KRAS, IFNB1, ALCAM, ERBB2, STAT3, FOSL1, and EN2. With a multi-factor Cox regression model incorporating FOSL1 and EN2, we obtained ROC curves of 0.702 and 0.709, respectively, suggesting that glioma prognosis can be predicted by FOSL1 and EN2, which are differentially expressed in both cancer and aged muscle. FOSL1 and EN2 were analyzed using Gene Set Enrichment Analysis to identify possible functional pathways. RT-qPCR and a dual-luciferase reporter gene system verified that hsa-miR-33a targets FOSL1 and EN2. We found that hsa-mir-33a co-targeting FOSL1 and EN2 has a good predictive value for glioblastoma and skeletal muscle reduction.
Collapse
|
8
|
Coley AB, DeMeis JD, Chaudhary NY, Borchert GM. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines 2022; 10:1819. [PMID: 36009366 PMCID: PMC9404758 DOI: 10.3390/biomedicines10081819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
In the past decade, RNA fragments derived from full-length small nucleolar RNAs (snoRNAs) have been shown to be specifically excised and functional. These sno-derived RNAs (sdRNAs) have been implicated as gene regulators in a multitude of cancers, controlling a variety of genes post-transcriptionally via association with the RNA-induced silencing complex (RISC). In this review, we have summarized the literature connecting sdRNAs to cancer gene regulation. SdRNAs possess miRNA-like functions and are able to fill the role of tumor-suppressing or tumor-promoting RNAs in a tissue context-dependent manner. Indeed, there are many miRNAs that are actually derived from snoRNA transcripts, meaning that they are truly sdRNAs and as such are included in this review. As sdRNAs are frequently discarded from ncRNA analyses, we emphasize that sdRNAs are functionally relevant gene regulators and likely represent an overlooked subclass of miRNAs. Based on the evidence provided by the papers reviewed here, we propose that sdRNAs deserve more extensive study to better understand their underlying biology and to identify previously overlooked biomarkers and therapeutic targets for a multitude of human cancers.
Collapse
Affiliation(s)
- Alexander Bishop Coley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Jeffrey David DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Neil Yash Chaudhary
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Glen Mark Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
9
|
Coley AB, Stahly AN, Kasukurthi MV, Barchie AA, Hutcheson SB, Houserova D, Huang Y, Watters BC, King VM, Dean MA, Roberts JT, DeMeis JD, Amin KV, McInnis CH, Godang NL, Wright RM, Haider DF, Piracha NB, Brown CL, Ijaz ZM, Li S, Xi Y, McDonald OG, Huang J, Borchert GM. MicroRNA-like snoRNA-Derived RNAs (sdRNAs) Promote Castration-Resistant Prostate Cancer. Cells 2022; 11:1302. [PMID: 35455981 PMCID: PMC9032336 DOI: 10.3390/cells11081302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022] Open
Abstract
We have identified 38 specifically excised, differentially expressed snoRNA fragments (sdRNAs) in TCGA prostate cancer (PCa) patient samples as compared to normal prostate controls. SnoRNA-derived fragments sdRNA-D19b and -A24 emerged among the most differentially expressed and were selected for further experimentation. We found that the overexpression of either sdRNA significantly increased PC3 (a well-established model of castration-resistant prostate cancer (CRPC)) cell proliferation, and that sdRNA-D19b overexpression also markedly increased the rate of PC3 cell migration. In addition, both sdRNAs provided drug-specific resistances with sdRNA-D19b levels correlating with paclitaxel resistance and sdRNA-24A conferring dasatinib resistance. In silico and in vitro analyses revealed that two established PCa tumor suppressor genes, CD44 and CDK12, represent targets for sdRNA-D19b and sdRNA-A24, respectively. This outlines a biologically coherent mechanism by which sdRNAs downregulate tumor suppressors in AR-PCa to enhance proliferative and metastatic capabilities and to encourage chemotherapeutic resistance. Aggressive proliferation, rampant metastasis, and recalcitrance to chemotherapy are core characteristics of CRPC that synergize to produce a pathology that ranks second in cancer-related deaths for men. This study defines sdRNA-D19b and -A24 as contributors to AR-PCa, potentially providing novel biomarkers and therapeutic targets of use in PCa clinical intervention.
Collapse
Affiliation(s)
- Alexander B. Coley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Ashlyn N. Stahly
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Mohan V. Kasukurthi
- School of Computing, University of South Alabama, Mobile, AL 36608, USA; (M.V.K.); (S.L.); (J.H.)
| | - Addison A. Barchie
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Sam B. Hutcheson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Dominika Houserova
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Yulong Huang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Brianna C. Watters
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Valeria M. King
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Meghan A. Dean
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Justin T. Roberts
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey D. DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Krisha V. Amin
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Cameron H. McInnis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Noel L. Godang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Ryan M. Wright
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - David F. Haider
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Neha B. Piracha
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- Department of Biology, University of South Alabama, Mobile, AL 36608, USA;
| | - Cana L. Brown
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Zohaib M. Ijaz
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
| | - Shengyu Li
- School of Computing, University of South Alabama, Mobile, AL 36608, USA; (M.V.K.); (S.L.); (J.H.)
| | - Yaguang Xi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Oliver G. McDonald
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA;
| | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL 36608, USA; (M.V.K.); (S.L.); (J.H.)
| | - Glen M. Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36608, USA; (A.B.C.); (A.A.B.); (S.B.H.); (D.H.); (Y.H.); (B.C.W.); (M.A.D.); (J.T.R.); (J.D.D.); (K.V.A.); (C.H.M.); (N.L.G.); (R.M.W.); (D.F.H.); (N.B.P.); (C.L.B.); (Z.M.I.)
- School of Computing, University of South Alabama, Mobile, AL 36608, USA; (M.V.K.); (S.L.); (J.H.)
| |
Collapse
|
10
|
Porzycki P. Potential clinical use of miRNA molecules in the diagnosis
of prostate cancer. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0015.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the most common type of cancer among men in Europe and this applies
to almost the whole world. Current recommendations for screening and diagnosis are
based on prostate specific antigen (PSA) measurements and the digital rectal examination
(DRE). Both of them trigger the prostate biopsy. Limited specificity of the PSA test brings, however,
a need to develop new and better diagnostic tools. In the last few years, new approaches
for providing significantly better biomarkers, an alternative to PSA, have been introduced.
Modern biomarkers show improvement not only as a diagnostic procedure, but also for staging,
evaluating aggressiveness and managing the therapeutic process. The most promising
group are molecular markers; among them microRNAs (miRNAs, miRs) are most frequent.
miRNAs represent a class of about 22 nucleotides long, small non-coding RNAs, which are
involved in gene expression regulation at the post-transcriptional level. This article reports
a revision about the role of miRNAs in PCa including data of Adreno Receptor (AR) signaling,
cell cycle, epithelial mesenchymal transition (EMT) process, cancer stem cells (CSCs)
regulation and even the role of miRNAs as PCa therapeutic tool. Finding better PCa biomarkers,
replacing the current PSA measurement, is firmly needed in modern oncology practice.
Collapse
|
11
|
Abstract
Circular RNAs (CircRNAs), belonging to non-coding RNAs, exert a crucial modulatory role in cancer progression. In this study, circRNA microarray analysis was utilized to screen differentially expressed circRNA in colorectal cancer (CRC) and circ_0000467 was identified as one circRNA whose expression was significantly upregulated in CRC. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) indicated that circ_0000467 and engrailed-2 (EN2) expression levels were up-modulated, while the expression level of miR-382-5p was down-modulated in CRC tissues. The depletion of circ_0000467 expression was found to impede the multiplication, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in CRC cells, which were examined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and Transwell experiments. Dual-luciferase reporter assay was used to verify the targeting relationship between circ_0000467 and miR-382-5p. It was also revealed that circ_0000467 could up-regulate EN2 expression via repressing miR-382-5p in CRC cells. Furthermore, EN2 overexpression counteracted the suppressing effects of circ_0000467 knockdown on the malignant behaviors of CRC cells. To sum up, circ_0000467 facilitates CRC development by modulating the miR-382-5p/EN2 axis, and circ_0000467 is a promising target for CRC therapy.
Collapse
Affiliation(s)
- Lu Xie
- Department of Gastroenterology, The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei Province, China
| | - Zhihong Pan
- Department of Gastroenterology, The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei Province, China
| |
Collapse
|
12
|
Liu S, Xie F, Gan L, Peng T, Xu X, Guo S, Fu W, Wang Y, Ouyang Y, Yang J, Wang X, Zheng Y, Zhang J, Wang H. Integration of transcriptome and cistrome analysis identifies RUNX1-target genes involved in pancreatic cancer proliferation. Genomics 2020; 112:5343-5355. [PMID: 33189780 DOI: 10.1016/j.ygeno.2020.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
The extremely high proliferation rate of tumor cells contributes to pancreatic cancer (PC) progression. Runt-related transcription factor 1(RUNX1), a key factor in hematopoiesis that was correlated with tumor progression. However, the role of RUNX1 in PC proliferation was still unclear. We found that RUNX1 was significantly upregulated in PC tissues and its expression was negatively associated with prognosis of PC patients in a multicenter analysis according to immunohistochemical (IHC). RUNX1 downregulation in PC resulted in a significantly reduced cell proliferation rate, which was consistent with in vivo subcutaneous tumor formation assay results. RNA-seq and ChIP-seq results revealed that a portion of target genes, including HAP1, GPRC5B, PTPN21, VHL and EN2, were regulated by RUNX1, a finding successfully validated by ChIP-qPCR, qRT-PCR and Western blot. Subsequently, IHC and proliferation assays showed these target genes to be dysregulated in PC, affecting tumor growth. Our data suggest that RUNX1 plays an oncogenic role in tumor proliferation and is a potential prognostic biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Songsong Liu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Lang Gan
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Tao Peng
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xuejun Xu
- Department of Hepatobiliary Surgery, General Hospital of Xinjiang Military Region of PLA, Xinjiang, PR China
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Wen Fu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Yunchao Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yongsheng Ouyang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Yao Zheng
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
13
|
Yi X, Liu C. Downregulation of microRNA-605 indicates poor prognosis and promotes the progression of osteosarcoma. Oncol Lett 2020; 20:370. [PMID: 33154768 PMCID: PMC7608056 DOI: 10.3892/ol.2020.12233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a type of primary bone tumor, which is one of the leading causes of cancer-related death. MicroRNA (miR)-605 has been demonstrated to act as a prognostic biomarker and therapeutic target in various cancers, such as breast cancer and non-small cell lung cancer, but its function in OS remains unclear. The aim of the present study was to investigate the prognostic value of miR-605 in patients with OS by evaluating its expression levels and to explore the biological function of miR-605 in OS progression. For this purpose, tumor tissues and adjacent normal tissues were collected from OS patients, and the expression of miR-605 in the collected tissues and OS MG63, U2OS, HOS, and SAOS-2 cell lines was detected by quantitative real-time PCR. The prognostic value of miR-605 was evaluated by Kaplan-Meier survival curves and Cox regression analysis. The effects of miR-605 on OS cell proliferation, migration and invasion were analyzed by the CCK-8 and transwell assays, respectively. The results of the present study revealed that miR-605 was significantly downregulated in OS tissues compared with adjacent normal tissues, which was associated with the clinical stage and distant metastasis of patients. Additionally, the downregulation of miR-605 predicted the poor prognosis of patients with OS and served as an independent prognostic indicator. The downregulation of miR-605 enhanced cell proliferation, migration, and invasion of OS cells, which suggested that miR-605 may be involved in the progression of OS. The findings of the present study provide a new therapeutic target for the treatment of patients with OS.
Collapse
Affiliation(s)
- Xiuling Yi
- Department of Spinal Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chunlei Liu
- Department of Spinal Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
14
|
Zhou Y, Yang H, Xia W, Cui L, Xu R, Lu H, Xue D, Tian Z, Ding T, Cao Y, Shi Q, He X. LncRNA MEG3 inhibits the progression of prostate cancer by facilitating H3K27 trimethylation of EN2 through binding to EZH2. J Biochem 2020; 167:295-301. [PMID: 31790140 DOI: 10.1093/jb/mvz097] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022] Open
Abstract
This study aims to study the effects of intra-nuclear lncRNA MEG3 on the progression of prostate cancer and the underlying mechanisms. Expressions of relative molecules were detected by Quantitative real time PCR (qRT-PCR) and western blot. Chromatin immunoprecipitation and RNA immunoprecipitation (RIP) assays were used to evaluate the interaction between intra-nuclear MEG3, histone methyltransferase EZH2 and Engrailed-2 (EN2). The impacts of MEG3 on the viability, proliferation and invasion of prostate cancer cells (PC3) were evaluated by methyl thiazolyl tetrazolium, colony formation and transwell assays, respectively. PC3 cells were transfected with MEG3 and transplanted into nude mice to analyse the effect of MEG3 on tumourigenesis of PC3 cells in vivo. EN2 expression was inversely proportional to MEG3 in the prostate cancer tissues and PC3 cells. RIP results showed that intra-nuclear MEG3 could bind to EZH2. Knockdown of MEG3 and/or EZH2 up-regulated EN2 expression and reduced the recruitment of EZH2 and H3K27me3 to EN2, while over-expressed MEG3 caused opposite effects. MEG3 over-expression suppressed cell viability, colony formation, cell invasion and migration of PC3 cells in vitro and inhibited tumourigenesis of PC3 cells in vivo, while EN2 over-expression diminished the effects. These findings indicated that MEG3 facilitated H3K27 trimethylation of EN2 via binding to EZH2, thus suppressed the development of prostate cancer.
Collapse
Affiliation(s)
- Yaojun Zhou
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Hongqiong Yang
- Department of Geriatric Medicine, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Wei Xia
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Li Cui
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Renfang Xu
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Hao Lu
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Dong Xue
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Zinong Tian
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Tao Ding
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Yunjie Cao
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Qianqian Shi
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| | - Xiaozhou He
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, No. 185 Juqian Street, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
15
|
Gu M, Yu X, Fan L, Zhu G, Yang F, Lou S, Ma L, Pan Y, Wang L. Genetic Variants in miRNAs Are Associated With Risk of Non-syndromic Tooth Agenesis. Front Physiol 2020; 11:1052. [PMID: 32973563 PMCID: PMC7472694 DOI: 10.3389/fphys.2020.01052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Non-syndromic tooth agenesis (NSTA) is one of the most common dental abnormalities. MiRNAs participated in the craniofacial and tooth development. Therefore, single nucleotide polymorphisms (SNPs) in miRNA genes may contribute to the susceptibility of non-syndromic tooth agenesis. Here, a total of 625 non-syndromic tooth agenesis cases and 1,144 healthy controls were recruited, and four miRNA SNPs (miR-146a/rs2910164, miR-196a2/rs11614913, pre-miR-605/rs2043556, pre-miR-618/rs2682818) were genotyped by the TaqMan platform. Rs2043556 showed nominal associations with risk of non-syndromic tooth agenesis (P Add = 0.021) in the overall analysis, as well as upper lateral incisor agenesis (P Add = 0.047) and lower incisor agenesis (P Add = 0.049) in the subgroup analysis. Notably, its significant association with upper canine agenesis was observed (P Add = 0.0016). Rs2043556 affected the mature of miR-605-3p and miR-605-5p while dual-luciferase report analysis indicated that MDM2 was the binding target of miR-605-5p. Our study indicated that pre-miR-605 rs2043556 was associated with risk of non-syndromic tooth agenesis.
Collapse
Affiliation(s)
- Min Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,Department of Dentistry, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Xin Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Liwen Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Wood A, George S, Adra N, Chintala S, Damayanti N, Pili R. Phase I study of the mTOR inhibitor everolimus in combination with the histone deacetylase inhibitor panobinostat in patients with advanced clear cell renal cell carcinoma. Invest New Drugs 2019; 38:1108-1116. [PMID: 31654285 DOI: 10.1007/s10637-019-00864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Background Preclinical studies suggested synergistic anti-tumor activity when pairing mTOR inhibitors with histone deacetylase (HDAC) inhibitors. We completed a phase I, dose-finding trial for the mTOR inhibitor everolimus combined with the HDAC inhibitor panobinostat in advanced clear cell renal cell carcinoma (ccRCC) patients. We additionally investigated expression of microRNA 605 (miR-605) in serum samples obtained from trial participants. Patients and Methods Twenty-one patients completed our single institution, non-randomized, open-label, dose-escalation phase 1 trial. miR-605 levels were measured at cycle 1/day 1 (C1D1) and C2D1. Delta Ct method was utilized to evaluate miR-605 expression using U6B as an endogenous control. Results There were 3 dosing-limiting toxicities (DLTs): grade 4 thrombocytopenia (n = 1), grade 3 thrombocytopenia (n = 1), and grade 3 neutropenia (n = 1). Everolimus 5 mg PO daily and panobinostat 10 mg PO 3 times weekly (weeks 1 and 2) given in 21-day cycles was the recommended phase II dosing based on their maximum tolerated dose. The 6-month progression-free survival was 31% with a median of 4.1 months (95% confidence internal; 2.0-7.1). There was higher baseline expression of miR-605 in patients with progressive disease (PD) vs those with stable disease (SD) (p = 0.0112). PD patients' miR-605 levels decreased after the 1st cycle (p = 0.0245), whereas SD patients' miR-605 levels increased (p = 0.0179). Conclusion A safe and tolerable dosing regimen was established for combination everolimus/panobinostat therapy with myelosuppression as the major DLT. This therapeutic pairing did not appear to improve clinical outcomes in our group of patients with advanced ccRCC. There was differential expression of miR-605 that correlated with treatment response. Clinical trial information: NCT01582009.
Collapse
Affiliation(s)
- Anthony Wood
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Saby George
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Nabil Adra
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Sreenivasulu Chintala
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Nur Damayanti
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA
| | - Roberto Pili
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, 535 Barnhill Drive, RT 400, Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Autin P, Blanquart C, Fradin D. Epigenetic Drugs for Cancer and microRNAs: A Focus on Histone Deacetylase Inhibitors. Cancers (Basel) 2019; 11:E1530. [PMID: 31658720 PMCID: PMC6827107 DOI: 10.3390/cancers11101530] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Over recent decades, it has become clear that epigenetic abnormalities are involved in the hallmarks of cancer. Histone modifications, such as acetylation, play a crucial role in cancer development and progression, by regulating gene expression, such as for oncogenes or tumor suppressor genes. Therefore, histone deacetylase inhibitors (HDACi) have recently shown efficacy against both hematological and solid cancers. Designed to target histone deacetylases (HDAC), these drugs can modify the expression pattern of numerous genes including those coding for micro-RNAs (miRNA). miRNAs are small non-coding RNAs that regulate gene expression by targeting messenger RNA. Current research has found that miRNAs from a tumor can be investigated in the tumor itself, as well as in patient body fluids. In this review, we summarized current knowledge about HDAC and HDACi in several cancers, and described their impact on miRNA expression. We discuss briefly how circulating miRNAs may be used as biomarkers of HDACi response and used to investigate response to treatment.
Collapse
Affiliation(s)
- Pierre Autin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Christophe Blanquart
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|
18
|
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019; 167:12-24. [PMID: 31493469 DOI: 10.1016/j.biochi.2019.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are important class of short regulatory RNA molecules involved in regulation of several essential biological processes. In addition to Dicer and Drosha, over the past few years several other gene products are discovered that regulates miRNA biogenesis pathways. Similarly, various models of molecular mechanisms underlying miRNA mediated gene silencing have been uncovered through which miRNA contribute in diverse physiological and pathological processes. Dysregulated miRNA expression has been reported in many cancers manifesting tumor suppressive or oncogenic role. In this review, critical overview of recent findings in miRNA biogenesis, silencing mechanisms and specifically the role of miRNA in breast, ovarian and prostate cancer will be described. Recent advancements in miRNA research summarized in this review will enhance the molecular understanding of miRNA biogenesis and mechanism of action. Also, role of miRNAs in pathogenesis of breast, ovarian and prostate cancer will provide the insights for the use of miRNAs as biomarker or therapeutic agents for the cancers.
Collapse
Affiliation(s)
- Sanna Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
19
|
Abel Y, Rederstorff M. SnoRNAs and the emerging class of sdRNAs: Multifaceted players in oncogenesis. Biochimie 2019; 164:17-21. [DOI: 10.1016/j.biochi.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
|
20
|
Velmurugan BK, Yeh KT, Hsieh MJ, Yeh CM, Lin CC, Kao CY, Huang LR, Lin SH. UNC13C Suppress Tumor Progression via Inhibiting EMT Pathway and Improves Survival in Oral Squamous Cell Carcinoma. Front Oncol 2019; 9:728. [PMID: 31440468 PMCID: PMC6694713 DOI: 10.3389/fonc.2019.00728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
Potential function of UNC13C in variety of cancers including, oral squamous cell carcinoma (OSCC) remains obscure. In the present study, immunohistochemical staining in tissue microarrays containing 268 OSCC samples showed that UNC13C protein levels were inversely correlated with AJCC Stage III and IV (P = 0.002) and death (P = 0.0134). Patients with lower UNC13C expression had a significantly shorter survival (P = 0.0231) than those with higher UNC13C expression. We also identified decreased overall UNC13C expression in oral cancer cell lines. In addition, our functional analysis of UNC13C shows that overexpression of UNC13C inhibited migration and invasion capacities of SCC-9 and SAS cells compared with the empty plasmid transfected cells. Further experiments suggested that transcription factors (Slug, Snail, Twist, and ZEB1) and mesenchymal marker (Vimentin) were down regulated and Tight Junction Protein (Claudin1) was up regulated after UNC13C overexpression in SCC9 and SAS cells. The novel role of UNC13C is revealed for the first time in OSCC. In summary, these results suggest that UNC13C as a novel tumor suppressor and an essential regulator of EMT signaling pathway during OSCC progression, and thus it could be used as a target for preventing oral cancer metastasis.
Collapse
Affiliation(s)
- Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan.,Department of Holistic Wellness, Mingdao University, Changhua City, Taiwan.,Oral Cancer Research Center, Changhua Christian Hospital, Changhua City, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua City, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli City, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua City, Taiwan
| | - Chuan-Yu Kao
- Department of Pathology, Changhua Christian Hospital, Changhua City, Taiwan
| | - Lan-Ru Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | - Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| |
Collapse
|
21
|
Yin W, Chen J, Wang G, Zhang D. MicroRNA‑106b functions as an oncogene and regulates tumor viability and metastasis by targeting LARP4B in prostate cancer. Mol Med Rep 2019; 20:951-958. [PMID: 31173237 PMCID: PMC6625195 DOI: 10.3892/mmr.2019.10343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/07/2019] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among males worldwide, and is one of the leading causes of cancer‑related mortality. MicroRNAs (miRs) are a type of endogenous, noncoding RNA that serve a key role in pathological processes, and have been demonstrated to be involved in the formation and progression of PCa. Previous studies have reported that miR‑106b acts as an oncogene; however, the specific effects of miR‑106b on PCa have not been fully elucidated. The present study aimed to investigate the role and underlying molecular mechanisms of miR‑106b in the initiation and progression of PCa. In this study, miR‑106b was reported to be overexpressed and la‑related protein 4B (LARP4B) was downregulated in PCa tissues compared with paracancerous tissues. In addition, LARP4B was identified as a target gene of miR‑106b by bioinformatics prediction analysis and a dual luciferase reporter gene assay. Furthermore, MTT, wound healing and Transwell assays were performed to evaluate PCa cell viability, and migration and invasive abilities. The data revealed that inhibition of miR‑106b significantly suppressed the viability, migration and invasion of PCa cells. In addition, inhibition of miR‑106b significantly suppressed the mRNA and protein expression of cancer‑related genes, including matrix metalloproteinase‑2, cluster of differentiation 44 and Ki‑67, and increased that of the tumor suppressor, mothers against decapentaplegic homolog 2. Collectively, the findings of the present study indicated that miR‑106b may target LAR4B to inhibit cancer cell viability, migration and invasion, and may be considered as a novel therapeutic target in PCa.
Collapse
Affiliation(s)
- Weiqi Yin
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Junfeng Chen
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Guoyao Wang
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Dongxu Zhang
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
22
|
Jia J, Wang J, Yin M, Liu Y. microRNA-605 directly targets SOX9 to alleviate the aggressive phenotypes of glioblastoma multiforme cell lines by deactivating the PI3K/Akt pathway. Onco Targets Ther 2019; 12:5437-5448. [PMID: 31360068 PMCID: PMC6625606 DOI: 10.2147/ott.s213026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022] Open
Abstract
Background Aberrant microRNA (miRNA) expression has been widely reported to play a crucial role in the progression and development of glioblastoma (GBM). miR-605 has been identified as a tumor-suppressing miRNA in several types of human cancers. Nevertheless, the expression profile and detailed roles of miR-605 in GBM remain unclear and need to be further elucidated. Materials and methods RT-qPCR analysis was utilized for the determination of miR-605 expression in GBM tissues and cell lines. In addition, CCK-8 assay, transwell migration and invasion assays, as well as sub-cutaneous xenograft mouse models were utilized to evaluate the effects of miR-605 upregulation in GBM cells. Notably, the potential mechanisms underlying the activity of miR-605 in the malignant phenotypes of GBM were explored. Results We observed that expression of miR-605 was reduced in GBM tissues and cell lines. Decreased miR-605 expression exhibited significant correlation with KPS score. The overall survival rate in GBM patients with low miR-605 expression was lower than that of patients with high miR-605 expression. Increased miR-605 expression suppressed the proliferation, migration, and invasion of U251 and T98 cells. In addition, miR-605 upregulation impaired tumor growth in vivo. Furthermore, SRY-Box 9 (SOX9) was identified as a direct target gene of miR-605 in U251 and T98 cells. SOX9 expression was shown to exhibit an inverse correlation with miR-605 expression in GBM tissues. Moreover, silencing of SOX9 expression mimicked the tumor-suppressing roles of miR-605 in U251 and T98 cells, while SOX9 restoration rescued the suppressive effects of miR-605 overexpression in the same. Notably, miR-605 suppressed the PI3K/Akt pathway in GBM in vitro and in vivo. Conclusion These results demonstrated that miR-605 acts as a tumor suppressor in the development of GBM by directly targeting SOX9 and inhibiting the activation of the PI3K/Akt pathway, suggesting its potential role as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Jianwu Jia
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Jing Wang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Meifeng Yin
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Yongdong Liu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong 261041, People's Republic of China
| |
Collapse
|
23
|
Zhou W, Li R. microRNA-605 inhibits the oncogenicity of non-small-cell lung cancer by directly targeting Forkhead Box P1. Onco Targets Ther 2019; 12:3765-3777. [PMID: 31190877 PMCID: PMC6529030 DOI: 10.2147/ott.s193675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background and aims: microRNA-605 (miR-605) is dysregulated in multiple cancers and plays crucial roles in regulating cancer progression. However, little is known about the expression pattern and detailed roles of miR-605 in non-small-cell lung cancer (NSCLC). Thus, in this study, we evaluated miR-605 expression in NSCLC along with its clinical significance. More importantly, the detailed roles and the underlying molecular mechanisms of miR-605 in NSCLC were explored. Material and methods: Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was employed to detect miR-605 expression in NSCLC tissues and cell lines. A series of experiments were performed to determine the effects of miR-605 upregulation on NSCLC cell proliferation, apoptosis, migration and invasion in vitro and tumor growth in vivo. In addition, the downstream regulatory mechanisms of miR‐605 action in NSCLC cells were explored. Results: Decreased expression of miR-605 was frequently detected in NSCLC tissues and cell lines. Low expression of miR-605 was significantly correlated with the tumor size, TNM stage, and distane metastasis in NSCLC patients. Exogenous miR-605 expression inhibited proliferation, increased apoptosis, and inhibited metastasis of NSCLC cells in vitro. Additionally, miR-605 overexpression hindered the growth of NSCLC cells in vivo. Furthermore, Forkhead Box P1 (FOXP1) was identified as a direct target gene of miR-605 in NSCLC cells. Moreover, FOXP1 was highly expressed in NSCLC cells and showed an inverse correlation with miR-605 expression levels. Besides, silencing of FOXP1 simulated roles similar to miR-605 upregulation in NSCLC cells. FOXP1 reintroduction partially abolished the anticancer effects of miR-605 in NSCLC cells. Conclusion: Our results revealed that miR-605 inhibited the oncogenicity of NSCLC cells in vitro and in vivo by directly targeting FOXP1, suggesting the importance of the miR-605/FOXP1 pathway in the malignant development of NSCLC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pneumology, Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430077, People's Republic of China
| | - Ruichao Li
- Department of Gerontology, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
24
|
Aghdam SG, Ebrazeh M, Hemmatzadeh M, Seyfizadeh N, Shabgah AG, Azizi G, Ebrahimi N, Babaie F, Mohammadi H. The role of microRNAs in prostate cancer migration, invasion, and metastasis. J Cell Physiol 2018; 234:9927-9942. [PMID: 30536403 DOI: 10.1002/jcp.27948] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is considered the most prevalent malignancy and the second major cause of cancer-related death in males from Western countries. PCa exhibits variable clinical pictures, ranging from dormant to highly metastatic cancer. PCa suffers from poor prognosis and diagnosis markers, and novel biomarkers are required to define disease stages and to design appropriate therapeutic approach by considering the possible genomic and epigenomic differences. MicroRNAs (miRNAs) comprise a class of small noncoding RNAs, which have remarkable functions in cell formation, differentiation, and cancer development and contribute in these processes through controlling the expressions of protein-coding genes by repressing translation or breaking down the messenger RNA in a sequence-specific method. miRNAs in cancer are able to reflect informative data about the current status of disease and this might benefit PCa prognosis and diagnosis since that is concerned to PCa patients and we intend to highlight it in this paper.
Collapse
Affiliation(s)
- Shirin Golabi Aghdam
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Ebrazeh
- Department of Laboratory Medicine, Shahid Motahari Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Negin Ebrahimi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Moazeni-Roodi A, Ghavami S, Hashemi M. Lack of Association between miR-605 rs2043556 Polymorphism and Overall Cancer Risk: A Meta-analysis of Case-control Studies. Microrna 2018; 8:94-100. [PMID: 30514199 DOI: 10.2174/2211536608666181204110508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 01/20/2023]
Abstract
Growing evidence propose an association between miRNA polymorphisms and cancer susceptibility. This study aimed to examine the impact of miR-605 rs2043556 polymorphism on cancer risk through a meta-analysis based on 3198 cancer cases and 4943 controls. Eligible studies were retrieved by searching Web of Science, PubMed, Scopus, and Google Scholar databases up to August 27, 2018. The pooled Odds Ratios (ORs) with 95% Confidence Intervals (CIs) were calculated using a random-effect model to estimate the strength of association between rs2043556 variant of miR-605 and cancer risk. Overall, no significant association was found between miR-605 rs2043556 polymorphism and cancer risk in heterozygous codominant (OR=0.93, 95% CI=0.76-1.13, p=0.44, AG vs. AA), homozygous codominant (OR=1.01, 95%CI=0.78-1.30, p=0.94, GG vs. AA), dominant (OR=0.95, 95% CI=0.79-1.13, p=0.55, AG+GG vs. AA), recessive (OR=1.07, 95%CI=0.84-1.38, p=0.57, GG vs. AG+AA), overdominant (OR=0.93, 95% CI=0.76-1.12, p=0.43, AG vs. GG+AA), and allele (OR=0.98, 95% CI=0.87-1.10, p=0.73, G vs. A) genetic models tested. Stratified analysis by cancer type revealed that the rs2043556 variant was not associated with digestive tract cancer, breast cancer, gastric cancer as well as lung cancer. Taken together, the findings of this meta-analysis did not support an association between miR-605 rs2043556 polymorphism and cancer susceptibility.
Collapse
Affiliation(s)
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, ON, Canada
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
26
|
Li L, Li S. miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1. Oncol Lett 2018; 16:1715-1721. [PMID: 30008858 PMCID: PMC6036508 DOI: 10.3892/ol.2018.8862] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/16/2018] [Indexed: 02/01/2023] Open
Abstract
Many studies have demonstrated that miRNAs have influence on tumorigenesis and progression of human cancers, including invasion and migration. Thus, the role of miR-205/ZEB1 axis for the migration and invasion of prostate cancer cells was explored in the present study. The miR-205-5p and zinc finger E-box binding homeobox 1 (ZEB1) mRNA expression levels were observed in prostate cancer tissues or cell lines via reverse transcription-quantitative PCR (RT-qPCR), and the protein level of ZEB1 was measured by western blotting. Dual-Luciferase Reporter Assay was used to verify the relationship between miR-205-5p and ZEB1. In addition, cell migration and invasion was measured by Transwell assay. The results revealed that, compared with the control, downregulation of miR-205-5p was detected in prostate cancer tissues and cell lines, and miR-205-5p overexpression was found to inhibit cell migration and invasion. Moreover, miR-205-5p was confirmed to directly target ZEB1 in prostate cancer. Importantly, ZEB1 was identified to weaken the inhibitory effect of miR-205-5p in prostate cancer. In conclusion, miR-205-5p inhibited cell migration and invasion in prostatic carcinoma by targeting ZEB1 and miR-205-5p/ZEB1 axis shows potential to be developed in therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Lianpeng Li
- Department of Urological Surgery, Binzhou Central Hospital, Binzhou, Shandong 251700, P.R. China
| | - Shouqiang Li
- Department of Urological Surgery, People's Hospital of Dongying District, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
27
|
Teng Y, Tang R, Jiang SJ. Dysregulation of miR-605-5p/STAT2 axis predicts an unfavorable survival in patients with gastric cancer. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218819690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Our present study aimed to reveal the clinical significance of miR-605-5p/STAT2 axis in patients with gastric cancer (GC). The association of STAT2 or miR-605-5p expression with the clinicopathological characteristics and prognosis in patients with GC was analyzed using the tissue microarray and TCGA RNA-seq data. Pearson correlation analysis was used to evaluate the correlation of STAT2 with miRNAs expression in GC tissues. Cox proportional hazard regression model was conducted to assess whether STAT2 or miR-605-5p expressions was an independent prognostic factor in patients with GC. Consequently, we found that STAT2 expression levels were dramatically elevated in GC tissues and acted as an independent prognostic factor of poor survival in patients with GC. The upregulation of STAT2 was attributable to the dysregulation of miR-605-5p rather than its genetic and epigenetic modulation. MiR-605-5p indicated a negative correlation with STAT2 expression and was an independent prognostic factor of poor survival in patients with GC. In conclusion, dysregulation of miR-605-5p/STAT2 axis predicted a poor survival in patients with GC.
Collapse
Affiliation(s)
- Yang Teng
- Department of Gastroenterology, Gong’an Hospital of Traditional Chinese Medicine, Jingzhou, China
| | - Rong Tang
- International VIP Ward, Shanghai Yodak Cardio-Thoracic Hospital, Shanghai, China
| | - Shao-Jie Jiang
- Department of Gastroenterology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| |
Collapse
|