1
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
2
|
Leung ECH, Jain P, Michealson MA, Choi H, Ellsworth-Kopkowski A, Valenzuela CF. Recent breakthroughs in understanding the cerebellum's role in fetal alcohol spectrum disorder: A systematic review. Alcohol 2024; 119:37-71. [PMID: 38097146 PMCID: PMC11166889 DOI: 10.1016/j.alcohol.2023.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/14/2024]
Abstract
Exposure to alcohol during fetal development can lead to structural and functional abnormalities in the cerebellum, a brain region responsible for motor coordination, balance, and specific cognitive functions. In this systematic review, we comprehensively analyze a vast body of research conducted on vertebrate animals and humans over the past 13 years. We identified studies through PubMed and screened them following PRISMA guidelines. Data extraction and quality analysis were conducted using Covidence systematic review software. A total of 108 studies met our inclusion criteria, with the majority (79 studies) involving vertebrate animal models and 29 studies focusing on human subjects. Animal models included zebrafish, mice, rats, sheep, and non-human primates, investigating the impact of ethanol on cerebellar structure, gene/protein expression, physiology, and cerebellar-dependent behaviors. Additionally, some animal studies explored potential therapeutic interventions against ethanol-induced cerebellar damage. The human studies predominantly adopted cohort designs, exploring the effects of prenatal alcohol exposure on cerebellar structure and function. Certain human studies delved into innovative cerebellar-based diagnostic approaches for fetal alcohol spectrum disorder (FASD). The collective findings from these studies clearly indicate that the cerebellum is involved in various neurophysiological deficits associated with FASD, emphasizing the importance of evaluating both cerebellar structure and function in the diagnostic process for this condition. Moreover, this review sheds light into potential therapeutic strategies that can mitigate prenatal alcohol exposure-induced cerebellar damage.
Collapse
Affiliation(s)
- Eric C H Leung
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Priyanka Jain
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Marisa A Michealson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Hyesun Choi
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexis Ellsworth-Kopkowski
- Health Sciences Library & Informatics Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
3
|
Omer S, Pathak S, Mansour M, Nadar R, Bowen D, Dhanasekaran M, Pondugula SR, Boothe D. Effects of Cannabidiol, ∆9-Tetrahydrocannabinol, and WIN 55-212-22 on the Viability of Canine and Human Non-Hodgkin Lymphoma Cell Lines. Biomolecules 2024; 14:495. [PMID: 38672512 PMCID: PMC11047936 DOI: 10.3390/biom14040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In our previous study, we demonstrated the impact of overexpression of CB1 and CB2 cannabinoid receptors and the inhibitory effect of endocannabinoids (2-arachidonoylglycerol (2-AG) and Anandamide (AEA)) on canine (Canis lupus familiaris) and human (Homo sapiens) non-Hodgkin lymphoma (NHL) cell lines' viability compared to cells treated with a vehicle. The purpose of this study was to demonstrate the anti-cancer effects of the phytocannabinoids, cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), and the synthetic cannabinoid WIN 55-212-22 (WIN) in canine and human lymphoma cell lines and to compare their inhibitory effect to that of endocannabinoids. We used malignant canine B-cell lymphoma (BCL) (1771 and CLB-L1) and T-cell lymphoma (TCL) (CL-1) cell lines, and human BCL cell line (RAMOS). Our cell viability assay results demonstrated, compared to the controls, a biphasic effect (concentration range from 0.5 μM to 50 μM) with a significant reduction in cancer viability for both phytocannabinoids and the synthetic cannabinoid. However, the decrease in cell viability in the TCL CL-1 line was limited to CBD. The results of the biochemical analysis using the 1771 BCL cell line revealed a significant increase in markers of oxidative stress, inflammation, and apoptosis, and a decrease in markers of mitochondrial function in cells treated with the exogenous cannabinoids compared to the control. Based on the IC50 values, CBD was the most potent phytocannabinoid in reducing lymphoma cell viability in 1771, Ramos, and CL-1. Previously, we demonstrated the endocannabinoid AEA to be more potent than 2-AG. Our study suggests that future studies should use CBD and AEA for further cannabinoid testing as they might reduce tumor burden in malignant NHL of canines and humans.
Collapse
Affiliation(s)
- Saba Omer
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Mahmoud Mansour
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Dylan Bowen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Satyanarayana R. Pondugula
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Dawn Boothe
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| |
Collapse
|
4
|
Pini N, Sania A, Rao S, Shuffrey LC, Nugent JD, Lucchini M, McSweeney M, Hockett C, Morales S, Yoder L, Ziegler K, Perzanowski MS, Fox NA, Elliott AJ, Myers MM, Fifer WP. In Utero Exposure to Alcohol and Tobacco and Electroencephalogram Power During Childhood. JAMA Netw Open 2024; 7:e2350528. [PMID: 38180758 PMCID: PMC10770777 DOI: 10.1001/jamanetworkopen.2023.50528] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Importance Prenatal alcohol exposure (PAE) and prenatal tobacco exposure (PTE) are risk factors associated with adverse neurobehavioral and cognitive outcomes. Objective To quantify long-term associations of PAE and PTE with brain activity in early and middle childhood via electroencephalography (EEG). Design, Setting, and Participants This cohort study included participants enrolled in the Safe Passage Study (August 2007 to January 2015), from which a subset of 649 participants were followed up in the Environmental Influences on Child Health Outcomes Program. From September 2018 through November 2022, EEG recordings were obtained at ages 4, 5, 7, 9, or 11 years. Data were analyzed from November 2022 to November 2023. Exposures Maternal self-reported consumptions of alcohol and tobacco during pregnancy were captured at the recruitment interview and at up to 3 visits during pregnancy (20-24, 28-32, and ≥34 weeks' gestation). Classifications of PAE (continuous drinking, quit-early drinking, and nondrinking) and PTE (continuous smoking, quit-early smoking, and nonsmoking) were previously obtained. Main Outcomes and Measures EEG band powers (theta, alpha, beta, gamma) were extracted from the EEG recordings. Linear regression models were used to estimate the associations of PAE and PTE with EEG estimates. Results The final sample included 649 participants (333 [51.3%] female) aged 4, 5, 7, 9, or 11 years. Children whose mothers were in the quit-early drinking cluster had increased alpha power (0.116 [95% CI, 0.023 to 0.209] μV2; P = .02) compared with individuals without PAE. The magnitude of this increase was approximately double for children exposed to continuous drinking (0.211 [95% CI, 0.005 to 0.417] μV2; P = .04). Children whose mothers were in the continuous smoking cluster had decreased beta power (-0.031 [95% CI, -0.059 to -0.003] μV2; P = .03) and gamma power (-0.020 [95% CI, -0.039 to -0.000] μV2; P = .04) compared with the nonsmoking cluster. In exploratory sex-stratified models, male participants in the quit-early PAE cluster had greater EEG power in the alpha band (0.159 [95% CI, 0.003 to 0.315] μV2; P = .04) compared with those with no PAE, and the difference was approximately double for male participants with continuous PAE (0.354 [95% CI, 0.041 to 0.667] μV2; P = .03). Male participants in the continuous PTE cluster had decreased beta (-0.048 [95% CI, -0.090 to - 0.007] μV2; P = .02) and gamma (-0.032 [95% CI, -0.061 - 0.002] μV2; P = .04) power compared with those with no PTE. Conclusions and Relevance These findings suggest that even low levels of PAE and PTE were associated with long-term alterations of brain activity.
Collapse
Affiliation(s)
- Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York
| | - Ayesha Sania
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York
| | - Shreya Rao
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York
| | - Lauren C. Shuffrey
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, New York
| | - J. David Nugent
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York
| | - Maristella Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York
| | - Marco McSweeney
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| | - Christine Hockett
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls
| | - Santiago Morales
- Department of Psychology, University of Southern California, Los Angeles
| | - Lydia Yoder
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| | - Katherine Ziegler
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls
| | - Matthew S. Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York
| | - Nathan A. Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park
| | - Amy J. Elliott
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls
| | - Michael M. Myers
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - William P. Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
5
|
Omer S, Pathak S, Nadar R, Bowen D, Sandey M, Dhanasekaran M, Pondugula S, Mansour M, Boothe D. Validating the anti-lymphoma pharmacodynamic actions of the endocannabinoids on canine non-Hodgkin lymphoma. Life Sci 2023; 327:121862. [PMID: 37330042 DOI: 10.1016/j.lfs.2023.121862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
AIMS This study established the in vitro anti-lymphoma pharmacodynamic actions of the endocannabinoids (anandamide-AEA and 2-arachidonoylglycerol-2AG) on canine non-Hodgkin lymphoma (NHL) and human NHL cells. MAIN METHODS The expression of cannabinoid (CB1 and CB2) receptors in various canine NHL cells {1771, CLBL-1, CLL-1, peripheral blood mononuclear cells (PBMCs)} was studied using Quantitative real-time PCR (RT-qPCR). Anti-lymphoma cell viability assay was performed to assess the effect of endocannabinoids on various canine and human NHL cells (1771, CLBL-1, CLL-1, Ramos cells). The spectrophotometric and fluorometric procedures evaluated oxidative stress, inflammation, apoptosis, and mitochondrial function markers. SAS® and Prism-V La Jolla, CA, USA, were used for statistical analysis. KEY FINDINGS The current study validated the presence of CB1 and CB2 receptors in the canine NHL cells. There was a significantly higher expression of CB1 and CB2 receptors in B-cell lymphoma (BCL) cells (1771, CLBL-1, Ramos) compared to canine T-cell lymphoma (TCL) cells (CL-1). AEA and 2AG dose and time-dependently exhibited significant but differential anti-lymphoma effects on canine and human NHL cells. Anti-lymphoma pharmacodynamic actions of the endocannabinoids in the canine 1771 NHL cells revealed a significant alteration in the markers of oxidative stress, inflammation, and a decrease in mitochondrial function without altering the apoptotic markers. SIGNIFICANCE Establishing the anti-lymphoma pharmacodynamic actions of endocannabinoids may provide new therapeutic interventions and expedite cannabinoid research.
Collapse
Affiliation(s)
- Saba Omer
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Shifa College of Dentistry, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Dylan Bowen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Satyanarayana Pondugula
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Mohammed Mansour
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dawn Boothe
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
6
|
Liu K, Kadannagari S, Deruiter J, Pathak S, Abbott KL, Salamat JM, Pondugula SR, Akingbemi BT, Dhanasekaran M. Effects of developmental exposures to Bisphenol-A and Bisphenol-S on hepatocellular function in male Long-Evans rats. Life Sci 2023; 326:121752. [PMID: 37172818 DOI: 10.1016/j.lfs.2023.121752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Bisphenol-S (BPS) is a current substitute for Bisphenol-A (BPA) in various commercial products (paper, plastics, protective can-coatings, etc.) used by all age groups globally. The current literature indicates that a drastic surge in pro-oxidants, pro-apoptotic, and pro-inflammatory biomarkers in combination with diminished mitochondrial activity can potentially decrease hepatic function leading to morbidity and mortality. Consequently, there are increasing public health concerns that substantial Bisphenol-mediated effects may impact hepatocellular functions, particularly in newborns exposed to BPA and BPS postnatally. However, the acute postnatal impact of BPA and BPS and the molecular mechanisms affecting hepatocellular functions are unknown. Therefore, the current study investigated the acute postnatal effect of BPA and BPS on the biomarkers of hepatocellular functions, including oxidative stress, inflammation, apoptosis, and mitochondrial activity in male Long-Evans rats. BPA and BPS (5 and 20 microgram/Liter (μg/L) of drinking water) were administered to 21-day-old male rats for 14 days. BPS had no significant effect on apoptosis, inflammation, and mitochondrial function but significantly reduced the reactive oxygen species (51-60 %, **p < 0.01) and nitrite content (36 %, *p < 0.05), exhibiting hepatoprotective effects. As expected, based on the current scientific literature, BPA induced significant hepatoxicity, as seen by significant glutathione depletion (50 %, *p < 0.05). The in-silico analysis indicated that BPS is effectively absorbed in the gastrointestinal tract without crossing the blood-brain barrier (whereas BPA crosses the blood-brain barrier) and is not a substrate of p-Glycoprotein and Cytochrome P450 enzymes. Thus, the current in-silico and in vivo findings revealed that acute postnatal exposure to BPS had no significant hepatotoxicity.
Collapse
Affiliation(s)
- Keyi Liu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Surekha Kadannagari
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Jack Deruiter
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Julia M Salamat
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
7
|
Pinky PD, Majrashi M, Fujihashi A, Bloemer J, Govindarajulu M, Ramesh S, Reed MN, Moore T, Suppiramaniam V, Dhanasekaran M. Effects of prenatal synthetic cannabinoid exposure on the cerebellum of adolescent rat offspring. Heliyon 2021; 7:e06730. [PMID: 33912711 PMCID: PMC8066425 DOI: 10.1016/j.heliyon.2021.e06730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide. Recently, cannabis use among young pregnant women has greatly increased. However, prenatal cannabinoid exposure leads to long-lasting cognitive, motor, and behavioral deficits in the offspring and alterations in neural circuitry through various mechanisms. Although these effects have been studied in the hippocampus, the effects of prenatal cannabinoid exposure on the cerebellum are not well elucidated. The cerebellum plays an important role in balance and motor control, as well as cognitive functions such as attention, language, and procedural memories. The aim of this study was to investigate the effects of prenatal cannabinoid exposure on the cerebellum of adolescent offspring. Pregnant rats were treated with synthetic cannabinoid agonist WIN55,212-2, and the offspring were evaluated for various cerebellar markers of oxidative stress, mitochondrial function, and apoptosis. Additionally, signaling proteins associated with glutamate dependent synaptic plasticity were examined. Administration of WIN55,212-2 during pregnancy altered markers of oxidative stress by significantly reducing oxidative stress and nitrite content. Mitochondrial Complex I and Complex IV activities were also enhanced following prenatal cannabinoid exposure. With regard to apoptosis, pP38 levels were significantly increased, and proapoptotic factor caspase-3 activity, pERK, and pJNK levels were significantly decreased. CB1R and GluA1 levels remained unchanged; however, GluN2A was significantly reduced. There was a significant decrease in MAO activity although tyrosine hydroxylase activity was unaltered. Our study indicates that the effects of prenatal cannabinoid exposure on the cerebellum are unique compared to other brain regions by enhancing mitochondrial function and promoting neuronal survival. Further studies are required to evaluate the mechanisms by which prenatal cannabinoid exposure alters cerebellar processes and the impact of these alterations on behavior.
Collapse
Affiliation(s)
- Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| |
Collapse
|
8
|
Majrashi M, Fujihashi A, Almaghrabi M, Fadan M, Fahoury E, Ramesh S, Govindarajulu M, Beamon H, Bradford CN, Bolden-Tiller O, Dhanasekaran M. Augmented oxidative stress and reduced mitochondrial function in ageing goat testis. Vet Med Sci 2020; 6:766-774. [PMID: 32628344 PMCID: PMC7738717 DOI: 10.1002/vms3.296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, there is a significant increase in the commercial use of goat products. Nevertheless, there are very few reports on the characterization of redox biomarkers and mitochondrial function in the goat testis. Therefore, in this study we studied the markers of oxidative stress and mitochondrial functions in the goat testis during the process of ageing. Alterations in the markers of oxidative stress/redox biomarkers (contents of reactive oxygen species, nitrite, lipid peroxide, protein carbonyl, glutathione and activities of glutathione peroxidase, monoamine oxidase) and mitochondrial function (Complex‐I and Complex‐IV activities) were elucidated during the process of ageing. Augmented oxidative stress and decreased mitochondrial function were prominent during ageing in the goat testis. Ageing can lead to induction of oxidative stress and decreased production of ATP; however, the prooxidants generated must be effectively removed from the body by the innate antioxidant defence system to minimize the damage to the host tissue. Conversely, the antioxidants cannot completely scavenge the excessive amount of reactive oxygen species produced during ageing or pathological conditions leading to significant cell death and tissue damage. Thus, the use of effective and potent antioxidants in the feed could significantly reduce oxidative stress and improve mitochondrial function, resulting in enriched goat health.
Collapse
Affiliation(s)
- Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, KSA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Maali Fadan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Eddie Fahoury
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Haley Beamon
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, USA
| | | | - Olga Bolden-Tiller
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
9
|
Shuffrey LC, Myers MM, Isler JR, Lucchini M, Sania A, Pini N, Nugent JD, Condon C, Ochoa T, Brink L, du Plessis C, Odendaal HJ, Nelson ME, Friedrich C, Angal J, Elliott AJ, Groenewald C, Burd L, Fifer WP. Association Between Prenatal Exposure to Alcohol and Tobacco and Neonatal Brain Activity: Results From the Safe Passage Study. JAMA Netw Open 2020; 3:e204714. [PMID: 32396193 PMCID: PMC7218492 DOI: 10.1001/jamanetworkopen.2020.4714] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Research to date has not determined a safe level of alcohol or tobacco use during pregnancy. Electroencephalography (EEG) is a noninvasive measure of cortical function that has previously been used to examine effects of in utero exposures and associations with neurodevelopment. OBJECTIVE To examine the association of prenatal exposure to alcohol (PAE) and tobacco smoking (PTE) with brain activity in newborns. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study enrolled mother-newborn dyads from December 2011 through August 2015, with data analyzed from June 2018 through June 2019. Pregnant women were recruited from clinical sites in Cape Town, South Africa, and the Northern Plains region of the US. Participants were a subset of newborns enrolled in the Safe Passage Study. Exclusions included birth at less than 37 or more than 41 weeks' gestation, multiple birth, or maternal use of psychiatric medication during pregnancy. EXPOSURES PAE and PTE groups were determined by cluster analysis. MAIN OUTCOMES AND MEASURES Analyses of covariance were run on EEG spectral power at 12 scalp locations across the frequency spectrum from 1 to 45 Hz in 3-Hz bins by sleep state. RESULTS The final sample consisted of 1739 newborns (median [interquartile range] gestational age at birth, 39.29 [1.57] weeks; 886 [50.9%] were female; median [interquartile range] newborn age at assessment, 48.53 [44.96] hours). Newborns whose mothers were in the low continuous (95% CI, -0.379 to -0.031; P < .05; 95% CI, -0.379 to -0.045; P < .05), quit (95% CI, -0.419 to -0.127; P < .001; 95% CI, -0.398 to -0.106; P < .005), and moderate or high continuous (95% CI, -0.430 to -0.124; P < .001; 95% CI, -0.420 to -0.119; P < .005) PAE clusters had increased 4- to 6-Hz and 7- to 9-Hz left-temporal EEG power. Newborns with moderate or high continuous PTE had decreased 19- to 21-Hz (95% CI, 0.034 to 0.327; P < .05) and 22- to 24-Hz (95% CI, 0.022 to 0.316; P < .05) right-central EEG compared with newborns with no PTE. Newborns with moderate or high continuous PTE had significantly decreased 22- to 36-Hz right-central EEG power compared with the quit smoking group (22-24 Hz, 95% CI, 0.001 to 0.579; P < .05; 25-27 Hz, 95% CI, 0.008 to 0.586; P < .05; 28-30 Hz, 95% CI, 0.028 to 0.607; P < .05; 31-33 Hz, 95% CI, 0.038 to 0.617; P < .05; 34-36 Hz, 95% CI, 0.057 to 0.636; P < .05). CONCLUSIONS AND RELEVANCE These findings suggest that even low levels of PAE or PTE are associated with changes in offspring brain development.
Collapse
Affiliation(s)
- Lauren C. Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Michael M. Myers
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Joseph R. Isler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Maristella Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Ayesha Sania
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - J. David Nugent
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Carmen Condon
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Timothy Ochoa
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Lucy Brink
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Carlie du Plessis
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Hein J. Odendaal
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Morgan E. Nelson
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls
| | - Christa Friedrich
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls
| | - Jyoti Angal
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls
| | - Amy J. Elliott
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, South Dakota
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls
| | - Coen Groenewald
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, Western Cape, South Africa
| | - Larry Burd
- Department of Pediatrics, University of North Dakota Medical School, Grand Forks
| | - William P. Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
10
|
Baggio S, Zenki K, Martins Silva A, Dos Santos TG, Rech G, Lazzarotto G, Dias RD, Mussulini BH, Rico EP, de Oliveira DL. Fetal alcohol spectrum disorders model alters the functionality of glutamatergic neurotransmission in adult zebrafish. Neurotoxicology 2020; 78:152-160. [PMID: 32173352 DOI: 10.1016/j.neuro.2020.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) describe a wide range of ethanol-induced developmental disabilities, including craniofacial dysmorphology, and neurochemical and behavioral impairments. Zebrafish has become a popular animal model to evaluate the long-lasting effects of, both, severe and milder forms of FASD, including alterations to neurotransmission. Glutamate is one of the most affected neurotransmitter systems in ethanol-induced developmental disabilities. Therefore, the aim of the present study was to evaluate the functionality of the glutamatergic neurotransmitter system in an adult zebrafish FASD model. Zebrafish larvae (24 h post-fertilization) were exposed to ethanol (0.1 %, 0.25 %, 0.5 %, and 1%) for 2 h. After 4 months, the animals were euthanized and their brains were removed. The following variables were measured: glutamate uptake, glutamate binding, glutamine synthetase activity, Na+/K + ATPase activity, and high-resolution respirometry. Embryonic ethanol exposure reduced Na+-dependent glutamate uptake in the zebrafish brain. This reduction was positively modulated by ceftriaxone treatment, a beta-lactam antibiotic that promotes the expression of the glutamate transporter EAAT2. Moreover, the 0.5 % and 1% ethanol groups demonstrated reduced glutamate binding to brain membranes and decreased Na+/K + ATPase activity in adulthood. In addition, ethanol reduced glutamine synthetase activity in the 1% EtOH group. Embryonic ethanol exposure did not alter the immunocontent of the glutamate vesicular transporter VGLUT2 and the mitochondrial energetic metabolism of the brain in adulthood. Our results suggest that embryonic ethanol exposure may cause significant alterations in glutamatergic neurotransmission in the adult zebrafish brain.
Collapse
Affiliation(s)
- Suelen Baggio
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Kamila Zenki
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alberto Martins Silva
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Thainá Garbino Dos Santos
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Giovana Rech
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Lazzarotto
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Renato Dutra Dias
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ben Hur Mussulini
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland; ReMedy International Research Agenda Unit, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Eduardo Pacheco Rico
- Programa De Pós-Graduação Em Ciências Da Saúde, Universidade Do Extremo Sul Catarinense - UNESC, Av. Universitária, 1105, Bairro Universitário, 88806-000 Criciúma, SC, Brazil
| | - Diogo Losch de Oliveira
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Concurrent nicotine exposure to prenatal alcohol consumption alters the hippocampal and cortical neurotoxicity. Heliyon 2020; 6:e03045. [PMID: 31938742 PMCID: PMC6953639 DOI: 10.1016/j.heliyon.2019.e03045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/02/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023] Open
Abstract
Aims This study investigated the neurotoxic effects of prenatal alcohol and nicotine exposure in the cortex and hippocampus of rodents. Main methods Behavioral alterations, electrophysiological changes, and biochemical markers associated with cholinergic neurotransmission, neural oxidative stress, mitochondrial function, and apoptosis were evaluated. Key findings Prenatal alcohol exposure induced the generation of ROS, nitrite and lipid peroxide, decreased mitochondrial Complex-I and IV activities, increased Caspase-1 and 3 activities, had no effect on cholinergic neurotransmission, increased expression of PSD-95, decreased LTP and decreased performance on spatial memory tasks. However, nicotine exposure, in addition to alcohol exposure, was found to mitigate the negative effects of alcohol alone on ROS generation and spatial memory task performances. Furthermore, we also studied the role of ILK in prenatal alcohol and nicotine exposure. Significance Prenatal Smoking and/or drinking is a major health concern around the world. Thus, our current study may lead to better insights into the molecular mechanisms of fetal alcohol and nicotine exposure on the developing offspring.
Collapse
|
12
|
Majrashi M, Almaghrabi M, Fadan M, Fujihashi A, Lee W, Deruiter J, Randall Clark C, Dhanasekaran M. Dopaminergic neurotoxic effects of 3-TFMPP derivatives. Life Sci 2018; 209:357-369. [PMID: 30067941 DOI: 10.1016/j.lfs.2018.07.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Designer drugs are synthetically formulated to mimic the psychostimulatory effects of an original controlled/illegal drug of abuse. Designer drugs have similar chemical structure or functional analog as compared to existing controlled psychostimulatory drugs. There is a substantial rise in the production and use of designer drugs globally. Piperazine designer drugs were synthesized as an alternative to MDMA and have shown to induce numerous toxic effects leading to huge health, safety, law enforcement & monetary problems, and lethality. Currently, there are very few studies on the dopaminergic neurotoxicity of 1-(3-trifluoromethylphenyl) piperazine (3-TFMPP) and its derivatives (structural congeners). N27 rat dopaminergic neurons are valid cells to investigate the neurotoxic effects and establish the neurotoxic mechanisms of various substances. In the current study, we studied the time and dose-dependent neurotoxicity mechanisms of dopaminergic neurotoxicity of 3-TFMPP (parent compound) and its derivatives (2-TFMPP, 4-TFMPP). TFMPP derivatives-induced significant neurotoxicity (induced dopaminergic neuronal death. TFMPP derivatives-induced oxidative stress, mitochondrial dysfunction, apoptosis and decreased tyrosine hydroxylase expression. If the use of designer drugs are not strictly regulated and restricted around the world, this can lead to numerous central and peripheral disorders leading to a liability to the current and future society.
Collapse
Affiliation(s)
- Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA; Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, 23881, Saudi Arabia
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Taibah University, AL Medina, KSA
| | - Maali Fadan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Wooseok Lee
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jack Deruiter
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - C Randall Clark
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.
| |
Collapse
|