1
|
Liu Z, Liu B, Feng Y, Zhao L, Wang Q, He H, Yin T, Zhang Y, Yang L, Gou J, Tang X. Dual-Targeted Self-Adjuvant Heterocyclic Lipidoid@Polyester Hybrid Nanovaccines for Boosting Cancer Immunotherapy. ACS NANO 2024; 18:15557-15575. [PMID: 38837909 DOI: 10.1021/acsnano.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Tumor vaccines have demonstrated a modest response rate, primarily attributed to their inefficient delivery to dendritic cells (DCs), low cross-presentation, DC-intrinsic immunosuppressive signals, and an immunosuppressive tumor microenvironment (TME). Here, draining lymph node (DLN)-targeted and tumor-targeted nanovaccines were proposed to address these limitations, and heterocyclic lipidoid (A18) and polyester (BR647) were synthesized to achieve dual-targeted cancer immunotherapy. Meanwhile, oligo hyaluronic acid (HA) and DMG-PEG2000-Mannose were incorporated to prepare dual-targeted nanovaccines encapsulated with STAT3 siRNA and model antigens. The nanovaccines were designed to target the DLN and the tumor, facilitating the delivery of cargo into the cytoplasm. These dual-targeted nanovaccines improved antigen presentation and DC maturation, activated the stimulator of interferon genes (STING) pathway, enhanced the pro-apoptotic effect, and stimulated antitumor immune responses. Additionally, these dual-targeted nanovaccines overcame immunosuppressive TME, reduced immunosuppressive cells, and promoted the polarization of tumor-associated neutrophils from N2 to N1. Among the four dual-targeted nanovaccines that induced robust antitumor responses, the heterocyclic lipidoid@polyester hybrid nanovaccines (MALO@HBNS) demonstrated the most promising results. Furthermore, a combination strategy involving MALO@HBNS and an anti-PD-L1 antibody exhibited an immensely powerful anticancer role. This work introduced a dual-targeted nanovaccine platform for antitumor treatment, suggesting its potential combination with an immune checkpoint blockade as a comprehensive anticancer strategy.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Boyuan Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yupeng Feng
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Qingqing Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Li Yang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| |
Collapse
|
2
|
Liu Z, Li SS, Zhang GY, Lv S, Wang S, Li FQ. Whole transcriptome sequencing for revealing the pathogenesis of sporotrichosis caused by Sporothrix globosa. Sci Rep 2024; 14:359. [PMID: 38172590 PMCID: PMC10764346 DOI: 10.1038/s41598-023-50728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
This study aimed to investigate the molecular mechanism of sporotrichosis and identify possible novel therapeutic targets. Total RNA was extracted from skin lesion samples from sporotrichosis patients and used to construct a long-chain RNA transcriptome library and miRNA transcriptome library for whole transcriptome sequencing. The differentially expressed genes (DEGs) between the groups were identified, and then Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis enrichment analyses were performed based on the DEGs. An lncRNA-miRNA-mRNA ceRNA network was constructed. The expressions of JAK/STAT pathway-related proteins were detected in the patient and control tissues using RT-qPCR and Western blot analysis. Enrichment analysis showed that the DEGs were mainly enriched in various infectious diseases and immune response-related signaling pathways. Competing endogenous RNA network analysis was performed and identified the hub lncRNAs, miRNAs, and mRNAs. Compared with the control group, the mRNA expressions of SOCS3, IL-6, and JAK3 were significantly upregulated, while the expression of STAT3 did not change significantly. Also, the protein expressions of SOCS3, IL-6, JAK3, and STAT3, as well as phosphorylated JAK3 and STAT3, were significantly upregulated. We identified 671 lncRNA DEGs, 3281 mRNA DEGs, and 214 miRNA DEGs to be involved in Sporothrix globosa infection. The study findings suggest that the JAK/STAT pathway may be a therapeutic target for sporotrichosis.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Su-Shan Li
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Gui-Yun Zhang
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Sha Lv
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China.
| | - Fu-Qiu Li
- Department of Dermatology, The Second Hospital of Jilin University, No. 218 Ziqiang Road, Nanguan District, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
3
|
Dong Y, Chen J, Chen Y, Liu S. Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother 2023; 167:115513. [PMID: 37741251 DOI: 10.1016/j.biopha.2023.115513] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Immune effector cells in the microenvironment tend to be depleted or remodeled, unable to perform normal functions, and even promote the malignant characterization of tumors, resulting in the formation of immunosuppressive microenvironments. The strategy of reversing immunosuppressive microenvironment has been widely used to enhance the tumor immunotherapy effect. Signal transducer and activator of transcription 3 (STAT3) was found to be a crucial regulator of immunosuppressive microenvironment formation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Therefore, regulating the immune microenvironment by targeting the STAT3 oncogenic pathway might be a new cancer therapy strategy. This review discusses the pleiotropic effects of STAT3 on immune cell populations that are critical for tumorigenesis, and introduces the novel strategies targeting STAT3 oncogenic pathway for cancer immunotherapy. Lastly, we summarize the conventional drugs used in new STAT3-targeting anti-tumor applications.
Collapse
Affiliation(s)
- Yushan Dong
- Graduate School of Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1 Xiyuan Playground, Haidian District, Beijing, China
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songjiang Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
4
|
Liu Z, Zhao L, Feng Y, Wang Q, Dong N, Zhang Y, Yin T, He H, Tang X, Gou J, Yang L. Dual-responsive PEG-lipid polyester nanoparticles for siRNA and vaccine delivery elicit anti-cancer immune responses by modulating tumor microenvironment. Biomater Sci 2023; 11:6619-6634. [PMID: 37608695 DOI: 10.1039/d3bm01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cancer vaccine-based immunotherapy has great potential; however, the vaccines have been hindered by the immunosuppressive tumor microenvironment (TME). In this study, dual-responsive PEG-lipid polyester nanoparticles (PEG BR647-NPs) for tumor-targeted delivery were proposed. PEG BR647-NPs containing the model tumor-associated antigen (TAA) OVA and the signal transduction and activator of transcription 3 (STAT3) siRNA were delivered to the tumor. The PEG BR647-NPs were internalized by tumor-associated dendritic cells (TADCs), where the TAA and siRNA were released into the cytoplasm via the endo/lysosome escape effect. The released OVA was presented by the major histocompatibility complex class I to activate T cells, and the released STAT3 siRNA acted to relieve TADC dysfunction, promote TADC maturation, improve antigen-presenting ability, and enhance anticancer T cell immunity. Meanwhile, the PEG BR647-NPs were ingested by tumor cells, killing them by the pro-apoptosis effect of STAT3 siRNA. Moreover, PEG BR647-NPs could reduce the proportion of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in tumors and abrogate immunosuppression. The integration of relieved TADC dysfunction, promoted TADC maturation, enhanced antigen cross-presentation, abrogated immunosuppression, and improved pro-apoptosis effect boosted the vaccination for tumor immunotherapy. Thus, PEG BR647-NPs efficiently delivered the vaccine and STAT3 siRNA to the tumor and modulated immunosuppressive TME, thus providing better antitumor effects.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Yupeng Feng
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Qingqing Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Nan Dong
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Li Yang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| |
Collapse
|
5
|
Song S, Zhu L, Xu H, Wen Y, Feng R. Phenylboronic acid-installed poly(isobutene-alt-maleic anhydride) polymeric micelles for pH-dependent release of amphotericin B. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
She X, Zhang P, Shi D, Peng J, Wang Q, Meng X, Jiang Y, Calderone R, Bellanti JA, Liu W, Li D. The mitochondrial complex I proteins of Candida albicans moderate phagocytosis and the production of pro-inflammatory cytokines in murine macrophages and dendritic cells. FASEB J 2022; 36:e22575. [PMID: 36208290 DOI: 10.1096/fj.202200275rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Loss of respiratory functions impairs Candida albicans colonization of host tissues and virulence in a murine model of candidiasis. Furthermore, it is known that respiratory inhibitors decrease mannan synthesis and glucan exposure and thereby promotes phagocytosis. To understand the impact of respiratory proteins of C. albicans on host innate immunity, we characterized cell wall defects in three mitochondrial complex I (CI) null mutants (nuo1Δ, nuo2Δ and ndh51Δ) and in one CI regulator mutant (goa1Δ), and we studied the corresponding effects of these mutants on phagocytosis, neutrophil killing and cytokine production by dendritic cells (DCs). We find that reductions of phosphopeptidomannan (PPM) in goa1Δ, nuo1Δ and phospholipomannan (PLM) in nuo2Δ lead to reductions of IL-2, IL-4, and IL-10 but increase of TNF-α in infected DCs. While PPM loss is a consequence of a reduced phospho-Cek1/2 MAPK that failed to promote phagocytosis and IL-22 production in goa1Δ and nuo1Δ, a 30% glucan reduction and a defective Mek1 MAPK response in ndh51Δ lead to only minor changes in phagocytosis and cytokine production. Glucan exposure and PLM abundance seem to remain sufficient to opsonize neutrophil killing perhaps via humoral immunity. The diversity of immune phenotypes in these mutants possessing divergent cell wall defects is further supported by their transcriptional profiles in each infected murine macrophage scenario. Since metabolic processes, oxidative stress-induced senescence, and apoptosis are differently affected in these scenarios, we speculate that during the early stages of infection, host immune cells coordinate their bioactivities based upon a mixture of signals generated during host-fungi interactions.
Collapse
Affiliation(s)
- Xiaodong She
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Sport Science Research Center, Shandong Sport University, Jinan, China
| | - Dongmei Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Dermatology, Jining No. 1 People's Hospital, Jining, China
| | - Jingwen Peng
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Qiong Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yong Jiang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Department of Dermatology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
7
|
hUC-MSCs Attenuate Acute Graft-Versus-Host Disease through Chi3l1 Repression of Th17 Differentiation. Stem Cells Int 2022; 2022:1052166. [PMID: 36277038 PMCID: PMC9582900 DOI: 10.1155/2022/1052166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have already demonstrated definitive evidence of their clinical benefits in acute graft-versus-host disease (aGvHD) and other inflammatory diseases. However, the comprehensive mechanism of MSCs' immunomodulation properties has not been elucidated. To reveal their potential immunosuppressive molecules, we used RNA sequencing to analyze gene expression in different tissue-derived MSCs, including human bone marrow, umbilical cord, amniotic membrane, and placenta, and found that chitinase-3-like protein 1 (Chi3l1) was highly expressed in human umbilical cord mesenchymal stem cells (hUC-MSCs). We found that hUC-MSCs treated with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) exhibited increased expression of Chi3l1 and concurrently repressed T-helper 17 cell (Th17) differentiation through inhibition of signal transducer and activator of transcription 3 (STAT3) activation. Furthermore, Chi3l1 knockdown hUC-MSCs exhibited impaired therapeutic efficacy in aGvHD mice with an increased inflammatory response by promoting Th17 cell differentiation, including an increase in IL-17A in the spleen, intestine, and serum. Collectively, these results reveal a new immunosuppressive molecule, Chi3l1, in hUC-MSCs in the treatment of aGvHD that regulates Th17 differentiation and inhibits STAT3 activation. These novel insights into the mechanisms of hUC-MSC immunoregulation may lead to the consistent production of hUC-MSCs with strong immunosuppressive functions and thus improved clinical utility.
Collapse
|
8
|
Zhao C, Li XY, Li ZY, Li M, Liu ZD. Moxibustion regulates T-regulatory/T-helper 17 cell balance by modulating the microRNA-221/suppressor of cytokine signaling 3 axis in a mouse model of rheumatoid arthritis. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:453-462. [PMID: 35729047 DOI: 10.1016/j.joim.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) progression is associated with the balance of T-regulatory (Treg) and T-helper 17 (Th17) cells, while the role of microRNAs (miRs) in regulating Treg/Th17 cell balance has not been clarified. This study aimed to assess whether moxibustion could regulate Treg/Th17 cell balance by modulating the miR-221/suppressor of cytokine signaling 3 (SOCS3) axis in the RA mouse model. METHODS A mouse model of collagen-induced arthritis (CIA) was established in male DBA/1J mice. Twenty-two days after CIA induction, the mice received daily treatment with moxibustion for 12 times. Pathological scores were assessed according to the levels of synovial hyperplasia. The expression levels of cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-17 and IL-10 were analyzed in serum by enzyme-linked immunosorbent assay. The cluster of differentiation 4 (CD4+) splenocytes was analyzed by fluorescence-activated cell sorting. The expression levels of RA-related miRs and target genes were subsequently detected, and the target of miR-221 was confirmed by the dual-luciferase reporter assay. RESULTS It was revealed that moxibustion treatment decreased the pathological scores and downregulated the expression levels of IL-1β, IL-6, TNF-α, IFN-γ and IL-17, while upregulated the expression level of IL-10. The Treg/Th17 cell balance was regulated by moxibustion treatment. The expression level of miR-221 was suppressed by moxibustion treatment. Furthermore, SOCS3 was found as the direct target of miR-221, which mediated the function of moxibustion by regulating the Treg/Th17 cell balance. CONCLUSION Moxibustion therapy regulated the Treg/Th17 cell balance by modulating the miR-221/SOCS3 axis in the RA mouse model.
Collapse
Affiliation(s)
- Chuang Zhao
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Xiao-Yan Li
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Zun-Yuan Li
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Miao Li
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Zhi-Dan Liu
- Department of Acupuncture, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China; Department of Acupuncture, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China.
| |
Collapse
|
9
|
Lungu P, Mushota K, Njelesani E, Sukwa T, Lakhi S, Mwaba P. Expression of mycobacterium tuberculosis induced SOCS3 and STAT3 and the implications on innate immunity in TB patients vs healthy contacts in high TB/HIV endemic setting: A cross-sectional analytical study. PLoS One 2022; 17:e0263624. [PMID: 35839170 PMCID: PMC9286224 DOI: 10.1371/journal.pone.0263624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (TB) remains a disease of global health concern and a leading cause of mortality arising from an infectious agent. Protective immunity to TB remains unclear. Suppressor of cytokine signaling-3 (SOCS3) and signal transduction and activator of transcription-3 (STAT3) genes have shown potential to influence innate immunity. We, therefore, explored the expression of SOCS3 and STAT3 and their implications on the innate immunity in TB patients and their healthy close contacts. METHODS We recruited 72 TB patients and 62 healthy contacts from a high TB and HIV endemic setting (Lusaka, Zambia). We used RT-PCRT and flow cytometry to quantify the expression of SOCS, STAT3 and cytokines respectively. Data was analysed Stata version 14.0 and figures were developed in GraphPad prism version 9.1.0 (221). Assessment for associations for categorical and continuous variables was analysed using the Chi-square test and Mann-Whitney test respectively. Spearman's rank correlation was used to evaluate the relationship between SOCS3 and IL-6. A p-value < 0.05 was considered statistically significant. RESULTS Healthy contacts markedly expressed SOCS3 in both unstimulated and stimulated whole blood in comparison to TB patients (p <0.0001). STAT3 was elevated in TB patients in TB patients in stimulated blood only. IL-6 (P = < 0.0001) and IL-10 (P = <0.0001), were significantly expressed in Healthy contacts in comparison to TB patients. TNF-α (p = 0.044) were markedly elevated in TB patients in comparison to healthy contacts. IL-6 and SOCS3 correlated significantly in healthy contacts only (r = 0.429, p = 0.02). CONCLUSIONS Both SOCS3 and STAT3 are genes of importance in mounting protective innate immunity against TB. We propose that SOCS3 stimulation and inhibition of STAT3 as possible approaches in gene therapy and vaccine development for TB.
Collapse
Affiliation(s)
- Patrick Lungu
- Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Kabaso Mushota
- USAID Sustaining Technical and Analytic Resources (STAR) Project, Lusaka, Zambia
| | | | - Thomas Sukwa
- Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| | - Shabir Lakhi
- Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Peter Mwaba
- Faculty of Medicine, Lusaka Apex Medical University, Lusaka, Zambia
| |
Collapse
|
10
|
Zhang B, Yuan L, Chen G, Chen X, Yang X, Fan T, Sun C, Fan D, Chen Z. Deciphering Obesity-Related Gene Clusters Unearths SOCS3 Immune Infiltrates and 5mC/m6A Modifiers in Ossification of Ligamentum Flavum Pathogenesis. Front Endocrinol (Lausanne) 2022; 13:861567. [PMID: 35712246 PMCID: PMC9196192 DOI: 10.3389/fendo.2022.861567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ossification of ligamentum flavum (OLF) is an insidious and debilitating heterotopic ossifying disease with etiological heterogeneity and undefined pathogenesis. Obese individuals predispose to OLF, whereas the underlying connections between obesity phenotype and OLF pathomechanism are not fully understood. Therefore, this study aims to explore distinct obesity-related genes and their functional signatures in OLF. METHODS The transcriptome sequencing data related to OLF were downloaded from the GSE106253 in the Gene Expression Omnibus (GEO) database. The obesity-related differentially expressed genes (ORDEGs) in OLF were screened, and functional and pathway enrichment analysis were applied for these genes. Furthermore, protein-protein interactions (PPI), module analysis, transcription factor enrichment analysis (TFEA), and experiment validation were used to identify hub ORDEGs. The immune infiltration landscape in OLF was depicted, and correlation analysis between core gene SOCS3 and OLF-related infiltrating immune cells (OIICs) as well as 5mC/m6A modifiers in OLF was constructed. RESULTS Ninety-nine ORDEGs were preliminarily identified, and functional annotations showed these genes were mainly involved in metabolism, inflammation, and immune-related biological functions and pathways. Integrative bioinformatic algorithms determined a crucial gene cluster associated with inflammatory/immune responses, such as TNF signaling pathway, JAK-STAT signaling pathway, and regulation of interferon-gamma-mediated signaling. Eight hub ORDEGs were validated, including 6 down-regulated genes (SOCS3, PPARG, ICAM-1, CCL2, MYC, and NT5E) and 2 up-regulated genes (PTGS2 and VEGFA). Furthermore, 14 differential OIICs were identified by ssGSEA and xCell, and SOCS3 was overlapped to be the core gene, which was associated with multiple immune infiltrates (dendritic cells, macrophage, and T cells) and six m6A modifiers as well as four 5mC regulators in OLF. Reduced SOCS3 and FTO expression and up-regulated DNMT1 level in OLF were validated by Western blotting. CONCLUSION This study deciphered immune/inflammatory signatures of obesity-related gene clusters for the first time, and defined SOCS3 as one core gene. The crosstalk between 5mC/m6A methylation may be a key mediator of SOCS3 expression and immune infiltration. These findings will provide more insights into molecular mechanisms and therapeutic targets of obesity-related OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Lei Yuan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Guanghui Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xi Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xiaoxi Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Tianqi Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- *Correspondence: Zhongqiang Chen,
| |
Collapse
|
11
|
Hu G, Zhou X. Gallic Acid Ameliorates Atopic Dermatitis-Like Skin Inflammation Through Immune Regulation in a Mouse Model. Clin Cosmet Investig Dermatol 2021; 14:1675-1683. [PMID: 34815684 PMCID: PMC8605796 DOI: 10.2147/ccid.s327825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Background Gallic acid (GA) has an anti-inflammatory effect by regulating inflammatory molecules. This study aimed to investigate the effect of GA on atopic dermatitis (AD)-like skin inflammation. Methods 4-dinitrochlorobenzene (DNCB) was used to induce an AD-like skin inflammation model. The effect of GA on DNCB-induced inflammation was assessed by measuring the thickness and histopathological examination of the ear. Serum IgE and TNF-α levels were detected. The effect of GA on lymph nodes was determined by measuring the weights and mRNA/protein expression levels of TNF-α, IL-4, IFN-γ and IL-17. Ratio of Treg cells and Th17 cells was also analyzed. Results It was found that the thickness and pathology of the ear were significantly improved by GA in the DNCB-induced mice. Serum IgE and TNF-α levels were significantly reduced in GA-treated model mice compared to the model group. GA treatment lowered the weight of lymph node and the expression of mRNAs of TNF-α, IL-4, IFN-γ, and IL-17 of lymph node. In the ear, inflammatory factors (IL-4, IL-5, IL-17, or IL-23) showed a significant decrease in GA-treated model mice versus model mice, while the expression levels of IL-10 and TGF-β showed a great increase in GA-treated model mice. ROR-γt showed a decrease in GA-treated model group, along with an increase expression of SOCS3. Conclusion GA could ameliorate AD-like skin inflammation possibly through Th17 mediated immune regulation in a DNCB-induced mouse model.
Collapse
Affiliation(s)
- Guohong Hu
- Dermatology Hospital of Jiangxi Province, Nanchang, 330001, Jiangxi, People's Republic of China
| | - Xiansheng Zhou
- Dermatology Hospital of Jiangxi Province, Nanchang, 330001, Jiangxi, People's Republic of China
| |
Collapse
|
12
|
Optineurin modulates the maturation of dendritic cells to regulate autoimmunity through JAK2-STAT3 signaling. Nat Commun 2021; 12:6198. [PMID: 34707127 PMCID: PMC8551263 DOI: 10.1038/s41467-021-26477-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
Optineurin (OPTN) has important functions in diverse biological processes and diseases, but its effect on dendritic cell (DC) differentiation and functionality remains elusive. Here we show that OPTN is upregulated in human and mouse DC maturation, and that deletion of Optn in mice via CD11c-Cre attenuates DC maturation and impairs the priming of CD4+ T cells, thus ameliorating autoimmune symptoms such as experimental autoimmune encephalomyelitis (EAE). Mechanistically, OPTN binds to the JH1 domain of JAK2 and inhibits JAK2 dimerization and phosphorylation, thereby preventing JAK2-STAT3 interaction and inhibiting STAT3 phosphorylation to suppress downstream transcription of IL-10. Without such a negative regulation, Optn-deficient DCs eventually induce an IL-10/JAK2/STAT3/IL-10 positive feedback loop to suppress DC maturation. Finally, the natural product, Saikosaponin D, is identified as an OPTN inhibitor, effectively inhibiting the immune-stimulatory function of DCs and the disease progression of EAE in mice. Our findings thus highlight a pivotal function of OPTN for the regulation of DC functions and autoimmune disorders.
Collapse
|
13
|
Ye X, Lu Q, Yang A, Rao J, Xie W, He C, Wang W, Li H, Zhang Z. MiR-206 regulates the Th17/Treg ratio during osteoarthritis. Mol Med 2021; 27:64. [PMID: 34147072 PMCID: PMC8214293 DOI: 10.1186/s10020-021-00315-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The present study aimed to determine the functional role of miR-206 in T helper 17 (Th17)/regulatory T (Treg) cell differentiation during the development of osteoarthritis (OA). METHODS Patients with OA and healthy controls were recruited for investigating the association between miR-206 and Th17/Treg ratio. Transfection experiments were conducted in CD4+ T cells to verify the mechanism of miR-206 on the balance of Treg/Th17. OA model was constructed to detect the clinical score, histopathological changes and Treg/Th17 ratio. OA model was induced in rats to verify the effect of miR-206 inhibition on Th17/Treg immunoregulation. RESULTS High expression of miR-206 was positively correlated with peripheral Th17/Treg imbalance in patients with OA. The interactions between miR-206 and the 3' untranslated regions (3'-UTR) of suppressor of cytokine signaling-3 (SOCS3) and fork head transcriptional factor 3 (Foxp3) were confirmed by luciferase reporter assays. MiR-206 disturbed the Th17/Treg balance by targeting SOCS3 and Foxp3. In vivo assay demonstrated that antagomiR directed against miR-206 restored Th17/Treg balance during the development of OA. CONCLUSION MiR-206 contributed to the progression of OA by modulating Th17/Treg imbalance, suggesting that miR-206 inhibition might be a promising therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Xiguang Ye
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Qilin Lu
- Department of Orthopedics, Hubei 672 Orthopaedics Hospital of Integrated Chinese & Western Medicine, Wuhan, 430079, Hubei, China
| | - Aofei Yang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China. .,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China. .,College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.
| | - Jun Rao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Wei Xie
- Department of Orthopedics, Hubei 672 Orthopaedics Hospital of Integrated Chinese & Western Medicine, Wuhan, 430079, Hubei, China
| | - Chengjian He
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Weijun Wang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Hao Li
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Zhiwen Zhang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430061, Hubei, China.,Institute of Orthopedics, Hubei Province Academy of Traditional Chinese Medicine, No.4, Hua-Yuan-Shan, Yanzhi Road, Wuchang District, Wuhan, 430070, Hubei, China
| |
Collapse
|
14
|
Shi L, Ji Q, Liu L, Shi Y, Lu Z, Ye J, Zeng T, Xue Y, Yang Z, Liu Y, Lu J, Huang X, Qin Q, Li T, Lin Y. IL-22 produced by Th22 cells aggravates atherosclerosis development in ApoE -/- mice by enhancing DC-induced Th17 cell proliferation. J Cell Mol Med 2020; 24:3064-3078. [PMID: 32022386 PMCID: PMC7077608 DOI: 10.1111/jcmm.14967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Th22 cells are a novel subset of CD4+ T cells that primarily mediate biological effects through IL-22, with both Th22 cells and IL-22 being closely associated with multiple autoimmune and chronic inflammatory diseases. In this study, we investigated whether and how Th22 cells affect atherosclerosis. ApoE-/- mice and age-matched C57BL/6J mice were fed a Western diet for 0, 4, 8 or 12 weeks. The results of dynamic analyses showed that Th22 cells, which secrete the majority of IL-22 among the known CD4+ cells, play a major role in atherosclerosis. ApoE-/- mice fed a Western diet for 12 weeks and administered recombinant mouse IL-22 (rIL-22) developed substantially larger plaques in both the aorta and aortic root and higher levels of CD3+ T cells, CD68+ macrophages, collagen, IL-6, Th17 cells, dendritic cells (DCs) and pSTAT3 but lower smooth muscle cell (SMC) α-actin expression than the control mice. Treatment with a neutralizing anti-IL-22 monoclonal antibody (IL-22 mAb) reversed the above effects. Bone marrow-derived DCs exhibited increased differentiation into mature DCs following rIL-22 and ox-LDL stimulation. IL-17 and pSTAT3 were up-regulated after stimulation with IL-22 and ox-LDL in cells cocultured with CD4+ T cells and mature DC supernatant, but this up-regulation was significantly inhibited by IL-6mAb or the cell-permeable STAT3 inhibitor S31-201. Thus, Th22 cell-derived IL-22 aggravates atherosclerosis development through a mechanism that is associated with IL-6/STAT3 activation, DC-induced Th17 cell proliferation and IL-22-stimulated SMC dedifferentiation into a synthetic phenotype.
Collapse
Affiliation(s)
- Lei Shi
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qingwei Ji
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ling Liu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ying Shi
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zhengde Lu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jing Ye
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tao Zeng
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yan Xue
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zicong Yang
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yu Liu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jianyong Lu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xinshun Huang
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qiuwen Qin
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tianzhu Li
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ying‐zhong Lin
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
15
|
Liu S, Yan R, Chen B, Pan Q, Chen Y, Hong J, Zhang L, Liu W, Wang S, Chen JL. Influenza Virus-Induced Robust Expression of SOCS3 Contributes to Excessive Production of IL-6. Front Immunol 2019; 10:1843. [PMID: 31474976 PMCID: PMC6706793 DOI: 10.3389/fimmu.2019.01843] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) remains a major public health threat in the world, as indicated by the severe pneumonia caused by its infection annually. Interleukin-6 (IL-6) involved excessive inflammatory response to IAV infection profoundly contributes to the virus pathogenesis. However, the precise mechanisms underlying such a response are poorly understood. Here we found from both in vivo and in vitro studies that IAV not only induced a surge of IL-6 release, but also greatly upregulated expression of suppressor of cytokine signaling-3 (SOCS3), the potent suppressor of IL-6-associated signal transducer and activator of transcription 3 (STAT3) signaling. Interestingly, there existed a cytokine-independent mechanism of the robust induction of SOCS3 by IAV at early stages of the infection. Furthermore, we employed SOCS3-knockdown transgenic mice (TG), and surprisingly observed from virus challenge experiments using these mice that disruption of SOCS3 expression provided significant protection against IAV infection, as evidenced by attenuated acute lung injury, a higher survival rate of infected animals and lower viral load in infected tissues as compared with those of wild-type littermates under the same condition. The activity of nuclear factor-kappa B (NFκB) and the expression of its target gene IL-6 were suppressed in SOCS3-knockdown A549 cells and the TG mice after infection with IAV. Moreover, we defined that enhanced STAT3 activity caused by SOCS3 silencing was important for the regulation of NFκB and IL-6. These findings establish a critical role for IL-6-STAT3-SOCS3 axis in the pathogenesis of IAV and suggest that influenza virus may have evolved a strategy to circumvent IL-6/STAT3-mediated immune response through upregulating SOCS3.
Collapse
Affiliation(s)
- Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxiang Yan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qidong Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinxuan Hong
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Song Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|