1
|
Chen YC, Huang LT, Yu HR, Sheen JM. MicroRNA-155 modulates methotrexate-induced spatial memory impairment by disruption of the blood-brain barrier integrity. Brain Res Bull 2025; 222:111240. [PMID: 39922505 DOI: 10.1016/j.brainresbull.2025.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
AIM Methotrexate (MTX) is a commonly used chemotherapy drug, yet its late neurotoxic side effects are gaining attention. The aim of the study was to evaluate the role of miR-155 in the pathogenesis of MTX-induced cognitive impairment, mainly focused on the interplay of blood-brain barrier (BBB) integrity and MTX toxicity. MAIN METHODS We use young rat model mimicking children leukemia treatment protocol, focusing on the systemic MTX effect on the central nervous system by intraperitoneal (IP) MTX injection. The cognitive function was evaluated by Morris Water Maze test and the BBB integrity was accessed by cortex permeability test. Tight junction proteins expression were also examined. Finally, we tested whether anti-miR155 pretreatment can reversed the MTX effect. KEY FINDINGS We found increased plasma miR-155 expression at 24 hr after IP MTX treatment. Besides, IP MTX resulted in impaired learning acquisition, which can be reversed by anti-miR155 treatment. Furthermore, brain cortex permeability and tight junction proteins were changed by IP MTX. miR-155 revealed its protective role in the current study for the development of MTX-induced cognitive impairment. SIGNIFICANCE IP MTX can induce significant cognitive impairment, which is related to the disruption of BBB integrity. miR-155 plays a vital role in the regulation of MTX-induced cognitive impairment, mainly through the maintenance of BBB integrity.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan; School of Medicine, College of Medicine, National SunYat-sen University, Kaohsiung, Taiwan.
| | - Li-Tung Huang
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Chen X, Jin J, Chang R, Yang X, Li N, Zhu X, Ma L, Li Y. Targeting the sulfur-containing amino acid pathway in leukemia. Amino Acids 2024; 56:47. [PMID: 39060524 PMCID: PMC11281984 DOI: 10.1007/s00726-024-03402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024]
Abstract
sulfur-containing amino acids have been reported to patriciate in gene regulation, DNA methylation, protein synthesis and other physiological or pathological processes. In recent years, metabolism-related molecules of sulfur-containing amino acids affecting the occurrence, development and treatment of tumors have been implicated in various disorders, especially in leukemia. Here, we summarize current knowledge on the sulfur-containing amino acid metabolism pathway in leukemia and examine ongoing efforts to target this pathway, including treatment strategies targeting (a) sulfur-containing amino acids, (b) metabolites of sulfur-containing amino acids, and (c) enzymes and cofactors related to sulfur-containing amino acid metabolism in leukemia. Future leukemia therapy will likely involve innovative strategies targeting the sulfur-containing amino acid metabolism pathway.
Collapse
Affiliation(s)
- Xiaoyan Chen
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiahui Jin
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Rui Chang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xing Yang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Na Li
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xi Zhu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China
| | - Linlin Ma
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China.
| |
Collapse
|
3
|
Chen YC, Hou CY, Hsu MH, Huang LT, Hsiao CC, Sheen JM. The Impact of Gut Microbiota Changes on Methotrexate-Induced Neurotoxicity in Developing Young Rats. Biomedicines 2024; 12:908. [PMID: 38672262 PMCID: PMC11048417 DOI: 10.3390/biomedicines12040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Methotrexate (MTX) is an essential part of therapy in the treatment of acute lymphoblastic leukemia (ALL) in children, and inferior intellectual outcomes have been reported in children who are leukemia survivors. Although several studies have demonstrated that the interaction between gut microbiota changes and the brain plays a vital role in the pathogenesis of chemotherapy-induced brain injury, preexisting studies on the effect of MTX on gut microbiota changes focused on gastrointestinal toxicity only. Based on our previous studies, which revealed that MTX treatment resulted in inferior neurocognitive function in developing young rats, we built a young rat model mimicking MTX treatment in a child ALL protocol, trying to investigate the interactions between the gut and brain in response to MTX treatment. We found an association between gut microbiota changes and neurogenesis/repair processes in response to MTX treatment, which suggest that MTX treatment results in gut dysbiosis, which is considered to be related to MTX neurotoxicity through an alteration in gut-brain axis communication.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Kuil LE, Varkevisser TMCK, Huisman MH, Jansen M, Bunt J, Compter A, Ket H, Schagen SB, Meeteren AYNSV, Partanen M. Artificial and natural interventions for chemotherapy- and / or radiotherapy-induced cognitive impairment: A systematic review of animal studies. Neurosci Biobehav Rev 2024; 157:105514. [PMID: 38135266 DOI: 10.1016/j.neubiorev.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Cancer survivors frequently experience cognitive impairments. This systematic review assessed animal literature to identify artificial (pharmaceutical) or natural interventions (plant/endogenously-derived) to reduce treatment-related cognitive impairments. METHODS PubMed, EMBASE, PsycINFO, Web of Science, and Scopus were searched and SYRCLE's tool was used for risk of bias assessment of the 134 included articles. RESULTS High variability was observed and risk of bias analysis showed overall poor quality of reporting. Results generally showed positive effects in the intervention group versus cancer-therapy only group (67% of 156 cognitive measures), with only 15 (7%) measures reporting cognitive impairment despite intervention. Both artificial (61%) and natural (75%) interventions prevented cognitive impairment. Artificial interventions involving GSK3B inhibitors, PLX5622, and NMDA receptor antagonists, and natural interventions utilizing melatonin, curcumin, and N-acetylcysteine, showed most consistent outcomes. CONCLUSIONS Both artificial and natural interventions may prevent cognitive impairment in rodents, which merit consideration in future clinical trials. Greater consistency in design is needed to enhance the generalizability across studies, including timing of cognitive tests and description of treatments and interventions.
Collapse
Affiliation(s)
- L E Kuil
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - T M C K Varkevisser
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M H Huisman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M Jansen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - J Bunt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - A Compter
- Department of Neuro-Oncology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - H Ket
- Universiteitsbibliotheek, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - S B Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | - M Partanen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
5
|
Wang SC, Huang YC, Hsiao CC, Sheen JM, Huang LT, Lo WS, Hsieh HY, Chen YC. Melatonin protects against methotrexate hepatotoxicity in young rats: Impact of PI3K/Akt/mTOR signaling. J Biochem Mol Toxicol 2023; 37:e23323. [PMID: 36890697 DOI: 10.1002/jbt.23323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023]
Abstract
With the improvement in children's acute lymphoblastic leukemia (ALL) care, the survival rate in children ALL has improved much. Methotrexate (MTX) plays an essential role in the success of children's ALL treatment. Since hepatotoxicity is commonly reported in individuals treated with intravenous or oral MTX, our study further examined the hepatic effect following intrathecal MTX treatment, which is an essential treatment for leukemia patients. Specifically, we examined the pathogenesis of MTX hepatotoxicity in young rats and explored the impact of melatonin treatment in protection against MTX hepatotoxicity. Successfully, we found that melatonin was able to protect against MTX hepatotoxicity.
Collapse
Affiliation(s)
- Su-Chen Wang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chuan Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Shan Lo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Yi Hsieh
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Aslankoc R, Ozmen O, Yalcın A. Astaxanthin ameliorates damage to the cerebral cortex, hippocampus and cerebellar cortex caused by methotrexate. Biotech Histochem 2021; 97:382-393. [PMID: 34850645 DOI: 10.1080/10520295.2021.2004616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated the ameliorating effects of astaxanthin (AXA) on methotrexate (MTX) induced damage to the cerebral cortex, hippocampus, cerebellar cortex and blood. We used 24 female Wistar albino rats divided into three groups of eight as follows: sham/control group, single dose of saline intraperitoneally (i.p.) and 7 days orally; MTX group, single dose of 20 mg/kg MTX (i.p.); MTX + AXA group, single dose of 20 mg/kg MTX i.p.+ 100 mg/kg AXA orally for 7 days. For all groups we measured total oxidant status (TOS) and total antioxidant status (TAS) in the cerebral cortex, hippocampus and blood. Histological sections of cerebral cortex, hippocampus and cerebellar cortex were inspected microscopically. Caspase-3 (cas-3), granulocyte colony-stimulating factor (GCSF), growth related oncogene (GRO), inducible nitric oxide synthase (iNOS) and myelin basic protein (MBP) were estimated immunohistochemically in the cerebral cortex, hippocampus and cerebellar cortex. In the MTX group, TAS was decreased significantly in the cerebral cortex, hippocampus and blood, while TOS was significantly increased. AXA significantly ameliorated oxidative stress parameters in the cerebral cortex and hippocampus. Histopathological examination revealed degeneration, edema and hyperemia in the cerebral cortex, hippocampus and cerebellar cortex in the MTX group. AXA treatment ameliorated histopathological changes. MTX decreased MBP expression in cerebral cortex. Although MBP expression was decreased in the cerebral cortex, hippocampus and cerebellar cortex stimulated with MTX, the expressions of cas-3, GCSF, GRO and iNOS were significantly increased. AXA ameliorated the expression of cas-3, GCSF, GRO, iNOS and MBP. AXA exhibits anti-inflammatory, antioxidant and anti-apoptotic effects on MTX induced toxicity in the cerebral cortex, hippocampus and cerebellar cortex by increasing MBP expression, regulating inflammatory cytokine release and reducing oxidative stress.
Collapse
Affiliation(s)
- Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Arzu Yalcın
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
Hsu MH, Chang KA, Chen YC, Lin IC, Sheen JM, Huang LT. Resveratrol prevented spatial deficits and rescued disarrayed hippocampus asymmetric dimethylarginine and brain-derived neurotrophic factor levels in young rats with increased circulating asymmetric dimethylarginine. Neuroreport 2021; 32:1091-1099. [PMID: 34284453 DOI: 10.1097/wnr.0000000000001698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increased plasma levels of asymmetric dimethylarginine can be encountered in chronic inflammatory disease, liver damage, renal failure, and multiple organ failure. In addition, an association between circulating asymmetric dimethylarginine levels and all-cause mortality has been reported. Male Sprague-Dawley rats, postnatal day 17 ± 1, received continuous asymmetric dimethylarginine infusion via an intraperitoneal pump. Spatial performance and dorsal hippocampal asymmetric dimethylarginine and brain-derived neurotrophic factor (BDNF) levels were examined, and the effect of resveratrol was tested. A 4-week continuous asymmetric dimethylarginine infusion in young male rats caused spatial deficits, increased asymmetric dimethylarginine levels, and decreased BDNF expression in the dorsal hippocampus. Increased oxidative stress and altered molecules in the dorsal hippocampus linked to asymmetric dimethylarginine and BDNF functions were detected. Resveratrol protected against these effects, reversing spatial deficits, and reducing the changes in the dorsal hippocampal asymmetric dimethylarginine and BDNF levels.
Collapse
Affiliation(s)
| | - Kow-Aung Chang
- Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | | | | | - Jiunn-Ming Sheen
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi County, Puzi City, Taiwan
| | | |
Collapse
|
8
|
Chen YC, Sheen JM, Wang SC, Hsu MH, Hsiao CC, Chang KA, Huang LT. Methotrexate Neurotoxicity Is Related to Epigenetic Modification of the Myelination Process. Int J Mol Sci 2021; 22:6718. [PMID: 34201550 PMCID: PMC8267729 DOI: 10.3390/ijms22136718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
With the improvement of the survival rate of acute lymphoblastic leukemia (ALL) in children, some children ALL survivors reveal inferior intellectual and cognition outcome. Methotrexate (MTX), while serving as an essential component in ALL treatment, has been reported to be related to various neurologic sequelae. Using combined intrathecal (IT) and intraperitoneal (IP) MTX model, we had demonstrated impaired spatial memory function in developing rats, which can be rescued by melatonin treatment. To elucidate the impact of MTX treatment on the epigenetic modifications of the myelination process, we examined the change of neurotrophin and myelination-related transcriptomes in the present study and found combined IT and IP MTX treatment resulted in altered epigenetic modification on the myelination process, mainly in the hippocampus. Further, melatonin can restore the MTX effect through alterations of the epigenetic pathways.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-M.S.); (S.-C.W.); (M.-H.H.); (C.-C.H.)
- Department of Traditional Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-M.S.); (S.-C.W.); (M.-H.H.); (C.-C.H.)
- Department of Traditional Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
| | - Su-Chen Wang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-M.S.); (S.-C.W.); (M.-H.H.); (C.-C.H.)
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-M.S.); (S.-C.W.); (M.-H.H.); (C.-C.H.)
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-M.S.); (S.-C.W.); (M.-H.H.); (C.-C.H.)
- Department of Traditional Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
| | - Kow-Aung Chang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-M.S.); (S.-C.W.); (M.-H.H.); (C.-C.H.)
| |
Collapse
|
9
|
Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer's Disease Risk Factor APOE. Cancers (Basel) 2020; 12:cancers12123842. [PMID: 33352780 PMCID: PMC7766535 DOI: 10.3390/cancers12123842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer related cognitive impairment (CRCI) is a serious impairment to maintaining quality of life in cancer survivors. Cancer chemotherapy contributes to this condition through several potential mechanisms, including damage to the blood brain barrier, increases in oxidative stress and inflammation in the brain, and impaired neurogenesis, each of which lead to neuronal dysfunction. A genetic predisposition to CRCI is the E4 allele of the Apolipoprotein E gene (APOE), which is also the strongest genetic risk factor for Alzheimer's disease. In normal brains, APOE performs essential lipid transport functions. The APOE4 isoform has been linked to altered lipid binding, increased oxidative stress and inflammation, reduced turnover of neural progenitor cells, and impairment of the blood brain barrier. As chemotherapy also affects these processes, the influence of APOE4 on CRCI takes on great significance. This review outlines the main areas where APOE genotype could play a role in CRCI. Potential therapeutics based on APOE biology could mitigate these detrimental cognitive effects for those receiving chemotherapy, emphasizing that the APOE genotype could help in developing personalized cancer treatment regimens.
Collapse
|