1
|
Chida-Nagai A, Masaki N, Sato H, Kato T, Takakuwa E, Matsuno Y, Manabe A, Takeda A. Pulmonary artery-targeted low-dose metformin-loaded nanocapsules safely improve pulmonary arterial hypertension in rats. Front Pharmacol 2025; 16:1577570. [PMID: 40371328 PMCID: PMC12075939 DOI: 10.3389/fphar.2025.1577570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/03/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Pulmonary arterial hypertension (PAH) remains a challenge to tackle despite various available medications. Metformin, although promising, has major adverse effects; the use of an appropriate drug delivery method may improve its efficacy and safety. The aim of this study was to develop a novel treatment for PAH using metformin. We developed a novel approach of using low-dose metformin encapsulated in pulmonary artery-targeted nanocapsules to alleviate PAH while avoiding adverse effects. Methods Metformin-loaded lung-targeted nanocapsules (MET nanocapsules) were created using a specific lipid composition, including cationic lipids. Their uptake and effects on cell viability were assessed in human pulmonary arterial smooth muscle cells (hPASMCs) from healthy individuals and patients with PAH. Their therapeutic effects were assessed in a PAH rat model. The safety of MET nanocapsules was confirmed using rat serum biochemical tests. Results We successfully prepared MET nanocapsules and demonstrated their effectiveness in inhibiting PASMC proliferation. In PAH model rats, MET nanocapsule treatment led to improved hemodynamics, right ventricular hypertrophy, and pulmonary arterial medial thickening. The nanocapsules effectively accumulated in the lungs of PAH model rats. Conclusion Intravenous administration of MET nanocapsules is a safe and innovative therapeutic approach for PAH. This method could improve PAH treatment outcomes while minimizing adverse effects, with potential applications in other types of pulmonary hypertension.
Collapse
Affiliation(s)
- Ayako Chida-Nagai
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Naoki Masaki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Sato
- Department of Cardiology and Clinical Examination, Oita University, Yufu, Japan
- Advanced Trauma, Emergency and Critical Care Center, Oita University Hospital, Yufu, Japan
| | - Tatsuya Kato
- Department of Thoracic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Emi Takakuwa
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Abdel Menaem HN, Hanafy MA, Abou El Dahab M, Mohamed KELSK. Evaluation of metformin's effect on the adult and juvenile stages of Schistosoma mansoni: an in-vitro study. J Parasit Dis 2025; 49:69-83. [PMID: 39975621 PMCID: PMC11832992 DOI: 10.1007/s12639-024-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/25/2024] [Indexed: 02/21/2025] Open
Abstract
Metformin (Met), a well-known anti-diabetic drug with a potent autophagy induction property, has been proven to be effective against several parasitic diseases. In the present in vitro study, the effect of Met on the viability and ultrastructure of Schistosoma mansoni adults and juveniles in comparison with the standard anti-schistosomal drug, praziquantel (PZQ), was investigated. Adults and juveniles were treated in vitro with 5 µM PZQ and/or 10 mM Met. The viability of the treated worms was screened over a three-day period by light microscopy and recorded as mortality rates (MR). The alterations in the ultrastructure were verified using scanning and transmission electron microscopy. Met showed significant anti-schistosomal activity against both adults and juveniles and resulted in severe tegumental damage in the form of loss of integrity and architecture, with evident vacuolation suggestive of increased autophagy. Met might be a potential drug either alone or as an adjuvant to PZQ for the treatment of schistosomiasis mansoni and warrant its further assessment in animal models of disease.
Collapse
Affiliation(s)
| | - Marmar Ahmed Hanafy
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Abou El Dahab
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Khalifa EL Sayed Khalifa Mohamed
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Parasitology, Faculty of Medicine, Galala University, Galala, Egypt
| |
Collapse
|
3
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yan Q, Liu S, Sun Y, Chen C, Yang Y, Yang S, Lin M, Long J, Lin Y, Liang J, Ai Q, Chen N. CC chemokines Modulate Immune responses in Pulmonary Hypertension. J Adv Res 2024; 63:171-186. [PMID: 37926143 PMCID: PMC11380027 DOI: 10.1016/j.jare.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) represents a progressive condition characterized by the remodeling of pulmonary arteries, ultimately culminating in right heart failure and increased mortality rates. Substantial evidence has elucidated the pivotal role of perivascular inflammatory factors and immune dysregulation in the pathogenesis of PH. Chemokines, a class of small secreted proteins, exert precise control over immune cell recruitment and functionality, particularly with respect to their migration to sites of inflammation. Consequently, chemokines emerge as critical drivers facilitating immune cell infiltration into the pulmonary tissue during inflammatory responses. This review comprehensively examines the significant contributions of CC chemokines in the maintenance of immune cell homeostasis and their pivotal role in regulating inflammatory responses. The central focus of this discussion is directed towards elucidating the precise immunoregulatory actions of CC chemokines concerning various immune cell types, including neutrophils, monocytes, macrophages, lymphocytes, dendritic cells, mast cells, eosinophils, and basophils, particularly in the context of pH processes. Furthermore, this paper delves into an exploration of the underlying pathogenic mechanisms that underpin the development of PH. Specifically, it investigates processes such as cellular pyroptosis, examines the intricate crosstalk between bone morphogenetic protein receptor type 2 (BMPR2) mutations and the immune response, and sheds light on key signaling pathways involved in the inflammatory response. These aspects are deemed critical in enhancing our understanding of the complex pathophysiology of PH. Moreover, this review provides a comprehensive synthesis of findings from experimental investigations targeting immune cells and CC chemokines. AIM OF REVIEW In summary, the inquiry into the inflammatory responses mediated by CC chemokines and their corresponding receptors, and their potential in modulating immune reactions, holds promise as a prospective avenue for addressing PH. The potential inhibition of CC chemokines and their receptors stands as a viable strategy to attenuate the inflammatory cascade and ameliorate the pathological manifestations of PH. Nonetheless, it is essential to acknowledge the current state of clinical trials and the ensuing progress, which regrettably appears to be less than encouraging. Substantial hurdles exist in the successful translation of research findings into clinical applications. The intention is that such emphasis could potentially foster the advancement of potent therapeutic agents presently in the process of clinical evaluation. This, in turn, may further bolster the potential for effective management of PH.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Yuan M, Liu T, Cai A, Zhan Z, Cheng Y, Wang Q, Xia Y, Shen N, Huang P, Zou X. Emerging connectivity of programmed cell death pathways and pulmonary vascular remodelling during pulmonary hypertension. J Cell Mol Med 2024; 28:e70003. [PMID: 39153207 PMCID: PMC11330287 DOI: 10.1111/jcmm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.
Collapse
Affiliation(s)
- Meng‐nan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - An‐qi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Zibo Zhan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yi‐li Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Qi‐yue Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Yu‐xuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Nong‐er Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Xiao‐zhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| |
Collapse
|
6
|
Li Y, Zhao B, Peng J, Tang H, Wang S, Peng S, Ye F, Wang J, Ouyang K, Li J, Cai M, Chen Y. Inhibition of NF-κB signaling unveils novel strategies to overcome drug resistance in cancers. Drug Resist Updat 2024; 73:101042. [PMID: 38219532 DOI: 10.1016/j.drup.2023.101042] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Drug resistance in cancer remains a major challenge in oncology, impeding the effectiveness of various treatment modalities. The nuclear factor-kappa B (NF-κB) signaling pathway has emerged as a critical player in the development of drug resistance in cancer cells. This comprehensive review explores the intricate relationship between NF-κB and drug resistance in cancer. We delve into the molecular mechanisms through which NF-κB activation contributes to resistance against chemotherapeutic agents, targeted therapies, and immunotherapies. Additionally, we discuss potential strategies to overcome this resistance by targeting NF-κB signaling, such as small molecule inhibitors and combination therapies. Understanding the multifaceted interactions between NF-κB and drug resistance is crucial for the development of more effective cancer treatment strategies. By dissecting the complex signaling network of NF-κB, we hope to shed light on novel therapeutic approaches that can enhance treatment outcomes, ultimately improving the prognosis for cancer patients. This review aims to provide a comprehensive overview of the current state of knowledge on NF-κB and its role in drug resistance, offering insights that may guide future research and therapeutic interventions in the fight against cancer.
Collapse
Affiliation(s)
- Yuanfang Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Juzheng Peng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sicheng Wang
- School of Medicine, Sun Yat-sen University, China
| | - Sicheng Peng
- School of Medicine, Sun Yat-sen University, China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junye Wang
- School of Medicine, Sun Yat-sen University, China
| | - Kai Ouyang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jianjun Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Manbo Cai
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
7
|
Jasim SA, Almajidi YQ, Al-Rashidi RR, Hjazi A, Ahmad I, Alawadi AHR, Alwaily ER, Alsaab HO, Haslany A, Hameed M. The interaction between lncRNAs and transcription factors regulating autophagy in human cancers: A comprehensive and therapeutical survey. Cell Biochem Funct 2024; 42:e3971. [PMID: 38509767 DOI: 10.1002/cbf.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Autophagy, as a highly conserved cellular process, participates in cellular homeostasis by degradation and recycling of damaged organelles and proteins. Besides, autophagy has been evidenced to play a dual role through cancer initiation and progression. In the early stage, it may have a tumor-suppressive function through inducing apoptosis and removing damaged cells and organelles. However, late stages promote tumor progression by maintaining stemness features and induction of chemoresistance. Therefore, identifying and targeting molecular mechanisms involved in autophagy is a potential therapeutic strategy for human cancers. Multiple transcription factors (TFs) are involved in the regulation of autophagy by modulating the expression of autophagy-related genes (ATGs). In addition, a wide array of long noncoding RNAs (lncRNAs), a group of regulatory ncRNAs, have been evidenced to regulate the function of these autophagy-related TFs through tumorigenesis. Subsequently, the lncRNAs/TFs/ATGs axis shows great potential as a therapeutic target for human cancers. Therefore, this review aimed to summarize new findings about the role of lncRNAs in regulating autophagy-related TFs with therapeutic perspectives.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussien Radie Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ali Haslany
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
8
|
Hou J, Nie Y, Wen Y, Hua S, Hou Y, He H, Sun S. The role and mechanism of AMPK in pulmonary hypertension. Ther Adv Respir Dis 2024; 18:17534666241271990. [PMID: 39136335 PMCID: PMC11322949 DOI: 10.1177/17534666241271990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive disease with high mortality. There has been more and more research focusing on the role of AMPK in PH. AMPK consists of three subunits-α, β, and γ. The crosstalk among these subunits ultimately leads to a delicate balance to affect PH, which results in conflicting conclusions about the role of AMPK in PH. It is still unclear how these subunits interfere with each other and achieve balance to improve or deteriorate PH. Several signaling pathways are related to AMPK in the treatment of PH, including AMPK/eNOS/NO pathway, Nox4/mTORC2/AMPK pathway, AMPK/BMP/Smad pathway, and SIRT3-AMPK pathway. Among these pathways, the role and mechanism of AMPK/eNOS/NO and Nox4/mTORC2/AMPK pathways are clearer than others, while the SIRT3-AMPK pathway remains still unclear in the treatment of PH. There are drugs targeting AMPK to improve PH, such as metformin (MET), MET combination, and rhodiola extract. In addition, several novel factors target AMPK for improving PH, such as ADAMTS8, TUFM, and Salt-inducible kinases. However, more researches are needed to explore the specific AMPK signaling pathways involved in these novel factors in the future. In conclusion, AMPK plays an important role in PH.
Collapse
Affiliation(s)
- Jing Hou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Class Three & Class Eight, 2021Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yu Nie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Class Three & Class Eight, 2021Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huilin He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming 650032, China
| |
Collapse
|
9
|
Chai L, Wang Q, Wang Y, Li D, Zhang Q, Chen Y, Liu J, Chen H, Qiu Y, Shen N, Wang J, Xie X, Li M. Downregulation of PDCD4 through STAT3/ATF6/autophagy mediates MIF-induced PASMCs proliferation/migration and vascular remodeling. Eur J Pharmacol 2023; 956:175968. [PMID: 37549728 DOI: 10.1016/j.ejphar.2023.175968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/08/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
To address the molecular mechanisms underlying macrophage migration inhibitory factor (MIF) induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration and vascular remodeling in pulmonary hypertension (PH), primary cultured rat PASMCs and monocrotaline (MCT)-induced rats with PH were applied in the present study. The results showed that MIF increased signal transducer and activator of transcription 3 (STAT3) phosphorylation, and then stimulated activating transcription factor 6 (ATF6) activation, subsequently triggered autophagy activation, which further led to programmed cell death factor 4 (PDCD4) lysosomal degradation, and eventually promoted PASMCs proliferation/migration. In lung tissues of MCT rats, MIF protein expression was elevated, phosphorylation of STAT3 and activation of ATF6 were increased, activation of autophagy was evident, and reduction of PDCD4 was observed. Intervention with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP), ATF6 blocker melatonin or autophagy inhibitor chloroquine, confirmed the in vitro interaction among MIF, STAT3, ATF6, autophagy and PDCD4 in MCT induced rats with PH. Targeting MIF/STAT3/ATF6/autophagy/PDCD4 axis effectively prevented the development of PH by suppressing PASMCs proliferation and vascular remodeling. In conclusions, we demonstrate that MIF activates the STAT3/ATF6/autophagy cascade and then degrades PDCD4 leading to PASMCs proliferation/migration and pulmonary vascular remodeling, suggesting that intervention this axis might have potential value in management of PH.
Collapse
Affiliation(s)
- Limin Chai
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qingting Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Danyang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yuqian Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Huan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yuanjie Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Nirui Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jian Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xinming Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
10
|
Zaongo SD, Chen Y. Metformin may be a viable adjunctive therapeutic option to potentially enhance immune reconstitution in HIV-positive immunological non-responders. Chin Med J (Engl) 2023; 136:2147-2155. [PMID: 37247620 PMCID: PMC10508460 DOI: 10.1097/cm9.0000000000002493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 05/31/2023] Open
Abstract
ABSTRACT Incomplete immune reconstitution remains a global challenge for human immunodeficiency virus (HIV) treatment in the present era of potent antiretroviral therapy (ART), especially for those individuals referred to as immunological non-responders (INRs), who exhibit dramatically low CD4 + T-cell counts despite the use of effective antiretroviral therapy, with long-term inhibition of viral replication. In this review, we provide a critical overview of the concept of ART-treated HIV-positive immunological non-response, and also explain the known mechanisms which could potentially account for the emergence of immunological non-response in some HIV-infected individuals treated with appropriate and effective ART. We found that immune cell exhaustion, combined with chronic inflammation and the HIV-associated dysbiosis syndrome, may represent strategic aspects of the immune response that may be fundamental to incomplete immune recovery. Interestingly, we noted from the literature that metformin exhibits properties and characteristics that may potentially be useful to specifically target immune cell exhaustion, chronic inflammation, and HIV-associated gut dysbiosis syndrome, mechanisms which are now recognized for their critically important complicity in HIV disease-related incomplete immune recovery. In light of evidence discussed in this review, it can be seen that metformin may be of particularly favorable use if utilized as adjunctive treatment in INRs to potentially enhance immune reconstitution. The approach described herein may represent a promising area of therapeutic intervention, aiding in significantly reducing the risk of HIV disease progression and mortality in a particularly vulnerable subgroup of HIV-positive individuals.
Collapse
Affiliation(s)
| | - Yaokai Chen
- Division of Infectious diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
11
|
Jiang Y, Song S, Liu J, Zhang L, Guo X, Lu J, Li L, Yang C, Fu Q, Zeng B. Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension. Front Immunol 2023; 14:1206452. [PMID: 37753070 PMCID: PMC10518698 DOI: 10.3389/fimmu.2023.1206452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/28/2023] [Indexed: 09/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe progressive disease that may cause early right ventricular failure and eventual cardiac failure. The pathogenesis of PAH involves endothelial dysfunction, aberrant proliferation of pulmonary artery smooth muscle cells (PASMCs), and vascular fibrosis. Hypoxia has been shown to induce elevated secretion of vascular endothelial growth factor (VEGF), leading to the development of hypoxic PAH. However, the molecular mechanisms underlying hypoxic PAH remain incompletely understood. Programmed cell death (PCD) is a natural cell death and regulated by certain genes. Emerging evidence suggests that apoptotic resistance contributes to the development of PAH. Moreover, several novel types of PCD, such as autophagy, pyroptosis, and ferroptosis, have been reported to be involved in the development of PAH. Additionally, multiple diverse epigenetic mechanisms including RNA methylation, DNA methylation, histone modification, and the non-coding RNA molecule-mediated processes have been strongly linked to the development of PAH. These epigenetic modifications affect the expression of genes, which produce important changes in cellular biological processes, including PCD. Consequently, a better understanding of the PCD processes and epigenetic modification involved in PAH will provide novel, specific therapeutic strategies for diagnosis and treatment. In this review, we aim to discuss recent advances in epigenetic mechanisms and elucidate the role of epigenetic modifications in regulating PCD in hypoxia-induced PAH.
Collapse
Affiliation(s)
- Yuan Jiang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jingxin Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Liyuan Zhang
- Shanghai Baoxing Biological Equipment Engineering Co., Ltd, Shanghai, China
| | - Xiaofei Guo
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Lie Li
- Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Qiang Fu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
12
|
Xia B, Zheng L, Li Y, Sun W, Liu Y, Li L, Pang J, Chen J, Li J, Cheng H. The brief overview, antivirus and anti-SARS-CoV-2 activity, quantitative methods, and pharmacokinetics of cepharanthine: a potential small-molecule drug against COVID-19. Front Pharmacol 2023; 14:1098972. [PMID: 37583901 PMCID: PMC10423819 DOI: 10.3389/fphar.2023.1098972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
To effectively respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an increasing number of researchers are focusing on the antiviral activity of cepharanthine (CEP), which is a clinically approved drug being used for over 70 years. This review aims to provide a brief overview of CEP and summarize its recent findings in quantitative analysis, pharmacokinetics, therapeutic potential, and mechanism in antiviral and anti-SARS-CoV-2 activity. Given its remarkable capacity against SARS-CoV-2 infection in vitro and in vivo, with its primary target organ being the lungs, and its good pharmacokinetic profile; mature and stable manufacturing technique; and its advantages of safety, effectiveness, and accessibility, CEP has become a promising drug candidate for treating COVID-19 despite being an old drug.
Collapse
Affiliation(s)
- Binbin Xia
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Li Zheng
- Department of Pharmacy, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yali Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenfang Sun
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Liushui Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jingyao Pang
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jiaxin Li
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hua Cheng
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Li YL, Zhang TZ, Han LK, He C, Pan YR, Fan B, Li GY. The AMPK-dependent inhibition of autophagy plays a crucial role in protecting photoreceptor from photooxidative injury. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112735. [PMID: 37302156 DOI: 10.1016/j.jphotobiol.2023.112735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Excessive light exposure can potentially cause irreversible damage to the various photoreceptor cells, and this aspect has been considered as an important factor leading to the progression of the different retinal diseases. AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are crucial intracellular signaling hubs involved in the regulation of cellular metabolism, energy homeostasis, cellular growth and autophagy. A number of previous studies have indicated that either AMPK activation or mTOR inhibition can promote autophagy in most cases. In the current study, we have established an in vitro as well as in vivo photooxidation-damaged photoreceptor model and investigated the possible influence of visible light exposure in the AMPK/mTOR/autophagy signaling pathway. We have also explored the potential regulatory effects of AMPK/mTOR on light-induced autophagy and protection achieved by suppressing autophagy in photooxidation-damaged photoreceptors. We observed that light exposure led to a significant activation of mTOR and autophagy in the photoreceptor cells. However, intriguingly, AMPK activation or mTOR inhibition significantly inhibited rather than promoting autophagy, which was termed as AMPK-dependent inhibition of autophagy. In addition, either indirectly suppressing autophagy by AMPK activation/ mTOR inhibition or directly blocking autophagy with an inhibitor exerted a significant protective effect on the photoreceptor cells against the photooxidative damage. Neuroprotective effects caused by the AMPK-dependent inhibition of autophagy were also verified with a retinal light injured mouse model in vivo. Overall, our findings demonstrated that AMPK / mTOR pathway could inhibit autophagy through AMPK-dependent inhibition of autophagy to significantly protect the photoreceptors from photooxidative injury, which may aid to further develop novel targeted retinal neuroprotective drugs.
Collapse
Affiliation(s)
- Yu-Lin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, ChangChun, China
| | - Tian-Zi Zhang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Li-Kun Han
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Chang He
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Yi-Ran Pan
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, ChangChun, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, ChangChun, China.
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, ChangChun, China.
| |
Collapse
|
14
|
Ma H, Yu Y, Mo L, Chen Q, Dong H, Xu Y, Zhuan B. Exosomal miR-663b from "M1" macrophages promotes pulmonary artery vascular smooth muscle cell dysfunction through inhibiting the AMPK/Sirt1 axis. Aging (Albany NY) 2023; 15:3549-3571. [PMID: 37142272 PMCID: PMC10449306 DOI: 10.18632/aging.204690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Inflammatory mediators from macrophages are proven to be involved in pulmonary vascular remodeling in pulmonary hypertension (PH). Here, this study intends to explore the mechanism of "M1" macrophage-derived exosomal miR-663b in pulmonary artery smooth muscle cells (PASMCs) dysfunctions and pulmonary hypertension. METHODS Hypoxia-treated PASMCs were utilized for constructing an in-vitro pulmonary hypertension model. THP-1 cells were treated with PMA (320 nM) and LPS (10 μg/mL) + IFN-γ (20 ng/ml) for eliciting macrophage "M1" polarization. Exosomes derived from "M1" macrophages were isolated and added into PASMCs. The proliferation, inflammation, oxidative stress, and migration of PASMCs were evaluated. RT-PCR or Western blot examined the levels of miR-663b and the AMPK/Sirt1 pathway. Dual luciferase activity assay and RNA pull-down assay were carried out for confirming the targeted association between miR-663b and AMPK. An in-vivo PH model was built. Macrophage-derived exosomes with miR-663b inhibition were used for treating the rats, and alterations of pulmonary histopathology were monitored. RESULTS miR-663b was obviously up-regulated in hypoxia-elicited PASMCs and M1 macrophages. miR-663b overexpression boosted hypoxia-induced proliferation, inflammation, oxidative stress, and migration in PASMCs, whereas miR-663b low expression resulted in the opposite situation. AMPK was identified as a target of miR-663b, and miR-663b overexpression curbed the AMPK/Sirt1 pathway. AMPK activation ameliorated the damaging impact of miR-663b overexpression and "M1" macrophage exosomes on PASMCs. In vivo, "M1" macrophage exosomes with miR-663b low expression alleviated pulmonary vascular remodeling in pulmonary hypertension rats. CONCLUSION Exosomal miR-663b from "M1" macrophage facilitates PASMC dysfunctions and PH development by dampening the AMPK/Sirt1 axis.
Collapse
Affiliation(s)
- Honghong Ma
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Lirong Mo
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Qian Chen
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Hui Dong
- General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Yan Xu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Bing Zhuan
- Department of Respiratory Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, Ningxia, China
- Department of Respiratory Medicine, Third Clinical Medical College, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
15
|
Abdelazeem H, Tu L, Thuillet R, Ottaviani M, Boulfrad A, Beck T, Senbel A, Mani S, Castier Y, Guyard A, Tran-Dinh A, El-Benna J, Longrois D, Silverstein AM, Guignabert C, Norel X. AMPK activation by metformin protects against pulmonary hypertension in rats and relaxes isolated human pulmonary artery. Eur J Pharmacol 2023; 946:175579. [PMID: 36914083 DOI: 10.1016/j.ejphar.2023.175579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 03/13/2023]
Abstract
Pulmonary hypertension (PH) is associated with pulmonary vasoconstriction and endothelial dysfunction leading to impaired nitric oxide (NO) and prostacyclin (PGI2) pathways. Metformin, the first line treatment for type 2 diabetes and AMP-activated protein kinase (AMPK) activator, has been recently highlighted as a potential PH treatment. AMPK activation has been reported to improve endothelial function by enhancing endothelial NO synthase (eNOS) activity and to have relaxant effects in blood vessels. In this study, we examined the effect of metformin treatment on PH as well as on NO and PGI2 pathways in monocrotaline (MCT)-injected rats with established PH. Moreover, we investigated the anti-contractile effects of AMPK activators on endothelium-denuded human pulmonary arteries (HPA) from Non-PH and Group 3 PH patients (due to lung diseases and/or hypoxia). Furthermore, we explored the interaction between treprostinil and the AMPK/eNOS pathway. Our results showed that metformin protected against PH progression in MCT rats where it reduced the mean pulmonary artery pressure, pulmonary vascular remodeling and right ventricular hypertrophy and fibrosis compared to vehicle-treated MCT rats. The protective effects on rat lungs were mediated in part by increasing eNOS activity and protein kinase G-1 expression but not through the PGI2 pathway. In addition, incubation with AMPK activators reduced the phenylephrine-induced contraction of endothelium-denuded HPA from Non-PH and PH patients. Finally, treprostinil also augmented eNOS activity in HPA smooth muscle cells. In conclusion, we found that AMPK activation can enhance the NO pathway, attenuate vasoconstriction by direct effects on smooth muscles, and reverse established MCT-induced PH in rats.
Collapse
Affiliation(s)
- Heba Abdelazeem
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ly Tu
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Mina Ottaviani
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Achraf Boulfrad
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
| | - Thomas Beck
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
| | - Amira Senbel
- Arab Academy for Science, Technology & Maritime Transport, College of Pharmacy, Alexandria, Egypt
| | - Salma Mani
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France; Université de Monastir-Tunisia, Institut Supérieur de Biotechnologie de Monastir (ISBM), Tunisia
| | - Yves Castier
- Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Alice Guyard
- Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Alexy Tran-Dinh
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France; Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Jamel El-Benna
- Université Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Dan Longrois
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France; Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | | | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Xavier Norel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France.
| |
Collapse
|
16
|
Bao C, Liang S, Han Y, Yang Z, Liu S, Sun Y, Zheng S, Li Y, Wang T, Gu Y, Wu K, Black SM, Wang J, Nawrocki ST, Carew JS, Yuan JXJ, Tang H. The Novel Lysosomal Autophagy Inhibitor (ROC-325) Ameliorates Experimental Pulmonary Hypertension. Hypertension 2023; 80:70-83. [PMID: 36345832 DOI: 10.1161/hypertensionaha.122.19397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autophagy plays an important role in the pathogenesis of pulmonary hypertension (PH). ROC-325 is a novel small molecule lysosomal autophagy inhibitor that has more potent anticancer activity than the antimalarial drug hydroxychloroquine, the latter has been prevalently used to inhibit autophagy. Here, we sought to determine the therapeutic benefit and mechanism of action of ROC-325 in experimental PH models. METHODS AND RESULTS Hemodynamics, echocardiography, and histology measurement showed that ROC-325 treatment prevented the development of PH, right ventricular hypertrophy, fibrosis, dysfunction, and vascular remodeling after monocrotaline and Sugen5416/hypoxia administration. ROC-325 attenuated high K+ or alveolar hypoxia-induced pulmonary vasoconstriction and enhanced endothelial-dependent relaxation in isolated pulmonary artery rings. ROC-325 treatment inhibited autophagy and enhanced endothelial nitric oxide synthase activity in lung tissues of monocrotaline-PH rats. In cultured human and rat pulmonary arterial smooth muscle cell and pulmonary arterial endothelial cell under hypoxia exposure, ROC-325 increased LC3B (light chain 3 beta) and p62 accumulation, endothelial cell nitric oxide production via phosphorylation of endothelial nitric oxide synthase (Ser1177) and dephosphorylation of endothelial nitric oxide synthase (Thr495) as well as decreased HIF (hypoxia-inducible factor)-1α and HIF-2α stabilization. CONCLUSIONS These data indicate that ROC-325 is a promising novel agent for the treatment of PH that inhibits autophagy, downregulates HIF levels, and increases nitric oxide production.
Collapse
Affiliation(s)
- Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.).,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (C.B., S.L., Y.S., S.Z.)
| | - Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, China (Y.H.)
| | - Zi Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.).,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (C.B., S.L., Y.S., S.Z.)
| | - Yanan Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.).,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (C.B., S.L., Y.S., S.Z.)
| | - Shichuang Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.).,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (C.B., S.L., Y.S., S.Z.)
| | - Yuzhu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | - Ting Wang
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL (T.W., S.M.B.).,Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL (T.W., S.M.B.)
| | - Yali Gu
- Banner University of Arizona Medical Center, Tucson, AZ (Y.G.)
| | - Kang Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | - Stephen M Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL (T.W., S.M.B.).,Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL (T.W., S.M.B.)
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | | | - Jennifer S Carew
- University of Arizona Cancer Center, Tucson, AZ (S.T.N., J.S.C.)
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, CA (J.X.-J.)
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| |
Collapse
|
17
|
Zhai C, Zhang N, Wang J, Cao M, Luan J, Liu H, Zhang Q, Zhu Y, Xue Y, Li S. Activation of Autophagy Induces Monocrotaline-Induced Pulmonary Arterial Hypertension by FOXM1-Mediated FAK Phosphorylation. Lung 2022; 200:619-631. [PMID: 36107242 DOI: 10.1007/s00408-022-00569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE It has been shown that activation of autophagy promotes the development of pulmonary arterial hypertension (PAH). Meanwhile, forkhead box M1 (FOXM1) has been found to induce autophagy in several types of cancer. However, it is still unclear whether FOXM1 mediates autophagy activation in PAH, and detailed mechanisms responsible for these processes are indefinite. METHOD PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) to rats. The right ventricle systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), percentage of medial wall thickness (%MT), α-smooth muscle actin (α-SMA) staining, and Ki67 staining were performed to evaluate the development of PAH. The protein levels of FOXM1, phospho-focal adhesion kinase (p-FAK), FAK, and LC3B were determined by immunoblotting or immunohistochemistry. RESULTS FOXM1 protein level and FAK activity were significantly increased in MCT-induced PAH rats, this was accompanied with the activation of autophagy. Pharmacological inhibition of FOXM1 or FAK suppressed MCT-induced autophagy activation, decreased RVSP, RVHI and %MT in MCT-induced PAH rats, and inhibited the proliferation of pulmonary arterial smooth muscle cells and pulmonary vessel muscularization in MCT-induced PAH rats. CONCLUSION FOXM1 promotes the development of PAH by inducing FAK phosphorylation and subsequent activation of autophagy in MCT-treated rats.
Collapse
Affiliation(s)
- Cui Zhai
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Nana Zhang
- Center for Regenerative and Reconstructive Medicine, Med-X Institute of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Meng Cao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Huan Liu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yanting Zhu
- Center of Nephropathy and Hemodialysis, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Yuxin Xue
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
18
|
Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med 2022; 26:4886-4903. [PMID: 36052760 PMCID: PMC9549498 DOI: 10.1111/jcmm.17519] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin, a well-known AMPK agonist, has been widely used as the first-line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non-diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK-dependent mechanisms in in vitro and/or in vivo models.
Collapse
Affiliation(s)
- Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xu Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yifeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Alex F Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Remiszewski P, Pędzińska-Betiuk A, Mińczuk K, Schlicker E, Klimek J, Dzięcioł J, Malinowska B. Effects of the peripheral CB1 receptor antagonist JD5037 in mono— and polytherapy with the AMPK activator metformin in a monocrotaline-induced rat model of pulmonary hypertension. Front Pharmacol 2022; 13:965613. [PMID: 36120288 PMCID: PMC9479636 DOI: 10.3389/fphar.2022.965613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease leading to increased pressure in the pulmonary artery and right heart failure. The adenosine monophosphate-activated protein kinase (AMPK) activator, metformin, has a protective effect against PH. CB1 receptor blockade reduces the number of pathological alterations in experimental lung fibrosis. The current study evaluates the effect of the peripheral cannabinoid CB1 receptor antagonist JD5037 in mono- and polytherapy with metformin in rat monocrotaline-induced mild PH. Animals received metformin (100 mg/kg), JD5037 (3 mg/kg), or a combination of both once daily for 21 days. Monocrotaline (60 mg/kg) increased right ventricular (RV) systolic pressure (RVSP), led to RV and lung hypertrophy and remodeling, and decreased oxygen saturation. Metformin partially restored the monocrotaline-induced effects, i.e., decreased RVSP, increased oxygen saturation, and counteracted cardiac fibrotic, hypertrophic, and inflammatory changes. JD5037 modified parameters related to inflammation and/or fibrosis. Only polytherapy with metformin and JD5037 improved Fulton’s index and coronary artery hypertrophy and tended to be more effective than monotherapy against alterations in RVSP, oxygen saturation and coronary artery tunica media vacuolization. In conclusion, monotherapy with JD5037 does not markedly influence the PH-related changes. However, polytherapy with metformin tends to be more efficient than any of these compounds alone.
Collapse
Affiliation(s)
- Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Justyna Klimek
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Barbara Malinowska,
| |
Collapse
|
20
|
Jiao F, Tan Z, Yu Z, Zhou B, Meng L, Shi X. The phytochemical and pharmacological profile of taraxasterol. Front Pharmacol 2022; 13:927365. [PMID: 35991893 PMCID: PMC9386448 DOI: 10.3389/fphar.2022.927365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Taraxasterol is one of the bioactive triterpenoids found in dandelion, a member of the family Asteraceae. In the animal or cellular models of several ailments, including liver damage, gastritis, colitis, arthritis, pneumonia, tumors, and immune system diseases, taraxasterol has been shown to have significant preventive and therapeutic effects. This review aims to evaluate the current state of research and provide an overview of the possible applications of taraxasterol in various diseases. The reported phytochemical properties and pharmacological actions of taraxasterol, including anti-inflammatory, anti-oxidative, and anti-carcinogenic properties, and its potential molecular mechanisms in developing these diseases are highlighted. Finally, we further explored whether taraxasterol has protective effects on neuronal death in neurodegenerative diseases. In addition, more animal and clinical studies are also required on the metabolism, bioavailability, and safety of taraxasterol to support its applications in pharmaceuticals and medicine.
Collapse
Affiliation(s)
- Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
- *Correspondence: Fengjuan Jiao,
| | - Zengyue Tan
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Zhonghua Yu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Bojie Zhou
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Lingyan Meng
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xinyue Shi
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
21
|
Yang Z, Zhou L, Ge H, Shen W, Shan L. Identification of autophagy-related biomarkers in patients with pulmonary arterial hypertension based on bioinformatics analysis. Open Med (Wars) 2022; 17:1148-1157. [PMID: 35859795 PMCID: PMC9263897 DOI: 10.1515/med-2022-0497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Autophagy participates in the regulation of pulmonary arterial hypertension (PAH). However, the role of autophagy-related genes (ARGs) in the pathogenesis of the PAH is still unclear. This study aimed to identify the ARGs in PAH via bioinformatics analysis. A microarray dataset (GSE113439) was downloaded from the Gene Expression Omnibus database to identify differentially expressed ARGs (DEARGs). Protein–protein interactions network, gene ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to screen hub genes and the underlying molecular mechanisms of PAH. Finally, the mRNA expression of the hub genes was validated using the GSE53408 dataset. Twenty-six DEARGs were identified, all of which were upregulated. Enrichment analyses revealed that these DEARGs were mainly enriched in the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway, PI3K-Akt signaling pathway, response to hypoxia, response to nutrient levels, and autophagy. Among these hub genes, the mRNA expression levels of HSP90AA1, HIF1A, MET, IGF1, LRRK2, CLTC, DNM1L, MDM2, RICTOR, and ROCK2 were significantly upregulated in PAH patients than in healthy individuals. Ten hub DEARGs were identified and may participate in the pathogenesis of the PAH via the regulation of autophagy. The present study may provide novel therapeutic targets for PAH prevention and treatment and expand our understanding of PAH.
Collapse
Affiliation(s)
- Zhisong Yang
- Department of Emergency, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, China
| | - Li Zhou
- Department of Emergency, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, China
| | - Haiyan Ge
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| | - Weimin Shen
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| | - Lin Shan
- Department of Respiratory Medicine, Shanghai Huadong Hospital, Shanghai 200040, China
| |
Collapse
|
22
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
23
|
Song Q, Chen P, Wu SJ, Chen Y, Zhang Y. Differential Expression Profile of microRNAs and Tight Junction in the Lung Tissues of Rat With Mitomycin-C-Induced Pulmonary Veno-Occlusive Disease. Front Cardiovasc Med 2022; 9:746888. [PMID: 35252374 PMCID: PMC8889576 DOI: 10.3389/fcvm.2022.746888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pulmonary veno-occlusive disease (PVOD) is characterized by increased pulmonary vascular resistance. Currently, there is a lack of effective treatment. It is of great significance to explore molecular targets for treatment. This study investigated the differential expression profile of miRNAs and tight junction in the lung tissues of rats with mitomycin-C (MMC)-induced PVOD. Methods A total of 14 rats were divided into the control group and he PVOD group. We measured mean pulmonary arterial pressure (mPAP) and right ventricular hypertrophy index (RVHI). Pathological changes including those in lung tissues, pulmonary venules, and capillary were detected by H&E and orcein staining. Western blot was used to detect GCN2, ZO-1, occludin, and claudin-5 expression. We analyzed the miRNAs profile in the rat lung tissues by high-throughput sequencing. The top differentially expressed miRNAs were validated by using real-time polymerase chain reaction (RT-PCR). Results There were severe pulmonary artery hypertrophy/hyperplasia, thickening, and occlusion in the small pulmonary veins, pulmonary edema, and dilated capillaries in MMC-induced rats with PVOD. In addition, mPAP and RVHI were significantly increased (P < 0.05). The expression of GCN2 was significantly decreased (P < 0.05). A total of 106 differentially expressed miRNAs were identified. According to the fold changes, the top ten upregulated miRNAs were miRNA-543-3p, miRNA-802-5p, miRNA-493-3p, miRNA-539-3p, miRNA-495, miRNA-380-5p, miRNA-214-5p, miRNA-539-5p, miRNA-190a-3p, and miRNA-431. The top 10 downregulated miRNAs were miRNA-201-3p, miRNA-141-3p, miRNA-1912-3p, miRNA-500-5p, miRNA-3585-5p, miRNA-448-3p, miRNA-509-5p, miRNA-3585-3p, miRNA-449c-5p, and miRNA-509-3p. RT-PCR confirmed that miRNA-214-5p was upregulated, while miRNA-141-3p was downregulated (P < 0.05). Functional analysis showed various signaling pathways and metabolic processes, such as fatty acid biosynthesis, tight junction, and the mTOR signaling pathway. In addition, the expression of the tight junction-related protein of ZO-1, occludin, and claudin-5 was significantly decreased in rats with PVOD (P < 0.05). Conclusion miRNAs may be involved in the pathogenesis of PVOD. Furthermore, ZO-1, occludin, and claudin-5 verification confirmed that the tight junction may be involved in the development of the disease.
Collapse
Affiliation(s)
- Qing Song
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Shang-Jie Wu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
- *Correspondence: Yan Zhang
| |
Collapse
|
24
|
Sun Z, Liu Y, Hu R, Wang T, Li Y, Liu N. Metformin inhibits pulmonary artery smooth muscle cell proliferation by upregulating p21 via NONRATT015587.2. Int J Mol Med 2022; 49:49. [PMID: 35147202 PMCID: PMC8904078 DOI: 10.3892/ijmm.2022.5104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 11/05/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a complex and progressive disease characterized by pulmonary vascular remodeling. Our previous study confirmed that NONRATT015587.2 could promote the proliferation of PASMCs and pulmonary vascular remodeling. However, the exact mechanism by which NONRATT015587.2 promotes PASMC proliferation is unclear. Bioinformatics analysis revealed that p21 is located at the downstream target of NONRATT015587.2. NONRATT015587.2 expression and localization were analyzed by PCR and fluorescence in situ hybridization. Proliferation was detected by Cell Counting Kit-8, flow cytometry and western blotting. In the current study, a monocrotaline (MCT)-induced PAH rat model and cultured pulmonary artery smooth muscle cells (PASMCs) were used in vitro to elucidate the exact mechanism of NONRATT015587.2 in pulmonary vascular remodeling, alongside the effect following metformin (MET) treatment on vascular remodeling and smooth muscle cell proliferation. The results demonstrated that NONRATT015587.2 expression was upregulated in the MCT group and reduced in the MET + MCT group. In addition, NONRATT015587.2 could promote the proliferation of PASMCs. The expression levels of p21 were reduced in the MCT group, but increased in the MCT + MET group. Additionally, the expression of NONRATT015587.2 was upregulated in platelet-derived growth factor-BB (PDGF-BB)-induced PASMCs, whereas that of p21 was downregulated. Following MET treatment, the expression of NONRATT015587.2 was downregulated and that of p21 was upregulated, which inhibited the proliferation of PASMCs. After overexpression of NONRATT015587.2 in vitro, the proliferation effect of PASMCs was consistent with exogenous PDGF-BB treatment, and MET reversed this effect. NONRATT015587.2 silencing inhibited the proliferation of PASMCs. In addition, p21 silencing reversed the inhibitory effect of NONRATT015587.2 silencing on the proliferation of PASMCs. However, the proliferation of PASMCs was inhibited following MET treatment when NONRATT015587.2 and p21 were silenced at the same time. Thus, NONRATT015587.2 promoted the proliferation of PASMCs by targeting p21, and MET inhibited the proliferation of PASMCs by upregulating p21 mediated via NONRATT015587.2.
Collapse
Affiliation(s)
- Zengxian Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Rong Hu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Tianyan Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yanli Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Naifeng Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
25
|
Peng H, Zhou L, Li H, Zhang Y, Cheng S, Chen Z, Yu S, Hu S, Chen W, Ouyang M, Xue J, Zeng W. The therapeutic effect and mechanism of Rapamycin combined with HO-3867 on monocrotaline-induced pulmonary hypertension in rats. Eur J Pharm Sci 2021; 170:106102. [PMID: 34958883 DOI: 10.1016/j.ejps.2021.106102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023]
Abstract
This study test was designed to investigate the possible modulatory effect of rapamycin combined with HO-3867 in monocrotaline(MCT)-induced pulmonary arterial hypertension in rats. We hypothesized that combined treatment with rapamycin and HO-3867 is superior to either alone in attenuating MCT-induced rat pulmonary arterial hypertension (PAH). Pulmonary arterial hypertension was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg). 2 weeks later, rapamycin (2 mg/kg i.p.) and HO3867 (10 mg/kg i.h.) were administered daily, alone and in combination, for 2 weeks. Right ventricular systolic pressure, echocardiography were recorded and then rats were sacrificed. Histological analysis of pulmonary arteries medial wall thickness, right ventricular hypertrophy index (RVHI), the ratio of right ventricular to body weight, and collagen volume fraction (CVF) of right ventricular were performed. Moreover, the expression of t-STAT3, p-STAT3, t-Akt, p-Akt in lung and t-STAT3, p-STAT3, t-S6, p-S6 in right ventricular were examined. The result showed that combined treatment provided a considerable improvement toward maintaining hemodynamic changes, lung vascular remodeling as well as amending RV remodeling and function. Furthermore, Combined treatment can normalize the protein levels of two signal pathways in lung and heart tissue, where p-S6 or p-Akt significantly decreased compared to HO-3867 alone, or p-STAT3 significantly reduced compared to rapamycin alone. In conclusion, combined treatment with rapamycin and HO-3867 is superior to either alone in attenuating MCT-induced PAH in rats.
Collapse
Affiliation(s)
- Huajing Peng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Ling Zhou
- Ultrasonic Department, Hospital of South China University of Technology, 510000, Guangzhou, China
| | - Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510000, Guangzhou, Guangdong Province, China
| | - Yitao Zhang
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Shiyao Cheng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Zhichong Chen
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Shuqi Yu
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Sutian Hu
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Wenzeng Chen
- Department of Cardiac Surgery, Sun Yet-sen Memorial Hospital, 510000, Guangzhou, China
| | - Mao Ouyang
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Jiaojie Xue
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China.
| | - Weijie Zeng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China.
| |
Collapse
|
26
|
Wang Y, Li N, Wang Y, Zheng G, An J, Liu C, Wang Y, Liu Q. NF-κB/p65 Competes With Peroxisome Proliferator-Activated Receptor Gamma for Transient Receptor Potential Channel 6 in Hypoxia-Induced Human Pulmonary Arterial Smooth Muscle Cells. Front Cell Dev Biol 2021; 9:656625. [PMID: 34950652 PMCID: PMC8688744 DOI: 10.3389/fcell.2021.656625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Peroxisome proliferator-activated receptor gamma (PPARγ) has an anti-proliferation effect on pulmonary arterial smooth muscle cells (PASMCs) via the transient receptor potential channel (TRPC) and protects against pulmonary artery hypertension (PAH), whereas nuclear factor-kappa B (NF-κB) has pro-proliferation and pro-inflammation effects, which contributes to PAH. However, the association between them in PAH pathology remains unclear. Therefore, this study aimed to investigate this association and the mechanisms underlying TRPC1/6 signaling-mediated PAH. Methods: Human pulmonary arterial smooth muscle cells (hPASMCs) were transfected with p65 overexpressing (pcDNA-p65) and interfering plasmids (shp65) and incubated in normal and hypoxic conditions (4% O2 and 72 h). The effects of hypoxia and p65 expression on cell proliferation, invasion, apoptosis, [Ca2+]i, PPARγ, and TRPC1/6 expression were determined using Cell Counting Kit-8 (CCK-8), Transwell, Annexin V/PI, Fura-2/AM, and western blotting, respectively. In addition, the binding of p65 or PPARγ proteins to the TRPC6 promoter was validated using a dual-luciferase report assay, chromatin-immunoprecipitation-polymerase chain reaction (ChIP-PCR), and electrophoretic mobility shift assay (EMSA). Results: Hypoxia inhibited hPASMC apoptosis and promoted cell proliferation and invasion. Furthermore, it increased [Ca2+]i and the expression of TRPC1/6, p65, and Bcl-2 proteins. Moreover, pcDNA-p65 had similar effects on hypoxia treatment by increasing TRPC1/6 expression, [Ca2+]i, hPASMC proliferation, and invasion. The dual-luciferase report and ChIP-PCR assays revealed three p65 binding sites and two PPARγ binding sites on the promoter region of TRPC6. In addition, hypoxia treatment and shPPARγ promoted the binding of p65 to the TRPC6 promoter, whereas shp65 promoted the binding of PPARγ to the TRPC6 promoter. Conclusion: Competitive binding of NF-κB p65 and PPARγ to TRPC6 produced an anti-PAH effect.
Collapse
Affiliation(s)
- Yan Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Naijian Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingfeng Wang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Department of Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
- *Correspondence: Yingfeng Wang,
| | - Guobing Zheng
- Prenatal Diagnosis Unit, Boai Hospital of Zhongshan, Zhongshan, China
| | - Jing An
- Department of Academic Research Office, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chang Liu
- Department of Scientific Research Center, Southern Medical University, Guangzhou, China
| | - Yajie Wang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
- Southern Medical University Institute for Global Health and Sexually Transmitted Diseases, Guangzhou, China
| | - Qicai Liu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Wu J, Xue X, Fan G, Gu Y, Zhou F, Zheng Q, Liu R, Li Y, Ma B, Li S, Huang G, Ma L, Li X. Ferulic Acid Ameliorates Hepatic Inflammation and Fibrotic Liver Injury by Inhibiting PTP1B Activity and Subsequent Promoting AMPK Phosphorylation. Front Pharmacol 2021; 12:754976. [PMID: 34566665 PMCID: PMC8455917 DOI: 10.3389/fphar.2021.754976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation in response to persistent exogenous stimuli or damage results in liver fibrosis, which subsequently progresses into malignant liver diseases with high morbidity and mortality. Ferulic acid (FA) is a phenolic acid widely isolated from abundant plants and exhibits multiple biological activities including anti-oxidant, anti-inflammation and enhancement of immune responses. Adenosine monophosphate-activated protein kinase (AMPK) functions as a critical energy sensor and is regulated through the phosphorylation of liver kinases like LKB1 or dephosphorylation by protein tyrosine phosphatases (PTPs). However, the role of FA in carbon tetrachloride (CCl4)-induced chronic inflammation and liver fibrosis and AMPK activation has not been elucidated. Here we reported that FA ameliorated CCl4-induced inflammation and fibrotic liver damage in mice as indicated by reduced levels of serum liver function enzyme activities and decreased expression of genes and proteins associated with fibrogenesis. Additionally, FA inhibited hepatic oxidative stress, macrophage activation and HSC activation via AMPK phosphorylation in different liver cells. Mechanically, without the participation of LKB1, FA-induced anti-inflammatory and anti-fibrotic effects were abrogated by a specific AMPK inhibitor, compound C. Combining with the results of molecular docking, surface plasmon resonance and co-immunoprecipitation assays, we further demonstrated that FA directly bound to and inhibited PTP1B, an enzyme responsible for dephosphorylating key protein kinases, and eventually leading to the phosphorylation of AMPK. In summary, our results indicated that FA alleviated oxidative stress, hepatic inflammation and fibrotic response in livers through PTP1B-AMPK signaling pathways. Taken together, we provide novel insights into the potential of FA as a natural product-derived therapeutic agent for the treatment of fibrotic liver injury.
Collapse
Affiliation(s)
- Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yiqing Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Boning Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Han S, Chandel NS. Lessons from Cancer Metabolism for Pulmonary Arterial Hypertension and Fibrosis. Am J Respir Cell Mol Biol 2021; 65:134-145. [PMID: 33844936 DOI: 10.1165/rcmb.2020-0550tr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolism is essential for a living organism to sustain life. It provides energy to a cell by breaking down compounds (catabolism) and supplies building blocks for the synthesis of macromolecules (anabolism). Signal transduction pathways tightly regulate mammalian cellular metabolism. Simultaneously, metabolism itself serves as a signaling pathway to control many cellular processes, such as proliferation, differentiation, cell death, gene expression, and adaptation to stress. Considerable progress in the metabolism field has come from understanding how cancer cells co-opt metabolic pathways for growth and survival. Recent data also show that several metabolic pathways may participate in the pathogenesis of lung diseases, some of which could be promising therapeutic targets. In this translational review, we will outline the basic metabolic principles learned from the cancer metabolism field as they apply to the pathogenesis of pulmonary arterial hypertension and fibrosis and will place an emphasis on therapeutic potential.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care, Department of Medicine, and
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care, Department of Medicine, and.,Department Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
29
|
Qaiser KN, Tonelli AR. Novel Treatment Pathways in Pulmonary Arterial Hypertension. Methodist Debakey Cardiovasc J 2021; 17:106-114. [PMID: 34326930 PMCID: PMC8298123 DOI: 10.14797/cbhs2234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive vascular disease characterized by pulmonary vascular remodeling, proliferation, and inflammation. Despite the availability of effective treatments, PAH may culminate in right ventricular failure and death. Currently approved medications act through three well-characterized pathways: the nitric oxide, endothelin, and prostacyclin pathways. Ongoing research efforts continue to expand our understanding of the molecular pathogenesis of this complex and multifactorial disease. Based on recent discoveries in the pathobiology of PAH, several new treatments are being developed and tested with the goal of modifying the disease process and ultimately improving the long-term prognosis.
Collapse
|
30
|
Zhao Q, Song P, Zou MH. AMPK and Pulmonary Hypertension: Crossroads Between Vasoconstriction and Vascular Remodeling. Front Cell Dev Biol 2021; 9:691585. [PMID: 34169079 PMCID: PMC8217619 DOI: 10.3389/fcell.2021.691585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Pulmonary hypertension (PH) is a debilitating and life-threatening disease characterized by increased blood pressure within the pulmonary arteries. Adenosine monophosphate-activated protein kinase (AMPK) is a heterotrimeric serine-threonine kinase that contributes to the regulation of metabolic and redox signaling pathways. It has key roles in the regulation of cell survival and proliferation. The role of AMPK in PH is controversial because both inhibition and activation of AMPK are preventive against PH development. Some clinical studies found that metformin, the first-line antidiabetic drug and the canonical AMPK activator, has therapeutic efficacy during treatment of early-stage PH. Other study findings suggest the use of metformin is preferentially beneficial for treatment of PH associated with heart failure with preserved ejection fraction (PH-HFpEF). In this review, we discuss the "AMPK paradox" and highlight the differential effects of AMPK on pulmonary vasoconstriction and pulmonary vascular remodeling. We also review the effects of AMPK activators and inhibitors on rescue of preexisting PH in animals and include a discussion of gender differences in the response to metformin in PH.
Collapse
Affiliation(s)
| | | | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
31
|
Feng W, Wang J, Yan X, Zhang Q, Chai L, Wang Q, Shi W, Chen Y, Liu J, Qu Z, Li S, Xie X, Li M. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif 2021; 54:e13048. [PMID: 33948998 PMCID: PMC8168414 DOI: 10.1111/cpr.13048] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES High-mobility group box-1 (HMGB1) and aberrant mitochondrial fission mediated by excessive activation of GTPase dynamin-related protein 1 (Drp1) have been found to be elevated in patients with pulmonary arterial hypertension (PAH) and critically implicated in PAH pathogenesis. However, it remains unknown whether Drp1-mediated mitochondrial fission and which downstream targets of mitochondrial fission mediate HMGB1-induced pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration leading to vascular remodelling in PAH. This study aims to address these issues. METHODS Primary cultured PASMCs were obtained from male Sprague-Dawley (SD) rats. We detected RNA levels by qRT-PCR, protein levels by Western blotting, cell proliferation by Cell Counting Kit-8 (CCK-8) and EdU incorporation assays, migration by wound healing and transwell assays. SD rats were injected with monocrotaline (MCT) to establish PAH. Hemodynamic parameters were measured by closed-chest right heart catheterization. RESULTS HMGB1 increased Drp1 phosphorylation and Drp1-dependent mitochondrial fragmentation through extracellular signal-regulated kinases 1/2 (ERK1/2) signalling activation, and subsequently triggered autophagy activation, which further led to bone morphogenetic protein receptor 2 (BMPR2) lysosomal degradation and inhibitor of DNA binding 1 (Id1) downregulation, and eventually promoted PASMCs proliferation/migration. Inhibition of ERK1/2 cascade, knockdown of Drp1 or suppression of autophagy restored HMGB1-induced reductions of BMPR2 and Id1, and diminished HMGB1-induced PASMCs proliferation/migration. In addition, pharmacological inhibition of HMGB1 by glycyrrhizin, suppression of mitochondrial fission by Mdivi-1 or blockage of autophagy by chloroquine prevented PAH development in MCT-induced rats PAH model. CONCLUSIONS HMGB1 promotes PASMCs proliferation/migration and pulmonary vascular remodelling by activating ERK1/2/Drp1/Autophagy/BMPR2/Id1 axis, suggesting that this cascade might be a potential novel target for management of PAH.
Collapse
Affiliation(s)
- Wei Feng
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jian Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xin Yan
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Limin Chai
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jin Liu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Zhan Qu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| |
Collapse
|
32
|
Bolívar S, Noriega L, Ortega S, Osorio E, Rosales W, Mendoza X, Mendoza-Torres E. Novel Targets of Metformin in Cardioprotection: Beyond the Effects Mediated by AMPK. Curr Pharm Des 2021; 27:80-90. [PMID: 32386485 DOI: 10.2174/1381612826666200509232610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease is the main cause of death globally. In the heart, the ischemia/reperfusion injury gives rise to a complex cascade of molecular signals, called cardiac remodeling, which generates harmful consequences for the contractile function of the myocardium and consequently heart failure. Metformin is the drug of choice in the treatment of type 2 diabetes mellitus. Clinical data suggest the direct effects of this drug on cardiac metabolism and studies in animal models showed that metformin activates the classical pathway of AMP-activated protein kinase (AMPK), generating cardioprotective effects during cardiac remodeling, hypertrophy and fibrosis. Furthermore, new studies have emerged about other targets of metformin with a potential role in cardioprotection. This state of the art review shows the available scientific evidence of the cardioprotective potential of metformin and its possible effects beyond AMPK. Targeting of autophagy, mitochondrial function and miRNAs are also explored as cardioprotective approaches along with a therapeutic potential. Further advances related to the biological effects of metformin and cardioprotective approaches may provide new therapies to protect the heart and prevent cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Samir Bolívar
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Laura Noriega
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Stefany Ortega
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Estefanie Osorio
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| | - Wendy Rosales
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| | - Xilene Mendoza
- Universidad Metropolitana, Grupo de Investigacion en Medicina Traslacional (GIMET), Barranquilla, Colombia
| | - Evelyn Mendoza-Torres
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| |
Collapse
|
33
|
Xu T, Jia J, Xu N, Ye C, Zheng F, Yuan Y, Zhu GQ, Zhan YY. Apelin receptor upregulation in spontaneously hypertensive rat contributes to the enhanced vascular smooth muscle cell proliferation by activating autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:627. [PMID: 33987325 PMCID: PMC8106044 DOI: 10.21037/atm-20-6891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Proliferation of vascular smooth muscle cells (VSMCs) plays a vital role in the progression of vascular remodeling and hypertension. Apelin-13 promotes VSMC proliferation of normal rats. This study was designed to investigate the roles of apelin receptor (APJ) and apelin-13 in VSMC proliferation of hypertension rats and underlying mechanisms. Methods Primary VSMCs were obtained from aorta of Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). The expressions of apelin and APJ were detected by Western bolt and PCR, as well as immunohistochemistry. VSMC proliferation was evaluated with CCK-8 kit, PCNA protein expression and percentage of EdU-positive cells. Autophagy was determined by the ratio of LC3BII to LC3BI, ATG5 and p62 protein expressions, as well as LC3B immunofluorescence. Results APJ expression was increased while apelin expression was reduced in aorta and VSMCs of SHR compared with those of WKY. Exogenous apelin-13 promoted VSMC proliferation and autophagy of both WKY and SHR, which were prevented by APJ antagonist F13A. Blockade of APJ had no significant effects on VSMC proliferation and autophagy of WKY, but attenuated VSMC proliferation and autophagy of SHR. Administration of autophagy inhibitor 3-methyladenine (3-MA) not only attenuated VSMC proliferation of SHR, but prevented apelin-13-induced VSMC proliferation of both WKY and SHR. Conclusions Apelin-13 stimulates VSMC proliferation via APJ-mediated enhancement in autophagy. APJ upregulation in SHR contributes to the enhanced VSMC proliferation.
Collapse
Affiliation(s)
- Tao Xu
- Department of Geriatric Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Jia
- Department of General Practice, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Na Xu
- Department of Geriatric Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Yuan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yi-Yang Zhan
- Department of Geriatric Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137:111286. [PMID: 33524789 DOI: 10.1016/j.biopha.2021.111286] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is the first-line option for treating newly diagnosed diabetic patients and also involved in other pharmacological actions, including antitumor effect, anti-aging effect, polycystic ovarian syndrome prevention, cardiovascular action, and neuroprotective effect, etc. However, the mechanisms of metformin actions were not fully illuminated. Recently, increasing researches showed that autophagy is a vital medium of metformin playing pharmacological actions. Nevertheless, results on the effects of metformin on autophagy were inconsistent. Apart from few clinical evidences, more data focused on kinds of no-clinical models. First, many studies showed that metformin could induce autophagy via a number of signaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/AKT/ GSK3β, and TRIB3. Secondly, some signaling pathways were involved in the process of metformin inhibiting autophagy, such as AMPK-related signaling pathways (AMPK/NF-κB and other undetermined AMPK-related signaling pathways), Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p. Thirdly, two types of signaling pathways including PI3K/AKT/mTOR and endoplasmic reticulum (ER) stress could bidirectionally impact the effectiveness of metformin on autophagy. Finally, multiple signal pathways were reviewed collectively in terms of affecting the effectiveness of metformin on autophagy. The pharmacological effects of metformin combining its actions on autophagy were also discussed. It would help better apply metformin to treat diseases in term of mediating autophagy.
Collapse
Affiliation(s)
- Guangli Lu
- School of Business, Henan University, Henan, Kaifeng, China
| | - Zhen Wu
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| | - Jia Shang
- School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Henan, Kaifeng, Jinming Avenue, 475004, China.
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China.
| | - Chuning Zhang
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| |
Collapse
|
35
|
Varghese MV, James J, Rafikova O, Rafikov R. Glucose-6-phosphate dehydrogenase deficiency contributes to metabolic abnormality and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L508-L521. [PMID: 33502933 DOI: 10.1152/ajplung.00165.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that several patients with idiopathic pulmonary hypertension (PH) had different types of G6PD deficiency. However, the role of G6PD in PH is multifactorial because G6PD is involved in controlling oxidative stress, metabolic switch, and red blood cell fragility. To delineate the contribution of G6PD to PH pathogenesis, we utilized a mouse line with decreased expression of G6PD (10% from wild-type level). We confirmed that mice with G6PD deficiency develop spontaneous pulmonary hypertension with pulmonary artery and right heart remodeling. G6PD deficiency resulted in increased free hemoglobin and activation of the p38 pathway, which we recently reported induces the development of PH in the sugen/hypoxia model via endothelial barrier dysfunction. Metabolomics analysis of G6PD deficient mice indicates the switch to alternative metabolic fluxes that feed into the pentose phosphate pathway (PPP), resulting in the upregulation of oxidative stress, fatty acid pathway, and reduction in pyruvate production. Thus, G6PD deficiency did not reduce PPP flux that is important for proliferation but activated collateral pathways at the cost of increased oxidative stress. Indeed, we found the upregulation of myo-inositol oxidase, reduction in GSH/GSSG ratio, and increased nitration in the lungs of G6PD-deficient mice. Increased oxidative stress also results in the activation of PI3K, ERK1/2, and AMPK that contribute to the proliferation of pulmonary vasculature. Therefore, G6PD deficiency has a multimodal effect, including hemolysis, metabolic reprogramming, and oxidative stress leading to the PH phenotype in mice.
Collapse
Affiliation(s)
| | - Joel James
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
36
|
Pan Y, Liu L, Zhang Q, Shi W, Feng W, Wang J, Wang Q, Li S, Li M. Activation of AMPK suppresses S1P-induced airway smooth muscle cells proliferation and its potential mechanisms. Mol Immunol 2020; 128:106-115. [PMID: 33126079 DOI: 10.1016/j.molimm.2020.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/13/2023]
Abstract
The aims of the present study were to investigate the signaling mechanisms for sphingosine-1-phosphate (S1P)-induced airway smooth muscle cells (ASMCs) proliferation and to explore the effect of activation of adenosine monophosphate-activated protein kinase (AMPK) on S1P-induced ASMCs proliferation and its underlying mechanisms. S1P phosphorylated signal transducer and activator of transcription 3 (STAT3) through binding to S1PR2/3, and this further sequentially up-regulated polo-like kinase 1 (PLK1) and inhibitor of differentiation 2 (ID2) protein expression. Pretreatment of cells with S1PR2 antagonist JTE-013, S1PR3 antagonist CAY-10444, knockdown of STAT3, PLK1 and ID2 attenuated S1P-triggered ASMCs proliferation. In addition, activation of AMPK by metformin inhibited S1P-induced ASMCs proliferation by suppressing STAT3 phosphorylation and therefore suppression of PLK1 and ID2 protein expression. Our study suggests that S1P promotes ASMCs proliferation by stimulating S1PR2/3/STAT3/PLK1/ID2 axis, and activation of AMPK suppresses ASMCs proliferation by targeting on STAT3 signaling pathway. Activation of AMPK might benefit asthma by inhibiting airway remodeling.
Collapse
Affiliation(s)
- Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
37
|
Yoshida T, Matsuura K, Goya S, Ma D, Shimada K, Kitpipatkun P, Namiki R, Uemura A, Suzuki K, Tanaka R. Metformin prevents the development of monocrotaline-induced pulmonary hypertension by decreasing serum levels of big endothelin-1. Exp Ther Med 2020; 20:149. [PMID: 33093887 PMCID: PMC7571338 DOI: 10.3892/etm.2020.9278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease with poor prognosis, and it is characterized by the progressive elevation of pulmonary vascular resistance and pressure. Various factors are associated with the pathology of PH, including AMP-activated protein kinase (AMPK) deficiency. The present study aimed to evaluate the therapeutic effect of metformin, an AMPK activator, in a monocrotaline (MCT)-induced PH rat model. Rats were randomly divided into the following three groups: i) Saline-injected group (sham group); ii) monocrotaline (MCT)-injected group (PH group); iii) MCT-injected and metformin-treated group (MT group). Four weeks following MCT injection, cardiac ultrasonography, invasive hemodynamic measurements, measurement of serum levels of big endothelin-1 (big ET-1) and histological analysis were performed to evaluate the effect of metformin treatment in PH. Pulmonary arterial pressure and serum big ET-1 concentrations were reduced in the MT group compared with the PH group. Medial wall thickness and wall area of the pulmonary arterioles in the MT group were decreased compared with the PH group. Comparing the right heart functional parameters among groups revealed that the acceleration time/ejection time ratio improved in the MT group compared with the PH group. Thus, the present study demonstrated the efficacy of metformin in an MCT-induced PH rat model and suggested that metformin may be a valuable, potential novel therapeutic for the treatment of PH.
Collapse
Affiliation(s)
- Tomohiko Yoshida
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Katsuhiro Matsuura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Seijirow Goya
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Danfu Ma
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Pitipat Kitpipatkun
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryosuke Namiki
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuhiko Suzuki
- Department of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
38
|
Zhai C, Feng W, Shi W, Wang J, Zhang Q, Yan X, Wang Q, Li S, Liu L, Pan Y, Zhu Y, Chai L, Li C, Liu P, Chen Y, Li M. Sphingosine-1-phosphate promotes pulmonary artery smooth muscle cells proliferation by stimulating autophagy-mediated E-cadherin/CDH1 down-regulation. Eur J Pharmacol 2020; 884:173302. [PMID: 32659302 DOI: 10.1016/j.ejphar.2020.173302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
It has been shown that sphingosine-1-phosphate (S1P) is elevated in patients with pulmonary arterial hypertension (PAH) and promotes the proliferation of pulmonary artery smooth muscle cells (PASMCs). Meanwhile, S1P has been found to induce the activation of autophagy in several types of human diseases including cancers. However, it is still unclear whether activation of autophagy mediates S1P-induced PASMCs proliferation, and detailed mechanisms responsible for these processes are indefinite. The aims of this study are to address these issues. S1P dose- and time-dependently reduced the expression of E-cadherin/CDH1 and stimulated PASMCs proliferation; this was accompanied with the elevation of TNF receptor-associated factor 2 (TRAF2), up-regulation and ubiquitination of BECN1 and the activation of autophagy. Prior silencing TRAF2 or BECN1 using siRNA or pre-incubation of cells with autophagy inhibitor chloroquine phosphate (CQ) suppressed S1P-induced autophagy activation and subsequent CDH1 degradation and further PASMCs proliferation. Taken together, our study indicates that S1P promotes the activation of autophagy by accelerating TRAF2-mediated BECN1 up-regulation and ubiquitination, which in turn results in CDH1 reduction and contributes to PASMCs proliferation.
Collapse
Affiliation(s)
- Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Cong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Pengtao Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
39
|
UL16-Binding Protein 1 Induced HTR-8/SVneo Autophagy via NF- κB Suppression Mediated by TNF- α Secreted through uNK Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9280372. [PMID: 32626772 PMCID: PMC7306880 DOI: 10.1155/2020/9280372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
Abstract
UL16-binding protein 1(ULBP1) has been reported to inhibit trophoblast invasion through the modification of secretion functions of uNK cells in the previous study, but its mechanisms remain unclear. In this study, we investigated the related mechanism by which upregulated ULBP1 expression impaired trophoblast invasion. We found that conditioned media with ULBP1 increased autophagy in HTR-8/SVneo, and anti-TNF-α-neutralizing antibody rescued the autophagy caused by the conditioned medium. We further found TNF-α induced autophagy in trophoblast cells in a dose-dependent way and accompanied by a decreased activity of nuclear factor-kappa B (NF-κB). Inhibition of NF-κB activation by chemical inhibitor augmented these autophagic responses to TNF-α in the cells. In addition, interruption NF-κB caused a significant decrease in HTR-8/SVneo invasion and enhanced the inhibition effect of TNF-α on HTR-8/SVneo invasion. Taken together, these findings suggest that TNF-α is able to regulate autophagic activity via suppressing NF-κB, which might be the mechanism related to ULBP1 in preeclampsia pathogenesis.
Collapse
|
40
|
Ou M, Li X, Cui S, Zhao S, Tu J. Emerging roles of let‑7d in attenuating pulmonary arterial hypertension via suppression of pulmonary artery endothelial cell autophagy and endothelin synthesis through ATG16L1 downregulation. Int J Mol Med 2020; 46:83-96. [PMID: 32319531 PMCID: PMC7255485 DOI: 10.3892/ijmm.2020.4567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance, resulting in right ventricular failure and death. Compelling evidence has suggested the roles of microRNAs (miRNAs/miRs) in PAH. The present study investigated the possible effects of miR-let-7d on PAH through autophagy-related 16-like 1 (ATG16L1). Initially, the serum levels of let-7d in PAH patients were detected. Rats were then treated with monocrotaline to induce a rat model of PAH, after which the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were determined. Next, the putative binding sites between let-7d and ATG16L1 were detected. The expression of let-7d and ATG16L1 in PAH rat models and cells was upregulated or downregulated to assess the effects of these molecules on autophagy in pulmonary artery vascular endothelial cells (PAECs) and on endothelin synthesis. In addition, the levels of p62, LC3-I, LC3-II, LC3B and endothelin-1 (ET-1) were assessed. The results obtained revealed that let-7d was downregulated in the serum of PAH patients and rats with PAH. Importantly, ATG16L1 was found to be a target gene of let-7d and let-7d could suppress the expression of ATG16L1. Overexpression of let-7d was found to reduce RVSP and RVHI values. Additionally, upregulation of let-7d or depletion of ATG16L1 led to suppression of PAEC autophagy and endothelin synthesis, corresponding to decreased ratios of LC3-II to LC3-I and reduced levels of LC3B but elevated levels of p62 in PAECs and ET-1 in plasma and lung tissues. In summary, let-7d upregulation alleviates PAH by inhibiting autophagy in PAECs and suppressing endothelin synthesis through negative regulation of ATG16L1.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Xia Li
- Department of Ultrasound, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Jie Tu
- Department of Science and Education, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
41
|
Boengler K, Schlüter KD, Schermuly RT, Schulz R. Cardioprotection in right heart failure. Br J Pharmacol 2020; 177:5413-5431. [PMID: 31995639 PMCID: PMC7680005 DOI: 10.1111/bph.14992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic and pharmacological conditioning of the left ventricle is mediated by the activation of signalling cascades, which finally converge at the mitochondria and reduce ischaemia/reperfusion (I/R) injury. Whereas the molecular mechanisms of conditioning in the left ventricle are well characterized, cardioprotection of the right ventricle is principally feasible but less established. Similar to what is known for the left ventricle, a dysregulation in signalling pathways seems to play a role in I/R injury of the healthy and failing right ventricle and in the ability/inability of the right ventricle to respond to a conditioning stimulus. The maintenance of mitochondrial function seems to be crucial in both ventricles to reduce I/R injury. As far as currently known, similar molecular mechanisms mediate ischaemic and pharmacological preconditioning in the left and right ventricles. However, the two ventricles seem to respond differently towards exercise‐induced preconditioning. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | | | | | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
42
|
Niu T, Tian Y, Wang G, Guo G, Tong Y, Shi Y. Inhibition of ROS-NF-κB-dependent autophagy enhances Hypocrellin A united LED red light-induced apoptosis in squamous carcinoma A431 cells. Cell Signal 2020; 69:109550. [PMID: 32007528 DOI: 10.1016/j.cellsig.2020.109550] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a type of malignant skin tumor derived from epidermal Malpighian cells. Photodynamic therapy is regarded as a crucial method in oncology. Hypocrellin A (HA), an efficient natural photosensitizer, has been reported to exert excellent light induced antiviral, antimicrobial and anticancer activity through mediating multiple signaling pathways. The purpose of the present study is to examine the effects of HA united red light irradiation on human squamous carcinoma A431 cells and further reveal the underlying regulatory mechanisms. The results showed that synergistic treatment of HA and red light irradiation inhibited cell proliferation and induced cell apoptosis and autophagy. Moreover, HA united red light irradiation caused a significant accumulation of reactive oxygen species (ROS), and induced the activation of c-Jun NH 2 terminal kinases (JNKs) which was inhibited by the antioxidant N-Acetyl-cysteine (NAC). Furthermore, HA united red light irradiation activated the nuclear factor-kappa B (NF-κB) pathway, and inhibition of NF-κB activity exacerbated HA united red light irradiation-induced apoptosis but suppressed cell autophagy. In addition, the inhibition of autophagy promoted HA united red light irradiation-induced apoptosis and facilitated the NF-κB activity. Over all, our results revealed that HA united red light irradiation could inhibit A431 cell proliferation by inducing apoptosis and autophagy via the activation of the ROS mediated JNK and NF-κB pathways, providing prospective for HA as a potential therapeutic for the treatment of cSCC.
Collapse
Affiliation(s)
- Tianhui Niu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Air Force Medical Center, PLA, Beijing, China.
| | - Yan Tian
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Guangyun Wang
- Aviation Medicine Research Laboratory, Air Force Medical Center, PLA, Beijing, China
| | - Guangjin Guo
- Aviation Medicine Research Laboratory, Air Force Medical Center, PLA, Beijing, China
| | - Ying Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Air Force Medical Center, PLA, Beijing, China
| | - Ying Shi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Air Force Medical Center, PLA, Beijing, China
| |
Collapse
|
43
|
Meshkani SE, Mahdian D, Abbaszadeh-Goudarzi K, Abroudi M, Dadashizadeh G, Lalau JD, De Broe ME, Hosseinzadeh H. Metformin as a protective agent against natural or chemical toxicities: a comprehensive review on drug repositioning. J Endocrinol Invest 2020; 43:1-19. [PMID: 31098946 DOI: 10.1007/s40618-019-01060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metformin is the first prescribed drug for hyperglycemia in type 2 diabetes mellitus. Mainly by activating AMPK pathway, this drug exerts various functions that among them protective effects are of the interest. PURPOSE Herein, we aimed to gather data about the protective impacts of metformin against various natural or chemical toxicities. RESULTS An extensive search among PubMed, Scopus, and Google Scholar was conducted by keywords related to protection, toxicity, natural and chemical toxins and, metformin. Our literature review showed metformin alongside its anti-hyperglycemic effect has a wide range of anti-toxic effects against anti-tumour and routine drugs, natural and chemical toxins, herbicides and, heavy metals. CONCLUSION It is evident that metformin is a potent drug against the toxicity of a broad spectrum of natural, chemical toxic agents which is proved by a vast number of studies. Metformin mainly through AMPK axis can protect different organs against toxicities. Moreover, metformin preserves DNA integrity and can be an option for adjuvant therapy to ameliorate side effect of other therapeutics.
Collapse
Affiliation(s)
- S E Meshkani
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - D Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - K Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Biochemistry, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - M Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - G Dadashizadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - J-D Lalau
- Department of Endocrinology, Université de Picardie Jules Verne, Amiens, France
| | - M E De Broe
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
| | - H Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Weise-Cross L, Resta TC, Jernigan NL. Redox Regulation of Ion Channels and Receptors in Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:898-915. [PMID: 30569735 PMCID: PMC7061297 DOI: 10.1089/ars.2018.7699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
Significance: Pulmonary hypertension (PH) is characterized by elevated vascular resistance due to vasoconstriction and remodeling of the normally low-pressure pulmonary vasculature. Redox stress contributes to the pathophysiology of this disease by altering the regulation and activity of membrane receptors, K+ channels, and intracellular Ca2+ homeostasis. Recent Advances: Antioxidant therapies have had limited success in treating PH, leading to a growing appreciation that reductive stress, in addition to oxidative stress, plays a role in metabolic and cell signaling dysfunction in pulmonary vascular cells. Reactive oxygen species generation from mitochondria and NADPH oxidases has substantial effects on K+ conductance and membrane potential, and both receptor-operated and store-operated Ca2+ entry. Critical Issues: Some specific redox changes resulting from oxidation, S-nitrosylation, and S-glutathionylation are known to modulate membrane receptor and ion channel activity in PH. However, many sites of regulation that have been elucidated in nonpulmonary cell types have not been tested in the pulmonary vasculature, and context-specific molecular mechanisms are lacking. Future Directions: Here, we review what is known about redox regulation of membrane receptors and ion channels in PH. Further investigation of the mechanisms involved is needed to better understand the etiology of PH and develop better targeted treatment strategies.
Collapse
Affiliation(s)
- Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C. Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L. Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
45
|
Pu Q, Lin P, Wang Z, Gao P, Qin S, Cui L, Wu M. Interaction among inflammasome, autophagy and non-coding RNAs: new horizons for drug. PRECISION CLINICAL MEDICINE 2019; 2:166-182. [PMID: 31598387 PMCID: PMC6770284 DOI: 10.1093/pcmedi/pbz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy and inflammasomes are shown to interact in various situations including
infectious disease, cancer, diabetes and neurodegeneration. Since multiple layers of
molecular regulators contribute to the interplay between autophagy and inflammasome
activation, the detail of such interplay remains largely unknown. Non-coding RNAs
(ncRNAs), which have been implicated in regulating an expanding list of cellular processes
including immune defense against pathogens and inflammatory response in cancer and
metabolic diseases, may join in the crosstalk between inflammasomes and autophagy in
physiological or disease conditions. In this review, we summarize the latest research on
the interlink among ncRNAs, inflammasomes and autophagy and discuss the emerging role of
these three in multiple signaling transduction pathways involved in clinical conditions.
By analyzing these intriguing interconnections, we hope to unveil the mechanism
inter-regulating these multiple processes and ultimately discover potential drug targets
for some refractory diseases.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Pan Gao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shugang Qin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
46
|
Bailly C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152956. [PMID: 31132753 PMCID: PMC7126782 DOI: 10.1016/j.phymed.2019.152956] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cepharanthine (CEP) is a drug used in Japan since the 1950s to treat a number of acute and chronic diseases, including treatment of leukopenia, snake bites, xerostomia and alopecia. It is the only approved drug for Human use in the large class of bisbenzylisoquinoline alkaloids. This natural product, mainly isolated from the plant Stephania cephalantha Hayata, exhibits multiple pharmacological properties including anti-oxidative, anti-inflammatory, immuno-regulatory, anti-cancer, anti-viral and anti-parasitic properties. PURPOSE The mechanism of action of CEP is multifactorial. The drug exerts membrane effects (modulation of efflux pumps, membrane rigidification) as well as different intracellular and nuclear effects. CEP interferes with several metabolic axes, primarily with the AMP-activated protein kinase (AMPK) and NFκB signaling pathways. In particular, the anti-inflammatory effects of CEP rely on AMPK activation and NFκB inhibition. CONCLUSION In this review, the historical discovery and development of CEP are retraced, and the key mediators involved in its mode of action are presented. The past, present, and future of CEP are recapitulated. This review also suggests new opportunities to extend the clinical applications of this well-tolerated old Japanese drug.
Collapse
Affiliation(s)
- Christian Bailly
- UMR-S 1172, Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, CHU Lille, 59045, Lille, France; OncoWitan, Lille, Wasquehal, France.
| |
Collapse
|
47
|
Zhang CF, Zhao FY, Xu SL, Liu J, Xing XQ, Yang J. Autophagy in pulmonary hypertension: Emerging roles and therapeutic implications. J Cell Physiol 2019; 234:16755-16767. [PMID: 30932199 DOI: 10.1002/jcp.28531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Autophagy is an important mechanism for cellular self-digestion and basal homeostasis. This gene- and modulator-regulated pathway is conserved in cells. Recently, several studies have shown that autophagic dysfunction is associated with pulmonary hypertension (PH). However, the relationship between autophagy and PH remains controversial. In this review, we mainly introduce the effects of autophagy-related genes and some regulatory molecules on PH and the relationship between autophagy and PH under the conditions of hypoxia, monocrotaline injection, thromboembolic stress, oxidative stress, and other drugs and toxins. The effects of other autophagy-related drugs, such as chloroquine, 3-methyladenine, rapamycin, and other potential therapeutic drugs and targets, in PH are also described.
Collapse
Affiliation(s)
- Chun-Fang Zhang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Fang-Yun Zhao
- Department of Pharmacy, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Shuang-Lan Xu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Jie Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Xi-Qian Xing
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
48
|
Sun Q, Dong H, Li Y, Yuan F, Xu Y, Mao S, Xiong X, Chen Q, Liu B. Small GTPase RHOE/RND3, a new critical regulator of NF-κB signalling in glioblastoma multiforme? Cell Prolif 2019; 52:e12665. [PMID: 31332862 PMCID: PMC6797521 DOI: 10.1111/cpr.12665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 01/17/2023] Open
Abstract
Objectives Abnormal activation of NF‐κB signalling is a major mechanism of apoptosis resistance in glioblastoma multiforme (GBM). Therefore, better understanding of the regulation of NF‐κB signalling has a significant impact for GBM therapy. Here, we uncovered a critical role of the small GTPase RND3 in regulating the p65 subunit of NF‐κB and NF‐κB signalling in GBM. Materials and methods Human GBM samples, GBM cells and a human orthotopic GBM‐xenografted animal model were used. The mechanisms of RND3 in regulation of NF‐κB signalling and GBM cell apoptosis were examined by luciferase assay, quantitative PCR, immunostaining, immunoblotting, immunofluorescence, coimmunoprecipitation, TUNEL staining, JC‐1 analysis and flow cytometry. Results Overexpression of RND3 led to reduced p65 activity in GBM‐cultured cells and a GBM animal model, indicating that the NF‐κB pathway is negatively regulated by RND3 in GBM. Mechanistically, we found that RND3 bound p65 and promoted p65 ubiquitination, leading to decreased p65 protein levels. Furthermore, RND3 enhanced cleaved caspase 3 levels and promoted apoptosis in GBM cells, and RND3 expression was positively correlated with cleaved caspase 3 and IL‐8 in human GBM samples. The effect of RND3 on promoting apoptosis disappeared when p65 ubiquitination was blocked by protease inhibitor carfilzomib or upon co‐expression of ectopic p65. Conclusions RND3 binds p65 protein and promotes its ubiquitination, resulting in reduced p65 protein expression and inhibition of NF‐κB signalling to induce GBM cell apoptosis.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huimin Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cell Biology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanping Mao
- Department of Cell Biology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Liu Y, Xu Y, Zhu J, Li H, Zhang J, Yang G, Sun Z. Metformin Prevents Progression of Experimental Pulmonary Hypertension via Inhibition of Autophagy and Activation of Adenosine Monophosphate-Activated Protein Kinase. J Vasc Res 2019; 56:117-128. [DOI: 10.1159/000498894] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/13/2019] [Indexed: 11/19/2022] Open
|
50
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Lipopolysaccharide-Induced Autophagy Mediates Retinal Pigment Epithelium Cells Survival. Modulation by the Phospholipase D Pathway. Front Cell Neurosci 2019; 13:154. [PMID: 31327962 PMCID: PMC6497095 DOI: 10.3389/fncel.2019.00154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation and oxidative stress are common factors involved in the pathogenesis of retinal diseases, such as aged-related macular degeneration (AMD) and diabetic retinopathy (DR). Autophagy is a catabolic process essential to cell survival in response to stress. This process is highly active in retinal pigment epithelium (RPE) cells. Our previous findings demonstrated that lipopolysaccharide (LPS) induces an inflammatory response of RPE cells that implies classical phospholipases D (PLD1 and 2) activation, cyclooxygenase-2 (COX-2) expression, prostaglandin E2 (PGE2) production and reduced cell viability. In this work, we studied the autophagic process and its modulation by the PLD pathway in D407 and ARPE-19 RPE cells exposed to LPS. LPS (10 μg/ml or 25 μg/ml) exposure for 24 h increased light chain 3B-II (LC3B-II) content (an autophagy marker) and LC3B-positive punctate structures in both RPE cell lines studied. Next, the drug bafilomycin A1 (BAF, 50 nM) was used to block the autophagic flux. In cells pre-incubated with BAF, LC3B-II and sequestosome 1 (SQSTM1/p62) levels and autophagosome-like structures were increased by LPS, demonstrating that the inflammatory injury increases the autophagic process in RPE cells. To study the role of the PLD pathway, cells were pre-incubated for 1 h with selective PLD1 (VU0359595) or PLD2 (VU0285655-1) inhibitors prior to LPS addition. Under control condition, LC3B-positive punctate structures were increased in cells pre-incubated with PLD2 inhibitor while with PLD1 inhibitor were increased in cells exposed to LPS. MTT reduction assays showed that early autophagy inhibitors, 3-methyladenin (3-MA) or LY294002, enhanced the loss in cell viability induced by LPS exposure for 48 h. On the contrary, the inhibition of PLD1 and PLD2 prevented the loss in cell viability induced by LPS. In conclusion, our results show that even though LPS treatment promotes an inflammatory response in RPE cells, it also triggers the activation of the autophagic process which in turn may serve as a protective mechanism for the cells. In addition, we demonstrate that the PLD pathway modulates the autophagic process in RPE cells. Our findings contribute to the knowledge of the molecular basis of retinal inflammatory and degenerative diseases and open new avenues for potential therapeutic exploration.
Collapse
Affiliation(s)
- Vicente Bermúdez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Paula Estefanía Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Norma María Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melina Valeria Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|