1
|
Zhu L, Ding M, Liu L, Yuan P, Shao T, Liu C, Xi C, Han J, Zhou Y, Zhang D, Wang G. Burdock Fructooligosaccharide Protects Against Diabetic Nephropathy in Mice by Regulating Nrf2 Signaling. Pharmacol Res Perspect 2025; 13:e70094. [PMID: 40264355 PMCID: PMC12015130 DOI: 10.1002/prp2.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus, with oxidative stress playing a critical role in its development. Burdock fructooligosaccharide (BFO), a major compound in Burdock, exhibits antioxidative effects. However, its mechanisms of action and effects on diabetic nephropathy are not clear enough. This study aims to explore the mechanisms of BFO and its impact on streptozotocin-induced diabetic nephropathy in mice. Male C57BL/6J mice were randomly divided into normal control, DN, and BFO groups. Relevant serum biochemical parameters were detected using kits. Renal injury was evaluated through fluorescence microscopy, histopathology, and transmission electron microscopy. Nrf2/HO-1 signaling was analyzed via quantitative real-time PCR, western blotting, and immunohistochemistry. In DN mice, BFO significantly reduced fasting blood glucose, kidney index, urine protein, serum creatinine, blood urea nitrogen, total cholesterol, triglyceride, and low-density lipoprotein cholesterol, while significantly increasing high-density lipoprotein, SOD, and CAT levels. Additionally, BFO protected against streptozotocin-induced renal injury, restored podocyte function, increased both mRNA and protein expression of Nrf2, HO-1, and Bcl-2, and decreased those of Bax. In conclusion, BFO can be used to treat streptozotocin-induced renal injury in mice and is a promising candidate for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Lei Zhu
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Mengru Ding
- School of PharmacyWannan Medical CollegeWuhuChina
- Department of PharmacyFuyang Tumor HospitalFuyangChina
| | - Lina Liu
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital, Yijishan Hospital of Wannan Medical CollegeWuhuChina
| | - Pingchuan Yuan
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Taili Shao
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Chunyan Liu
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| | - Chuanhu Xi
- School of PharmacyWannan Medical CollegeWuhuChina
| | - Jun Han
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHMWannan Medical CollegeWuhuChina
| | - Yuyan Zhou
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHMWannan Medical CollegeWuhuChina
| | - Donglin Zhang
- School of StomatologyWannan Medical CollegeWuhuChina
| | - Guodong Wang
- School of PharmacyWannan Medical CollegeWuhuChina
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern AnhuiAnhui Innovative Center for Drug Basic Research of Metabolic DiseasesWuhuChina
| |
Collapse
|
2
|
Isah MB, Tajuddeen N, Yusuf A, Mohammed A, Ibrahim MA, Melzig M, Zhang X. The antidiabetic properties of lignans: a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156717. [PMID: 40220408 DOI: 10.1016/j.phymed.2025.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disease with a high global prevalence. Lignans, a class of plant natural compounds found in commonly consumed foods, are well-tolerated by humans and have demonstrated promising potential in the management of DM. Consumption of lignan-rich foods has been associated with improved overall health and quality of life. PURPOSE The clinical and preclinical evidence on the role of lignans in managing DM are critically examined. METHODS A thorough literature search was conducted across major scientific databases, focusing on studies that reported the effects of individual lignans on key diabetes indicators, such as glucose utilisation and insulin sensitivity, in both human and animal models, as well as in cell-based studies. RESULTS A total of 180 lignans were included in the review. Out of these, only three were investigated in randomised clinical trials in humans and 31 in animal models. The reviewed evidence suggests some beneficial effects of lignans in preventing the development of obesity-related diabetes. Their therapeutic benefits in preventing diabetes-related complications, particularly diabetic nephropathy, in both type 1 and type 2 diabetes, are also supported. Metabolites of various lignans, produced by microbial metabolism in the gut and serum enzymes, appear to be key bioactive forms, highlighting the need for detailed pharmacodynamic studies, optimised dosage designs, and the use of the appropriate lignan molecules for cell-based screening. CONCLUSION Lignans and their microbial metabolites show promise in preventing obesity-related diabetes and mitigating diabetes-related complications such as diabetic nephropathy, though further clinical studies are needed to optimize their therapeutic potential.
Collapse
Affiliation(s)
- Murtala Bindawa Isah
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biochemistry, Umaru Musa Yar'adua University Katsina, Nigeria.
| | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University Zaria, Nigeria
| | - Anas Yusuf
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Aminu Mohammed
- Department of Biochemistry, Ahmadu Bello University Zaria, Nigeria
| | | | - Matthias Melzig
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Freie Universitaet Berlin, Institute of Pharmacy, Berlin, Germany.
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Xia M, Li J, Martinez Aguilar LM, Wang J, Trillos Almanza MC, Li Y, Buist-Homan M, Moshage H. Arctigenin Attenuates Hepatic Stellate Cell Activation via Endoplasmic Reticulum-Associated Degradation (ERAD)-Mediated Restoration of Lipid Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40415275 DOI: 10.1021/acs.jafc.5c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Arctigenin, a natural lignan from Arctium lappa L., exhibits potent antifibrotic activity, yet its molecular mechanisms remain unclear. Endoplasmic reticulum (ER) stress is known to promote hepatic stellate cell (HSC) activation and liver fibrosis. This study investigates the therapeutic potential of arctigenin in HSC activation through ER stress modulation. Primary rat HSCs were activated (3-7 days) and treated with tunicamycin (ER stress inducer) or 4-PBA (ER stress inhibitor). Arctigenin attenuated ER stress markers (e.g., GRP78) and suppressed the expression of fibrotic marker α-SMA in ER stress-challenged activating (day 3) and activated (day 7) HSCs. Arctigenin restored lipid homeostasis by modulation of both lipogenesis (via Dgat2 and Ppar-γ upregulation) and lipolysis (suppression via ATGL inhibition). ER stress activated ER-associated degradation (ERAD), triggering the formation of small lipid droplets (LD). Arctigenin normalized the ERAD activity, thereby rescuing LD integrity and suppressing HSC activation. Our findings demonstrate that arctigenin mitigates HSC activation by suppressing ER stress and restoring lipid homeostasis via modulating ERAD-mediated lipid dysregulation. As a dietary and medicinal compound, arctigenin emerges as a promising therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Mengmeng Xia
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Jia Li
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Lizbeth Magnolia Martinez Aguilar
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Junyu Wang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Maria Camila Trillos Almanza
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Yakun Li
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| |
Collapse
|
4
|
Zhang N, Chen A, Dong Y, Dou D. Fructus arctii mitigates diabetic nephropathy via the Apoh/PPAR-γ pathway. Mol Immunol 2025; 181:18-28. [PMID: 40056629 DOI: 10.1016/j.molimm.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is characterized by renal fibrosis and functional decline. Apolipoprotein H (Apoh) and Fructus arctii, a traditional medicinal plant, have demonstrated potential in treating metabolic and fibrotic disorders. This study Focused on revealing the roles of Apoh and Fructus arctii in mitigating DN. METHODS Db/db mice served as an in vivo DN model, and mouse glomerular mesangial cells (mMCs) and renal tubular epithelial cells (mTECs) were treated with high glucose (HG) to simulate DN in vitro. Apoh silencing and overexpression were performed using shRNA and pcDNA3.1 vectors. Fructus arctii was administered to both cellular and animal models to assess its therapeutic potential. Cellular proliferation was measured using CCK-8 and EdU assays, while fibrosis markers were analyzed by Western blot, IHC and RT-qPCR. PPAR-γ pathway involvement was confirmed through treatment with the antagonist GW9662. Renal structural changes were evaluated with histological staining including H&E, PAS, Masson's trichrome, and picrosirius red staining. RESULTS Apoh expression was markedly reduced in HG-treated cells and the kidneys of db/db mice. Overexpression of Apoh suppressed HG-induced proliferation in mMCs and mTECs by downregulating cyclin D1 and PCNA. Additionally, Apoh overexpression alleviated fibrosis by reducing Fibronectin, Collagen I, and α-SMA levels, effects mediated through the PPAR-γ pathway. Treatment with the PPAR-γ antagonist GW9662 reversed these protective effects. In db/db mice, Fructus arctii administration improved renal function by reducing blood glucose, proteinuria, and renal collagen deposition. It also alleviated fibrosis and enhanced Apoh and PPAR-γ expression. Silencing Apoh nullified the protective effects of Fructus arctii on cell proliferation and fibrosis, confirming its reliance on the Apoh/PPAR-γ pathway. CONCLUSION Fructus arctii alleviated DN progression by modulating cell proliferation and renal fibrosis via the Apoh/PPAR-γ pathway.
Collapse
Affiliation(s)
- Na Zhang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Anhui Chen
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Yuwei Dong
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China.
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China.
| |
Collapse
|
5
|
Wei M, Liu X, Li M, Tian X, Feng M, Pang B, Fang Z, Wei J. The role of Chinese herbal medicine in the treatment of diabetic nephropathy by regulating endoplasmic reticulum stress. Front Pharmacol 2023; 14:1174415. [PMID: 37435493 PMCID: PMC10331427 DOI: 10.3389/fphar.2023.1174415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
Diabetic nephropathy (DN), a prevalent microvascular complication of diabetes mellitus, is the primary contributor to end-stage renal disease in developed countries. Existing clinical interventions for DN encompass lifestyle modifications, blood glucose regulation, blood pressure reduction, lipid management, and avoidance of nephrotoxic medications. Despite these measures, a significant number of patients progress to end-stage renal disease, underscoring the need for additional therapeutic strategies. The endoplasmic reticulum (ER) stress response, a cellular defense mechanism in eukaryotic cells, has been implicated in DN pathogenesis. Moderate ER stress can enhance cell survival, whereas severe or prolonged ER stress may trigger apoptosis. As such, the role of ER stress in DN presents a potential avenue for therapeutic modulation. Chinese herbal medicine, a staple in Chinese healthcare, has emerged as a promising intervention for DN. Existing research suggests that some herbal remedies may confer renoprotective benefits through the modulation of ER stress. This review explores the involvement of ER stress in the pathogenesis of DN and the advancements in Chinese herbal medicine for ER stress regulation, aiming to inspire new clinical strategies for the prevention and management of DN.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingyue Feng
- Department of Endocrinology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxian Pang
- Department of Endocrinology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeyang Fang
- Department of Endocrinology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang R, Bian C, Gao J, Ren H. Endoplasmic reticulum stress in diabetic kidney disease: adaptation and apoptosis after three UPR pathways. Apoptosis 2023:10.1007/s10495-023-01858-w. [PMID: 37285056 DOI: 10.1007/s10495-023-01858-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/08/2023]
Abstract
Diabetes kidney disease (DKD) is one of the common chronic microvascular complications of diabetes, which has become the most important cause of modern chronic kidney disease beyond chronic glomerulonephritis. The endoplasmic reticulum is one of the largest organelles, and endoplasmic reticulum stress (ERS) is the basic mechanism of metabolic disorder in all organs and tissues. Under the stimulation of stress-induced factors, the endoplasmic reticulum, as a trophic receptor, regulates adaptive and apoptotic ERS through molecular chaperones and three unfolded protein reaction (UPR) pathways, thereby regulating diabetic renal damage. Therefore, three pathway factors have different expressions in different sections of renal tissues. This study deeply discussed the specific reagents, animals, cells, and clinical models related to ERS in DKD, and reviewed ERS-related three pathways on DKD with glomerular filtration membrane, renal tubular reabsorption, and other pathological lesions of different renal tissues, as well as the molecular biological mechanisms related to the balance of adaption and apoptosis by searching and sorting out MeSH subject words from PubMed database.
Collapse
Affiliation(s)
- Ruijing Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Lvshun South Road west 9, Dalian, 116044, Liaoning, China
| | - Che Bian
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Gao
- Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Lvshun South Road west 9, Dalian, 116044, Liaoning, China.
| |
Collapse
|
7
|
Jin X, Liu S, Chen S, Wang L, Cui Y, He J, Fang S, Li J, Chang Y. A systematic review on botany, ethnopharmacology, quality control, phytochemistry, pharmacology and toxicity of Arctium lappa L. fruit. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116223. [PMID: 36781057 DOI: 10.1016/j.jep.2023.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L., is a biennial plant that grows around the Eurasia. Many parts of Arctium lappa L. (roots, leaves and fruits, etc.) are medically used in different countries. Arctium lappa L. fruit, also called Arctii Fructus, is traditionally applied to dispel wind-heat, ventilate lung to promote eruption, remove toxicity substance and relieve sore throat. THE AIM OF THE REVIEW The review aims to integrate the botany, ethnopharmacology, quality control, phytochemistry, pharmacology, derivatives and toxicity information of Arctii Fructus, so as to facilitate future research and explore the potential of Arctii Fructus as an agent for treating diseases. MATERIALS AND METHODS Related knowledge about Arctii Fructus were acquired from Science Direct, GeenMedical, PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, Pharmacopoeia of the People's Republic of China, Doctoral and Master's thesis, ancient books, etc. RESULTS: Arctii Fructus as an herb used for medicine and food was pervasively distributed and applicated around the world. It was traditionally used to treat anemopyretic cold, dyspnea and cough, sore throat, etc. To date, more than 200 compounds have been isolated and identified from Arctii Fructus. It contained lignans, phenolic acids and fatty acids, terpenoids, volatile oils and others. Lignans, especially arctigenin and arctiin, had the extensive pharmacological effects such as anti-cancer, antiviral, anti-inflammatory activities. The ester derivatives of arctigenin had the anti-cancer, anti-Alzheimer's disease and immunity enhancing effects. Although Arctii Fructus extract had no toxicity, arctigenin was toxic at a certain dose. The alleviating effects of Arctii Fructus on chronic inflammation and ageing have been demonstrated by clinical studies. CONCLUSION Arctii Fructus is regarded as a worthy herb with many chemical components and various pharmacological effects. Several traditional applications have been supported by modern pharmacological research. However, their action mechanisms need to be further studied. Although many chemical components were isolated from Arctii Fructus, the current research mainly focused on lignans, especially arctiin and arctigenin. Therefore, it is very important to deeply clarify the pharmacological activities and action mechanism of the compounds and make full medicinal use of the resources of Arctii Fructus.
Collapse
Affiliation(s)
- Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Wang G, Ge L, Liu T, Zheng Z, Chen L. The therapeutic potential of arctigenin against multiple human diseases: A mechanistic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154647. [PMID: 36628833 DOI: 10.1016/j.phymed.2023.154647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Arctigenin (ATG), a dibenzyl butyrolactone lignan compound, is one of the major bioactive components from the medicinal plant Arctium lappa. ATG possesses remarkable therapeutic potential against a wide range of human diseases, such as cancers, immune disorders and chronical diseases. The molecular mechanisms behind the biological effects of ATG have been intensively studied. PURPOSE This review aims to systematically summarize the updated knowledge of the proteins and signaling pathways behind the curative property of ATG, and further analyze the potential connections between them. METHOD SciFinder, Pubmed, Web of Science and Cochrane Library databases were queried for publications reporting the therapeutic properties of ATG. "Arctigenin", "disease", "cancer", "inflammation", "organ damage", "infection", "toxicity" and "pharmacokinetics" were used as the searching titles. RESULT 625 publications were identified and 95 met the inclusion criteria and exclusion criteria. 42 studies described the molecular mechanisms implicated in ATG treatments. Several proteins including phosphodiesterase subtype 4D (PDE4D), estrogen receptor (ER) β, protein phosphatase 2A (PP2A), phosphoinositide 3-kinase (PI3K) and transmembrane protein 16A (TMEM16A) are targeted by ATG in different settings. The frequently described signaling pathways are TLR4/NF-κB, PI3K/AKT/mTOR, AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (Nrf-2) signalings. CONCLUSION Inhibition of PI3K/AKT pathway and activation of AMPK signaling play the pivotal roles in the therapeutic effects of ATG. PI3K/AKT and AMPK signaling widely link to other signaling pathways, modulating various biological processes such as anti-inflammation, anti-oxidative stress, anti-fibrosis, anti-ER stress, anti-steatosis and pro-apoptosis, which constitute the curative mechanisms of ATG against multiple human diseases.
Collapse
Affiliation(s)
- Guanming Wang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Li Ge
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Tongyu Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Zhihui Zheng
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Lijun Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
9
|
Zhou Y, Liu L, Xiang R, Bu X, Qin G, Dai J, Zhao Z, Fang X, Yang S, Han J, Wang G. Arctigenin mitigates insulin resistance by modulating the IRS2/GLUT4 pathway via TLR4 in type 2 diabetes mellitus mice. Int Immunopharmacol 2023; 114:109529. [PMID: 36481528 DOI: 10.1016/j.intimp.2022.109529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Arctigenin (AR), extracted from Arctium lappa L. (Burdock), is a folk herbal medicine used to treat diabetes. However, its mechanism of action has remained elusive. In this study, type 2 diabetes mellitus (T2DM) mice received AR orally for 10 weeks to evaluate its therapeutic effect based on changes in glucose and lipid metabolism, histological examination of target tissues, and liver immunohistochemistry. Furthermore, HepG2 insulin-resistant cells were established to verify the mechanism of AR against diabetes. The results showed that AR treatment reduced blood glucose and lipid levels, reversing liver as well as pancreas tissue damage in T2DM mice. AR reduced the levels of pro-inflammatory cytokines in the serum of T2DM mice, as well as those in insulin-resistant HepG2 cell supernatants, while increasing interleukin-10 (IL-10) levels. The levels of p-p65, phospho-c-Jun N-terminal kinase (p-JNK), induced nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were reduced in the liver tissue of T2DM mice, accompanied by an upregulation of glucose transporter 4 (GLUT4) and insulin receptor substrate 2 (IRS-2). In vitro studies further showed that AR downregulated toll-like receptor 4-mediated inflammation, while upregulating insulin pathway-related proteins and ultimately improving glucose uptake in insulin-resistant HepG2 cells. In conclusion, AR protected mice from insulin resistance, and its therapeutic effect was likely associated with inhibition of toll-like receptor 4 inflammatory signaling to reactivate IRS-2/GLUT4.
Collapse
Affiliation(s)
- Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anesthesia Laboratory and Training Center of Wannan Medical College, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Lina Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Xiaoyang Bu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Guozheng Qin
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Jiajia Dai
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China; School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Zhigang Zhao
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Shuo Yang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China.
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China.
| |
Collapse
|
10
|
Sajadimajd S, Deravi N, Forouhar K, Rahimi R, Kheirandish A, Bahramsoltani R. Endoplasmic reticulum as a therapeutic target in type 2 diabetes: Role of phytochemicals. Int Immunopharmacol 2023; 114:109508. [PMID: 36495694 DOI: 10.1016/j.intimp.2022.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorders characterized by insulin resistance and β-cell dysfunction with an increasing worldwide incidence. Several studies have revealed that long-term glucotoxicity results in β-cell failure and death through induction of endoplasmic reticulum (ER) stress. Owing to the chronic progression of T2DM and the low effectiveness of antidiabetic drugs in long-term use, medicinal plants and their secondary metabolites seem to be the promising alternatives. Here we have provided a comprehensive review regarding the role of phytochemicals to alleviate ER stress in T2DM. Ginsenoside compound K, baicalein, quercetin, isopulegol, kaempferol, liquiritigenin, aspalathin, and tyrosol have demonstrated remarkable improvement of T2DM via modulation of ER stress. Arctigenin and total glycosides of peony have been shown to be effective in the treatment of diabetic retinopathy through modulation of ER stress. The effectiveness of grape seed proanthocyanidins and wolfberry is also shown in the relief of diabetic neuropathy and retinopathy. Resveratrol is involved in the prevention of atherosclerosis via ER stress modulation. Taken together, the data described herein revealed the capability of herbal constituents to prevent different complications of T2DM via a decrease in ER stress which open new doors to the treatment of diabetes.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Forouhar
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Kheirandish
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roodabeh Bahramsoltani
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
11
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Sigesbeckia orientalis Extract Ameliorates the Experimental Diabetic Nephropathy by Downregulating the Inflammatory and Oxidative Stress Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3323745. [PMID: 35966750 PMCID: PMC9374551 DOI: 10.1155/2022/3323745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Diabetes in children and its complications are on the rise globally, which is accompanied by increasing in diabetes-related complications. Oxidative stress and inflammation induced by elevated blood sugar in diabetic patients are considered risk factors associated with the development of diabetes complications, including chronic kidney disease and its later development to end-stage renal disease. Microvascular changes within the kidneys of DM patients often lead to chronic kidney disease, which aggravates the illness. Sigesbeckia orientalis extract (SOE), reported to have strong antioxidative and excellent anti-inflammatory activities, is used in the modern practice of traditional Chinese medicine. Kidneys from three groups of control mice (CTR), mice with streptozotocin (STZ)-induced diabetes (DM), and mice with STZ-induced DM treated with SOE (DMRx) were excised for morphological analyses and immunohistochemical assessments. Only mice in the DM group exhibited significantly lower body weight, but higher blood sugar was present. The results revealed more obvious renal injury in the DM group than in the other groups, which appeared as greater glomerular damage and tubular injury, sores, and plenty of connective tissues within the mesangium. Not only did the DM group have a higher level of cytokine, tumor necrosis factor, and the oxidative stress marker, 8-hydroxyguanosine expression, but also factors of the nuclear factor pathway and biomarkers of microvascular status had changed. Disturbances to the kidneys in DMRx mice were attenuated compared to the DM group. We concluded that SOE is an effective medicine, with antioxidative and anti-inflammatory abilities, to protect against or attenuate diabetic nephropathy from inflammatory disturbances by oxidative stress and to cure vessel damage in a hyperglycemic situation.
Collapse
|
13
|
Peng Y, Gu T, Zhong T, Xiao Y, Sun Q. Endoplasmic Reticulum Stress in Metabolic Disorders: Opposite Roles of Phytochemicals and Food Contaminants. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gao J, Wang R, Liu J, Wang W, Chen Y, Cai W. Effects of novel microecologics combined with traditional Chinese medicine and probiotics on growth performance and health of broilers. Poult Sci 2022; 101:101412. [PMID: 34920387 PMCID: PMC8683594 DOI: 10.1016/j.psj.2021.101412] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we prepared a kind of novel microecologics, namely Chinese medicine-probiotic compound microecological preparation (CPCMP), which is composed of 5 traditional Chinese medicine herbs (Galla Chinensis, Andrographis paniculata, Arctii Fructus, Glycyrrhizae Radix, and Schizonepeta tenuifolia) fermented by Aspergillus niger and a kind of compound probiotics (Lactobacillus plantarum A37 and L. plantarum MIII). The effects of the CPCMP in broilers on growth performance, serum parameters, immune function, and intestinal health were investigated. A total of 450 one-day-old male Arbor Acres broilers were randomly divided into 6 treatment groups with 5 replicates, 15 birds per replicate. Treatments consisted of: blank control, CPCMP, positive control, commercial CPCMP, traditional Chinese medicine, and probiotics groups, which were birds fed with basal diet supplemented with no extra additives, 0.2% CPCMP, 0.0035% chlortetracycline, 0.2% commercially available CPCMP, 0.2% fermented traditional Chinese medicines, and 0.2% compound probiotics, respectively. CPCMP obviously increased the average body weight and average daily gain (P < 0.05, compared with any other group) and decreased the feed:gain ratio of broilers (P < 0.05, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Moreover, it significantly increased glutathione peroxidase and secretory immunoglobulin A levels and spleen/bursa indices (P < 0.05 for all, compared with the blank control, commercial CPCMP, traditional Chinese medicine, or probiotics group). Villus heights in duodenum, jejunum, and ileum were also elevated by CPCMP treatment (P < 0.05, compared with any other group). Furthermore, CPCMP substantially increased jejunal mRNA levels of occludin and zonula occludens-1 (P < 0.05, compared with the blank control, positive control, or probiotics group) and facilitated the growth and colonization of beneficial cecal bacteria, such as Olsenella, Barnesiella, and Lactobacillus. Overall results show that the CPCMP prepared in our work contributes to improving growth performance, serum parameters, immune function, and intestinal health of broilers and exerts synergistic effects of traditional Chinese medicines and probiotics to some extent. Our findings suggest that CPCMP is a promising antibiotic substitute in the livestock and poultry industry in the future.
Collapse
Affiliation(s)
- Jin Gao
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Rui Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jingxuan Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenling Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wentao Cai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
15
|
Salama SA, Mohamadin AM, Abdel-Bakky MS. Arctigenin alleviates cadmium-induced nephrotoxicity: Targeting endoplasmic reticulum stress, Nrf2 signaling, and the associated inflammatory response. Life Sci 2021; 287:120121. [PMID: 34742745 DOI: 10.1016/j.lfs.2021.120121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
AIM Nephrotoxicity is a critical consequence of cadmium toxicity. Cadmium induces nephrotoxicity through disruption of cellular redox balance and induction of endoplasmic reticulum stress (ERS) and inflammatory responses. The present study investigated the renoprotective effects of the naturally occurring arctigenin against the cadmium-induced nephrotoxicity. MAIN METHODS Male Wistar rats were randomized into normal control, arctigenin control, cadmium, and cadmium/arctigenin groups. Cadmium and arctigenin were administered daily over a seven-day period. On the eighth day, blood and kidney tissue specimens were collected and subjected to spectrophotometric, ELISA, and immunoblotting analysis. KEY FINDINGS Arctigenin significantly improved renal functions and reduced renal tubular injury in the cadmium-intoxicated rats as reflected by increased GFR and reduced levels of serum creatinine, BUN, urinary albumin-to-creatinine ratio, and protein expression of KIM-1. Arctigenin alleviated the cadmium-induced oxidative DNA damage and lipid peroxidation while boosted reduced glutathione level and antioxidant enzymes activity. Mechanistically, arctigenin enhanced nuclear translocation of the antioxidant transcription factor Nrf2 and up-regulated its downstream redox-regulating enzymes HO-1 and NQO1. Importantly, arctigenin ameliorated the cadmium-evoked ERS as demonstrated by reduced protein expression of the key molecules Bip, PERK, IRE1α, CHOP, phspho-eIF2α, and caspase-12 and diminished activity of caspase-12. Additionally, arctigenin down-regulated the cadmium-induced NF-κB nuclear translocation and decreased its downstream pro-inflammatory cytokines TNF-α and IL-1β. SIGNIFICANCE The current work underlines the alleviating activity of arctigenin against cadmium-evoked nephrotoxicity potentially through mitigating ERS and targeting Nrf2 and NF-κB signaling. The current findings support possible therapeutic application of arctigenin in controlling cadmium-induced nephrotoxicity although clinical investigations are necessary.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ahmed M Mohamadin
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52471, Saudi Arabia
| |
Collapse
|
16
|
Sapian S, Budin SB, Taib IS, Mariappan V, Zainalabidin S, Chin KY. Role of Polyphenol in Regulating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis in Diabetic Nephropathy. Endocr Metab Immune Disord Drug Targets 2021; 22:453-470. [PMID: 34802412 DOI: 10.2174/1871530321666211119144309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is known as one of the driving sources of end-stage renal disease (ESRD). DN prevalence continues to increase in every corner of the world andthat has been a major concern to healthcare professionals as DN is the key driver of diabetes mellitus (DM) morbidity and mortality. Hyperglycaemia is closely connected with the production of reactive oxygen species (ROS) that cause oxidative stress response as well as numerous cellular and molecular modifications. Oxidative stress is a significant causative factor to renal damage, as it can activate other immunological pathways, such as inflammatory, fibrosis, and apoptosis pathways. These pathways can lead to cellular impairment and death as well as cellular senescence. Natural substances containing bioactive compounds, such as polyphenols, have been reported to exert valuable effects on various pathological conditions, including DM. The role of polyphenols in alleviating DN conditions has been documented in many studies. In this review, the potential of polyphenols in ameliorating the progression of DN via modulation of oxidative stress, inflammation, fibrosis, and apoptosis, as well as cellular senescence, has been addressed. This information may be used as the strategies for the management of DN and development as nutraceutical products to overcome DN development.
Collapse
Affiliation(s)
- Syaifuzah Sapian
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Vanitha Mariappan
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Satirah Zainalabidin
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur. Malaysia
| | - Kok Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000. Malaysia
| |
Collapse
|
17
|
Chemical and Biological Evaluation of the Oil and Seedcake from Seeds of a Greek Cardoon Cultivar as Potential Functional Vegetable Oil. Comparison with Sesame, Flaxseed and Extra Virgin Olive Oils. Foods 2021; 10:foods10112665. [PMID: 34828945 PMCID: PMC8618587 DOI: 10.3390/foods10112665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cynara cardunculus L. is a plant of the Mediterranean basin, known since antiquity as a food and for its therapeutic properties. The needs of the 21st century for the utilization of agricultural waste has led to the study of the seed oil of a Greek cultivar of Cynaracardunculus (GCCC) as potential nutritional oil, as large amounts of cardoon seeds are discarded. The sterol and fatty acid profile of cold-pressed seed oil was examined by gas chromatography-mass spectrometry GC-MS and compared with that of solvent extraction. Total phenolic content was determined and compared with well-known and widely appreciated edible vegetable oils; while, additionally, the total lignan content and nutritional value of cold-pressed oil revealed it as a potential dietary candidate. Furthermore, the seedcake (residue of cold-pressed oil extraction) has been studied exerting it as a good source of phenolics. Both GCCC oil and seedcake were tested for their antioxidant and enzyme inhibitory activities exhibiting higher activity compared to the sesame, flaxseed and extra virgin olive oils. According to the results, Cynara seed oil was shown to be a rich source of ω-6/-9 fatty acids and phenolics, highlighting, indicating that it could be a promising health-promoting vegetable oil, while the seedcake was revealed as a rich source of bioactive compounds.
Collapse
|
18
|
Bektur Aykanat NE, Şahin E, Kaçar S, Bağcı R, Karakaya Ş, Burukoğlu Dönmez D, Şahintürk V. Cardiac hypertrophy caused by hyperthyroidism in rats: the role of ATF-6 and TRPC1 channels. Can J Physiol Pharmacol 2021; 99:1226-1233. [PMID: 34283935 DOI: 10.1139/cjpp-2021-0260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperthyroidism influences the development of cardiac hypertrophy. Transient receptor potential canonical channels (TRPCs) and endoplasmic reticulum (ER) stress are regarded as critical pathways in cardiac hypertrophy. Hence, we aimed to identify the TRPCs associated with ER stress in hyperthyroidism-induced cardiac hypertrophy. Twenty adult Wistar albino male rats were used in the study. The control group was fed with standard food and tap water. The group with hyperthyroidism was also fed with standard rat food, along with tap water that contained 12 mg/L of thyroxine (T4) for 4 weeks. At the end of the fourth week, the serum-free triiodothyronine (T3), T4, and thyroid-stimulating hormone (TSH) levels of the groups were measured. The left ventricle of each rat was used for histochemistry, immunohistochemistry, Western blot, total antioxidant capacity (TAC), and total oxidant status (TOS) analysis. As per our results, activating transcription factor 6 (ATF-6), inositol-requiring kinase 1 (IRE-1), and TRPC1, which play a significant role in cardiac hypertrophy caused by hyperthyroidism, showed increased activation. Moreover, TOS and serum-free T3 levels increased, while TAC and TSH levels decreased. With the help of the literature review in our study, we could, for the first time, indicate that the increased activation of ATF-6, IRE-1, and TRPC1-induced deterioration of the Ca2+ ion balance leads to hypertrophy in hyperthyroidism due to heart failure.
Collapse
Affiliation(s)
| | - Erhan Şahin
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Sedat Kaçar
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Rıdvan Bağcı
- Adana City Training and Research Hospital, Adana, Turkey
| | - Şerife Karakaya
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Varol Şahintürk
- Department of Histology and Embryology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
19
|
Endoplasmic Reticulum Stress in Diabetic Nephrology: Regulation, Pathological Role, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7277966. [PMID: 34394833 PMCID: PMC8355967 DOI: 10.1155/2021/7277966] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Recent progress has been made in understanding the roles and mechanisms of endoplasmic reticulum (ER) stress in the development and pathogenesis of diabetic nephropathy (DN). Hyperglycemia induces ER stress and apoptosis in renal cells. The induction of ER stress can be cytoprotective or cytotoxic. Experimental treatment of animals with ER stress inhibitors alleviated renal damage. Considering these findings, the normalization of ER stress by pharmacological agents is a promising approach to prevent or arrest DN progression. The current article reviews the mechanisms, roles, and therapeutic aspects of these findings.
Collapse
|
20
|
Suzuki Y, Sato M, Awazuhara T, Nukui Y, Yoshida A, Terashima T, Watanabe K, Fujioka R, Tsuchihara K, Kishino S, Ohno K. Simultaneous quantification of arctigenin and its glucuronide conjugate in mouse plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry. J Sep Sci 2021; 44:1299-1306. [PMID: 33387366 DOI: 10.1002/jssc.202001078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
Arctigenin is a natural lignin and a main active component of Fructus arctii, the dried fruit of Arctium lappa. This compound was reported to have some biological activities such as anti-inflammatory, antioxidant, antiviral, renoprotective, and antitumor effects. Arctigenin is mainly metabolized to arctigenin-4'-O-glucuronide by UDP-glucuronosyltransferase. In this study, a simultaneous quantification method was established and validated for measuring arctigenin and arctigenin-4'-O-glucuronide in mouse plasma using ultra-high performance liquid chromatography with tandem mass spectrometry. The assay fulfilled the requirements of the United States Food and Drug Administration guideline for assay validation, with a lower limit of quantification of 2.00 ng/mL for arctigenin and 50.0 ng/mL for arctigenin-4'-O-glucuronide. The recovery rate and matrix effect ranged from 78.4 to 102.8% and 92.5 to 106.3%, respectively, for arctigenin, and 74.3 to 109.2% and 94.9 to 110.2% for arctigenin-4'-O-glucuronide. The method was applied to the measurement of plasma concentrations of arctigenin and arctigenin-4'-O-glucuronide in the plasma of mice after administration of arctigenin. All measured concentrations were within the calibration ranges. Our novel method may be useful to measure plasma arctigenin and arctigenin-4'-O-glucuronide concentrations, and contribute to evaluate the pharmacokinetics of arctigenin and arctigenin-4'-O-glucuronide in mice.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Michiko Sato
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Takuya Awazuhara
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yusuke Nukui
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Airi Yoshida
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tomoka Terashima
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Keita Watanabe
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Rumi Fujioka
- Division of Translational Informatics, National Cancer Center, Kashiwa, Chiba, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, National Cancer Center, Kashiwa, Chiba, Japan
| | - Satoshi Kishino
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
21
|
Zhang J, Dong XJ, Ding MR, You CY, Lin X, Wang Y, Wu MJY, Xu GF, Wang GD. Resveratrol decreases high glucose‑induced apoptosis in renal tubular cells via suppressing endoplasmic reticulum stress. Mol Med Rep 2020; 22:4367-4375. [PMID: 33000199 PMCID: PMC7533457 DOI: 10.3892/mmr.2020.11511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic nephropathy (DN) is the second most common complication of diabetes mellitus after cardiovascular complications. Endoplasmic reticulum (ER) stress is known to be associated with DN. Resveratrol (RSV) exhibits anti-oxidative, anti-inflammatory and cytoprotective effects. Therefore, the aims of the present study were to investigate the role of RSV in the inhibition of high concentration glucose (HG)-induced apoptosis in renal tubular cells, as well as to examine the protective effects of RSV against diabetes-mediated renal damage via inhibition of ER stress in DN. RSV was orally administered to diabetic db/db mice once a day for 12 consecutive weeks. Compared with untreated db/db mice, treating db/db mice with RSV significantly decreased urine albumin excretion and the urine albumin to creatinine ratio, and attenuated renal histopathological injury. Furthermore, RSV treatment resulted in decreased expression levels of glucose-regulated protein of 78 kDa and C/EBP-homologous protein (two ER stress markers) and caspase12 in murine kidneys. RSV administration also inhibited the apoptosis of NRK-52E cells and activation of the ER stress signal transduction pathway induced by HG treatment in vitro. Collectively, the present results indicated that RSV protected renal tubular cells against HG-induced apoptosis in DN by suppressing ER stress.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiong-Jun Dong
- Department of Nephrology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Meng-Ru Ding
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| | - Chun-Yu You
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xin Lin
- Department of Nephrology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ying Wang
- School of Medical Imaging, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Miao-Jie-Yang Wu
- School of Medical Imaging, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Guo-Fei Xu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| | - Guo-Dong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
22
|
Arctigenin inhibits proliferation of ER-positive breast cancer cells through cell cycle arrest mediated by GSK3-dependent cyclin D1 degradation. Life Sci 2020; 256:117983. [PMID: 32565252 DOI: 10.1016/j.lfs.2020.117983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023]
Abstract
Estrogen receptor (ER) positive accounts for a large proportion of breast cancer. Although there are many targeted therapeutic drugs, the emergence of drug resistance urgently requires the development of new drugs. Arctigenin (Arc), a lignan found in certain plants of the Asteraceae, has the effect on inhibiting breast cancer, but its molecular mechanism has not been clear. AIMS To this end, the current study focuses on understanding the mechanism of Arc on ER-positive breast cancer cells. MAIN METHODS Colony formation experiments and sulforhodamine B methods were used to determine the growth-inhibitory effect of Arc. The cell cycle and apoptosis were analyzed by flow cytometry. Alterations of signaling proteins were measured by Western blotting. Protein degradation was determined by comparing protein half-lives and inhibiting proteasome. KEY FINDINGS The experimental results show that Arc did not induce apoptosis in ER-positive breast cancer cell, rather caused G1 cycle arrest by decreasing cyclin D1 levels without effect on altering CDK4/6 levels. Moreover, we have demonstrated that Arc decreases cyclin D1 levels through prompting Akt/GSK3β-mediated degradation. SIGNIFICANCE These findings warrant the potential of Arc as a candidate treatment for ER-positive breast cancer.
Collapse
|
23
|
Heme, Heme Oxygenase, and Endoplasmic Reticulum Stress-A New Insight into the Pathophysiology of Vascular Diseases. Int J Mol Sci 2019; 20:ijms20153675. [PMID: 31357546 PMCID: PMC6695876 DOI: 10.3390/ijms20153675] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vascular disorders continues to rise worldwide. Parallel with that, new pathophysiological pathways have been discovered, providing possible remedies for prevention and therapy in vascular diseases. Growing evidence suggests that endoplasmic reticulum (ER) stress is involved in a number of vasculopathies, including atherosclerosis, vascular brain events, and diabetes. Heme, which is released from hemoglobin or other heme proteins, triggers various pathophysiological consequence, including heme stress as well as ER stress. The potentially toxic free heme is converted by heme oxygenases (HOs) into carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is reduced to bilirubin (BR). Redox-active iron is oxidized and stored by ferritin, an iron sequestering protein which exhibits ferroxidase activity. In recent years, CO, BV, and BR have been shown to control cellular processes such as inflammation, apoptosis, and antioxidant defense. This review covers our current knowledge about how heme induced endoplasmic reticulum stress (HIERS) participates in the pathogenesis of vascular disorders and highlights recent discoveries in the molecular mechanisms of HO-mediated cytoprotection in heme stress and ER stress, as well as crosstalk between ER stress and HO-1. Furthermore, we focus on the translational potential of HIERS and heme oxygenase-1 (HO-1) in atherosclerosis, diabetes mellitus, and brain hemorrhage.
Collapse
|