1
|
Wang YT, Wang XL, Lei L, Zhang Y. Efficacy of ginsenoside Rg1 on rodent models of depression: A systematic review and meta-analysis. Psychopharmacology (Berl) 2025; 242:1137-1155. [PMID: 39039242 DOI: 10.1007/s00213-024-06649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
RATIONALE Depression is a prevalent psychiatric disease, and ginsenoside Rg1 is a bioactive compound extracted from the root of Panax ginseng C.A.Mey. To systematically investigate the effectiveness of Rg1 in rodent models of depression and provide evidence-based references for treating depression. METHODS Electronic searches for rodent studies were performed from inception to October 2022, e.g., PUBMED and EMBASE. Data extraction and quality evaluation were performed for the references, and meta-analysis was performed on the selected data using Review Manager 5.3.5. The outcomes were analyzed via a random-effect model and presented as mean difference (MD) with 95% confidence intervals (CIs). RESULTS A total of 24 studies and 678 animals were included in this meta-analysis. Rg1 remarkably improved depressive-like symptoms of depressed rodents, including the sucrose preference test (25.08, 95% CI: 20.17-30.00, Z = 10.01, P < 0.00001), forced swimming test (MD = -37.69, 95% CI: (-45.18, -30.2); Z = 9.86, P < 0.00001), and the tail suspension test (MD = -22.93, seconds, 95% CI: (-38.49, -7.37); Z = 2.89, P = 0.004). CONCLUSIONS The main antidepressant mechanism of Rg1 was concluded to be the neurotransmitter system, oxidant stress system, and inflammation. Conclusively, this study indicated the possible protective and therapeutic effects of Rg1 for treating depression via multiple mechanisms.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
2
|
Zhao K, Zhang Y, Yang S, Xiang L, Wu S, Dong J, Li H, Yu H, Hu W. Neuroinflammation and stress-induced pathophysiology in major depressive disorder: mechanisms and therapeutic implications. Front Cell Neurosci 2025; 19:1538026. [PMID: 40336842 PMCID: PMC12055817 DOI: 10.3389/fncel.2025.1538026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Major depressive disorder (MDD) is one of the most common mental health conditions, characterized by pervasive and persistent low mood, low self-esteem, and a loss of interest or pleasure in activities that are typically enjoyable. Despite decades of research into the etiology and pathophysiological mechanisms of depression, the therapeutic outcomes for many individuals remain less than expected. A promising new area of research focuses on stress-induced neuroinflammatory processes, such as the excessive activation and crosstalk of microglia and astrocytes in the central nervous system under stress, as well as elevated levels of pro-inflammatory cytokines, which are closely linked to the onset and progression of depression. This review summarizes the mechanisms through which neuroinflammation induces or promotes the development of depression, and also highlights the effective roles of small molecules with anti-inflammatory activity in the treatment of MDD. Understanding the specific mechanisms through which stress-induced neuroinflammation further impacts depression, and using technologies such as single-cell RNA sequencing to elucidate the specific subtypes and interactions of microglia and astrocytes in depression, is of great importance for developing more effective therapeutic strategies for MDD.
Collapse
Affiliation(s)
- Kunying Zhao
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Yuxiao Zhang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Shuda Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Lirong Xiang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Shangpeng Wu
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Junfang Dong
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Huan Li
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Haofei Yu
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Wang J, Chen W, Zhu Q, Liu Y, Kang Z, Liu D, Zeng G. Effects of Qingyangshen glycosides on neuroplasticity in a mouse model of social defeat. Animal Model Exp Med 2025; 8:581-594. [PMID: 39921215 PMCID: PMC12008452 DOI: 10.1002/ame2.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/16/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Qingyangshen (Cynanchum otophyllum C.K. Schneid) is a folk drug for treating depression and other mental disorders induced by social defeat stress. Neuroplasticity in the hippocampus is essential for the modulation of cognition and emotion, and its impairment may contribute to the development and progression of depression. Our previous studies have found that Qingyangshen glycosides (QYS) can improve depression-like behavior in social failure mouse models, mainly through PGC-1α/FNDC5/BDNF signaling pathways activation, but its effects and mechanisms on hippocampal neuroplasticity remain unknown. METHODS Chronic social defeat stress (CSDS) was used to induce social defeat in mice. Morphological changes in the hippocampus were observed by H&E staining and Golgi staining. Immunofluorescence double staining was used to detect the expression of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95), while western blot was employed to evaluate PSD-95, SYN, and doublecortin (DCX) proteins. The pathological processing of social defeat and the therapeutic effects of QYS on it was confirmed through behavioral assessment associated with morphologic observation. RESULTS During the whole study, the sucrose preference indices and OFT activity time of CSDS mice were significantly decreased (p ≤ 0.05), and the tail suspension immobility time was significantly increased (p ≤ 0.05), suggesting that the mice had significant depressive symptoms. Treatment with QYS (25, 50, and 100 mg/kg) significantly alleviated depressive symptoms in CSDS mice, which was demonstrated by significantly (p ≤ 0.05 or p ≤ 0.01) reducing the duration of tail-hanging immobility and increasing the tendency of sucrose preference indices and OFT activity time. QYS treatment also significantly increased the expression of DCX, PSD-95, and SYN proteins, which play a crucial role in depression. CONCLUSIONS QYS alleviated these symptoms by enhancing hippocampal neuroplasticity through upregulating the expression of synapse-associated proteins (SAPs). The therapeutic mechanism of QYS may involve modulating the neuroplasticity of hippocampus neurons by altering the expression of SAPs.
Collapse
Affiliation(s)
- Jingru Wang
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Pharmacological research department, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs and Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Weishi Chen
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Zhu
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yao Liu
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zheng Kang
- Pharmacological research department, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs and Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Dingding Liu
- School of Pharmacy and Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Guirong Zeng
- Pharmacological research department, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs and Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| |
Collapse
|
4
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Yang W, Wen W, Chen H, Zhang H, Lu Y, Wang P, Xu S. Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. Chin J Nat Med 2025; 23:77-89. [PMID: 39855833 DOI: 10.1016/s1875-5364(25)60808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 01/27/2025]
Abstract
The activation of the sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species (ROS) levels. Clinical trials have demonstrated that Zhongfeng Xingnao Liquid (ZFXN) ameliorates post-stroke cognitive impairment (PSCI). However, the underlying mechanism, particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway, remains unclear. This study employed an oxygen-glucose deprivation (OGD) cell model using SH-SY5Y cells and induced PSCI in rats through modified bilateral carotid artery ligation (2VO). The effects of ZFXN on learning and memory, neuroprotective activity, mitochondrial function, oxidative stress, and the SIRT1/Nrf2/HO-1 pathway were evaluated both in vivo and in vitro. Results indicated that ZFXN significantly increased the B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax) ratio, reduced terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL)+ cells, and markedly improved cognition, synaptic plasticity, and neuronal function in the hippocampus and cortex. Furthermore, ZFXN exhibited potent antioxidant activity, evidenced by decreased ROS and malondialdehyde (MDA) content and increased superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels. ZFXN also demonstrated considerable enhancement of mitochondrial membrane potential (MMP), Tom20 fluorescence intensity, adenosine triphosphate (ATP) and energy charge (EC) levels, and mitochondrial complex I and III activity, thereby inhibiting mitochondrial damage. Additionally, ZFXN significantly increased SIRT1 activity and elevated SIRT1, nuclear Nrf2, and HO-1 levels. Notably, these effects were substantially counteracted when SIRT1 was suppressed by the inhibitor EX-527 in vitro. In conclusion, ZFXN alleviates PSCI by activating the SIRT1/Nrf2/HO-1 pathway and preventing mitochondrial damage.
Collapse
Affiliation(s)
- Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Lu
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Han D, Zhao Z, Mao T, Gao M, Yang X, Gao Y. Ginsenoside Rg1: A Neuroprotective Natural Dammarane-Type Triterpenoid Saponin With Anti-Depressive Properties. CNS Neurosci Ther 2024; 30:e70150. [PMID: 39639753 PMCID: PMC11621566 DOI: 10.1111/cns.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Depression, a widespread mental disorder, presents significant risks to both physical and mental health due to its high rates of recurrence and suicide. Currently, single-target antidepressants typically alleviate depressive symptoms or delay the progression of depression rather than cure it. Ginsenoside Rg1 is one of the main ginsenosides found in Panax ginseng roots. It improves depressive symptoms through various mechanisms, suggesting its potential as a treatment for depression. MATERIALS AND METHODS We evaluated preclinical studies to comprehensively discuss the antidepressant mechanism of ginsenoside Rg1 and review its toxicity and medicinal value. Additionally, pharmacological network and molecular docking analyses were performed to further validate the antidepressant effects of ginsenoside Rg1. RESULTS The antidepressant mechanism of ginsenoside Rg1 may involve various pharmacological mechanisms and pathways, such as inhibiting neuroinflammation and over-activation of microglia, preserving nerve synapse structure, promoting neurogenesis, regulating monoamine neurotransmitter levels, inhibiting hyperfunction of the hypothalamic-pituitary-adrenal axis, and combatting antioxidative stress. Moreover, ginsenoside Rg1 preserves astrocyte gap junction function by regulating connexin43 protein biosynthesis and degradation, contributing to its antidepressant effect. Pharmacological network and molecular docking studies identified five targets (AKT1, STAT3, EGFR, PPARG, and HSP90AA1) as potential molecular regulatory sites of ginsenoside Rg1. CONCLUSIONS Ginsenoside Rg1 may exert its antidepressant effects via various pharmacological mechanisms. In addition, multicenter clinical case-control and molecular targeted studies are required to confirm both the clinical efficacy of ginsenoside Rg1 and its potential direct targets.
Collapse
Affiliation(s)
- Dong Han
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tinghui Mao
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Man Gao
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yan Gao
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
8
|
Yu S, Yin Z, Ling M, Chen Z, Zhang Y, Pan Y, Zhang Y, Cai X, Chen Z, Hao H, Zheng X. Ginsenoside Rg1 enriches gut microbial indole-3-acetic acid to alleviate depression-like behavior in mice via oxytocin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156186. [PMID: 39515104 DOI: 10.1016/j.phymed.2024.156186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE Although a large collection of data has shown that ginsenosides, the major active ingredients from Ginseng, have neuroprotective and anti-depressant effect, the mechanism of action is incompletely understood. This study aims to elucidate the antidepressant mechanism of ginsenoside Rg1 (Rg1), a poorly absorbed ginsenoside, from the perspective of gut microbe to brain signaling. METHODS A mouse model of depression was induced by unpredictable mild stress (UMS). Behavioral and neurochemical tests were conducted to evaluate the effect and mechanism of Rg1 on depressive behavior. Non-target and target metabolomics were performed to identify the signaling metabolites underlying the antidepressant efficacy of Rg1. Gut microbial structure was analyzed by 16S rRNA sequencing and the potential functional strains associated with Rg1 action were investigated by in vitro bacterial culture. Chemical intervention was used to explore the mechanism of Rg1 and signaling metabolite. RESULTS Rg1 improved UMS-induced despair, anxiety-like and social avoidance behaviors in mice, which were accompanied by increased hypothalamic oxytocin secretion and restored neural proliferation in the hippocampus. Metabolomic analysis of the gut-brain axis revealed that Rg1 increased the concentration of serum and brain indole-3-acetic acid (IAA), a bacterial metabolite that was partially attributed to the enrichment of Lactobacillus murinus in the gut microbiome. Oral supplementation of IAA mimicked the anti-depressant action of Rg1, while oxytocin receptor antagonist abrogated the anti-depressant effects of both Rg1 and IAA. CONCLUSION Our work provides a new gut-to-brain signaling mechanism for the antidepressant effects of Rg1. In particular, Rg1 enriches the abundance of Lactobacillus murinus, which in turn increases the level of brain IAA and potentiates hypothalamic oxytocin signal. These findings suggest a promising pathway for producing antidepressant effects through gut-brain crosstalk.
Collapse
Affiliation(s)
- Siqi Yu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhe Yin
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Ling
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuo Chen
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yangfan Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yarui Pan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youying Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zeyu Chen
- School of Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Ren Q, He C, Sun Y, Gao X, Zhou Y, Qin T, Zhang Z, Wang X, Wang J, Wei S, Wang F. Asiaticoside improves depressive-like behavior in mice with chronic unpredictable mild stress through modulation of the gut microbiota. Front Pharmacol 2024; 15:1461873. [PMID: 39494347 PMCID: PMC11527651 DOI: 10.3389/fphar.2024.1461873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Background Asiaticoside, the main active ingredient of Centella asiatica, is a pentacyclic triterpenoid compound. Previous studies have suggested that asiaticoside possesses neuroprotective and anti-depressive properties, however, the mechanism of its anti-depressant action not fully understood. In recent years, a growing body of research on anti-depressants has focused on the microbiota-gut-brain axis, we noted that disruption of the gut microbial community structure and diversity can induce or exacerbate depression, which plays a key role in the regulation of depression. Methods Behavioral experiments were conducted to detect depression-like behavior in mice through sucrose preference, forced swimming, and open field tests. Additionally, gut microbial composition and short-chain fatty acid (SCFA) levels in mouse feces were analyzed 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS). Hippocampal brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine receptor 1A (5-HT1A) expression in mice was assessed by western blotting. Changes in serum levels of inflammatory factors, neurotransmitters, and hormones were measured in mice using ELISA. Results This study revealed that oral administration of asiaticoside significantly improved depression-like behavior in chronic unpredictable mild stress (CUMS) mice. It partially restored the gut microbial community structure in CUMS mice, altered SCFA metabolism, regulated the hypothalamic-pituitary-adrenal axis (HPA axis) and inflammatory factor levels, upregulated BDNF and 5-HT1A receptor protein expression, and increased serum serotonin (5-hydroxytryptamine, 5-HT) concentration. These findings reveal that asiaticoside exerts antidepressant effects via the microbiota-gut-brain axis. Conclusions These results suggested that asiaticoside exerts antidepressant effects through the microbiota-gut-brain axis in a CUMS mouse model.
Collapse
Affiliation(s)
- Qingyi Ren
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chenxi He
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaowei Gao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Zhou
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Tao Qin
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jun Wang
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siping Wei
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China
| | - Fang Wang
- Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Lv T, Xue D, Wang P, Gong W, Wang K. Vanillic Acid Protects PC12 Cells from Corticosterone-Induced Neurotoxicity via Regulating Immune and Metabolic Dysregulation Based on Computational Metabolomics. ACS OMEGA 2024; 9:40456-40467. [PMID: 39372012 PMCID: PMC11447713 DOI: 10.1021/acsomega.4c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 10/08/2024]
Abstract
Vanillic acid is widely used in the food industry and exhibits an excellent neuroprotective effect. Nevertheless, the mechanisms underlying them are largely unexplored, especially the interactions between the neuroprotection effects of vanillic acid and inflammation-immunity-metabolism. A cell metabolomics-based mathematics algorithm was reported to interpret the potential mechanism of vanillic acid on corticosterone-induced PC12 cells by regulating immune and metabolic dysregulation. Our results showed that vanillic acid markedly inhibited the level of inflammatory factors in corticosterone-induced PC12 cells. Cell metabolomics results suggested that vanillic acid regulated the abnormality of corticosterone-induced PC12 cell metabolic profiles and markedly regulated 11 differential metabolites. Our designed scoring model base entropy weight algorithm showed that the core targets (IL2RB, IFNA13, etc.) and metabolites (lactate, ethanolamine, etc.) regulate the immunity-metabolism of vanillic acid. Furthermore, we demonstrated that vanillic acid inhibited IL2RB expression and modulated the related pathway, JAK1/STAT3 signaling. The JAK inhibitor ABT-494 was further applied to validate the effect of vanillic acid on the JAK/STAT pathway. Results indicate that vanillic acid regulates the abnormal interactions of inflammation-immunity-metabolism by repressing the IL2RB-JAK1-STAT3 pathway. Methodologically, this study contributes to the decoding of vanillic acid's antidepressive effect from the metabolism perspective combined with computer algorithms and mathematics models.
Collapse
Affiliation(s)
- Tianxing Lv
- Institute
of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Daojin Xue
- The
Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Peng Wang
- School
of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Wenxia Gong
- Modern
Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kexin Wang
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Jiang N, Yao C, Zhang Y, Chen Y, Chen F, Luo Y, Choudhary MI, Pan R, Liu X. Antidepressant effects of Parishin C in chronic social defeat stress-induced depressive mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117891. [PMID: 38331122 DOI: 10.1016/j.jep.2024.117891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Parishin C (Par), a prominent bioactive compound in Gastrodia elata Blume with little toxicity and shown neuroprotective effects. However, its impact on depression remains largely unexplored. AIM OF THE STUDY This study aims to investigate the antidepressant effects of Par using a chronic social defeat stress (CSDS) mouse model and elucidate its molecular mechanisms. MATERIALS AND METHODS The CSDS-induced depression mouse model was used to evaluate the therapeutic efficacy of Par. The social interaction test (SIT) and sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were conducted to assess the effects of Par on depressive-like behaviours. The levels of corticosterone, neurotransmitters (5-HT, DA and NE) and inflammatory cytokines (IL-1β, TNF-α, and IL-6) were evaluated by enzyme-linked immunosorbent assay (ELISA). Activation of a microglia was assessed by immunofluorescence labeling Iba-1. The protein expressions of NLRP3, ASC, caspase-1, and IL-6 verified by Western blot. RESULT Oral administration of Par (4 and 8 mg/kg) and fluoxetine (10 mg/kg, administration significantly ameliorate depression-like behaviors induced by CSDS, as shown by the increase social interaction in SIT, increase sucrose preference in SPT and the decrease immobility in TST and FST. Par administration decreased serum corticosterone level and increased the 5-HT, DA and NE concentration in the hippocampus and prefrontal cortex. Furthermore, Par treatment suppressed microglial activation (Iba1) as well as reduced levels of IL-1β, TNF-α, and IL-6) with decreased protein expressions of NLRP3, ASC, caspase-1, and IL-6. CONCLUSIONS our study provides the first evidence that Par exerts antidepressant-like effects in mice with CSDS-induced depression. This effect appears to be mediated by the normalization of neurotransmitter and corticosterone levels, inhibition of NLRP3 inflammasome activation. This newfound antidepressant property of Par offers a novel perspective on its pharmacological effects, providing valuable insights into its potential therapeutic and preventive applications in depression treatment.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yuzhen Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fang Chen
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yanqin Luo
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ruile Pan
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
12
|
Zhang J, Song Z, Huo Y, Li G, Lu L, Wei C, Zhang S, Gao X, Jiang X, Xu Y. Engeletin alleviates depressive-like behaviours by modulating microglial polarization via the LCN2/CXCL10 signalling pathway. J Cell Mol Med 2024; 28:e18285. [PMID: 38597406 PMCID: PMC11005460 DOI: 10.1111/jcmm.18285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Microglial polarization and associated inflammatory activity are the key mediators of depression pathogenesis. The natural Smilax glabra rhizomilax derivative engeletin has been reported to exhibit robust anti-inflammatory activity, but no studies to date have examined the mechanisms through which it can treat depressive symptoms. We showed that treatment for 21 days with engeletin significantly alleviated depressive-like behaviours in chronic stress social defeat stress (CSDS) model mice. T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) imaging revealed no significant differences between groups, but the bilateral prefrontal cortex of CSDS mice exhibited significant increases in apparent diffusion coefficient and T2 values relative to normal control mice, with a corresponding reduction in fractional anisotropy, while engeletin reversed all of these changes. CSDS resulted in higher levels of IL-1β, IL-6, and TNF-a production, enhanced microglial activation, and greater M1 polarization with a concomitant decrease in M2 polarization in the mPFC, whereas engeletin treatment effectively abrogated these CSDS-related pathological changes. Engeletin was further found to suppress the LCN2/C-X-C motif chemokine ligand 10 (CXCL10) signalling axis such that adeno-associated virus-induced LCN2 overexpression ablated the antidepressant effects of engeletin and reversed its beneficial effects on the M1/M2 polarization of microglia. In conclusion, engeletin can alleviate CSDS-induced depressive-like behaviours by regulating the LCN2/CXCL10 pathway and thereby altering the polarization of microglia. These data suggest that the antidepressant effects of engeletin are correlated with the polarization of microglia, highlighting a potential avenue for future design of antidepressant strategies that specifically target the microglia.
Collapse
Affiliation(s)
- Jie Zhang
- Department of RadiologyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Zheng Song
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Yanchao Huo
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Guangqiang Li
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Liming Lu
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Chuanmei Wei
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Shuping Zhang
- College of Basic MedicineBinzhou Medical UniversityYantaiShandongP.R. China
| | - Xinfu Gao
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Xingyue Jiang
- Department of RadiologyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Yangyang Xu
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| |
Collapse
|
13
|
Wang YT, Wang XL, Lei L, Guo ZY, Hu D, Wang ZZ, Zhang Y. Efficacy of Chinese herbal formula Kai-Xin-San on rodent models of depression: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117492. [PMID: 38012974 DOI: 10.1016/j.jep.2023.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai-Xin-San (KXS, or Happy Feeling Powder), a typical Chinese herbal prescription, is frequently used for treating depression by the multi-level and multi-target mechanism. AIM OF THE STUDY To systematically investigate the efficacy and safety of KXS on depression in preclinic trials. MATERIALS AND METHODS We independently searched for preclinical animal studies of KXS on depression from inception to June 28, 2022, using electronic databases, e.g., PUBMED. The measurements were performed to assess the outcomes of behavioral tests. RESULTS This systematic review and meta-analysis included twenty-four studies and 608 animals. A remarkable effect of KXS in depression behavioral tests, including sucrose consumption test (SMD: 2.36, 95% CI: (1.81, 2.90); Z = 8.49, P < 0.00001)., forced swimming test (MD = -60.52, 95% CI: (-89.04, -31.99); Z = 4.16, P < 0.0001), rearing times (MD=4.48, 95% CI: (3.39, 5.57); Z = 8.05, P < 0.00001) and crossing times (MD = -33.7, 95% CI: (25.74, 41.67); Z = 8.29, P < 0.00001) in the open field test, showing KXS's excellent efficiency in improving depressive-like symptoms of animals. CONCLUSIONS Our meta-analysis showed KXS remarkably relieved animals' depressive-like symptoms, providing evidence that KXS can be a promising drug candidate for depression treatment.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
14
|
Jiang N, Zhang Y, Yao C, Chen F, Liu Y, Chen Y, Wang Y, Choudhary MI, Liu X. Hemerocallis citrina Baroni ameliorates chronic sleep deprivation-induced cognitive deficits and depressive-like behaviours in mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:35-43. [PMID: 38245346 DOI: 10.1016/j.lssr.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 01/22/2024]
Abstract
Sleep deprivation (SD) is common during spaceflight. SD is known to cause cognitive deficits and depression, requiring treatment and prevention. Hemerocallis citrina Baroni (Liliaceae) is a perennial herb with antidepressant, antioxidant, antitumor, anti-inflammatory, and neuroprotective effects.The aim of our study was to investigate the effects of H. citrina extract (HCE) on SD-induced cognitive decline and depression-like behavior and possible neuroinflammation-related mechanisms. HCE (2 g/kg/day, i.g.) or vortioxetine (10 mg/kg/day, i.g.) were given to mice by oral gavage for a total of 28 days during the SD process. HCE treatment was found to ameliorate SD-induced impairment of short- and long-term spatial and nonspatial memory, measured using Y-maze, object recognition, and Morris water maze tests, as well as mitigating SD-induced depression-like behaviors, measured by tail suspension and forced swimming tests. HCE also reduced the levels of inflammatory cytokines (IL-1β, IL-18, and IL-6) in the serum and hippocampus. Furthermore, HCE suppressed SD-induced microglial activation in the prefrontal cortex (PFC) and the CA1 and dentate gyrus (DG) regions of the hippocampus. HCE also inhibited the expression of phosphorylated NF-κB and activation of the NLRP3 inflammasome. In summary, our findings indicated that HCE attenuated SD-induced cognitive impairment and depression-like behavior and that this effect may be mediated by the inhibition of inflammatory progression and microglial activation in the hippocampus, as well as the down-regulation of NF-κB and NLRP3 signaling. The findings of these studies showingTthese results indicate that HCE exerts neuroprotective effects and are consistent with the findings of previous studies, suggesting that HCE is beneficial for the prevention and treatment of cognitive decline and depression in SD.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Fang Chen
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yupei Liu
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yuzhen Chen
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hunan University of Chinese Medicine, Hunan 410000, China.
| |
Collapse
|
15
|
Wu JJ, Zhang L, Liu D, Xia J, Yang Y, Tang F, Chen L, Ao H, Peng C. Ginsenoside Rg1, lights up the way for the potential prevention of Alzheimer's disease due to its therapeutic effects on the drug-controllable risk factors of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116955. [PMID: 37536646 DOI: 10.1016/j.jep.2023.116955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Shen Nong, BenCao Jing, and Compendium of Materia Medica (Bencao Gangmu), Panax ginseng, and its prescriptions have been used for the treatment of dementia, depression, weight loss, Xiaoke disease (similar to diabetes), and vertigo. All these diseases are associated with the drug-controllable risk factors for Alzheimer's disease (AD), including depression, obesity, diabetes, and hypertension. Ginsenoside Rg1, one of the main active ingredients of P. ginseng and its congener Panax notoginseng, possesses therapeutic potentials against AD and associated diseases. This suggests that ginsenoside Rg1 might have the potential for AD prevention and treatment. Although the anti-AD effects of ginsenoside Rg1 have received more attention, a systematic review of its effects on depression, obesity, diabetes, and hypertension is not available. AIM OF THE REVIEW This systematic literature review comprehensively summarized existing literature on the therapeutic potentials of ginsenoside Rg1 in AD prevention for the propose of providing a foundation of future research aimed at enabling the use of such drugs in clinical practice. METHODS Information on ginsenoside Rg1 was collected from relevant published articles identified through a literature search in electronic scientific databases (PubMed, Science Direct, and Google Scholar). The keywords used were "Ginsenoside Rg1," "Panax ginseng," "Source," "Alzheimer's disease," "Brain disorders," "Depression," "Obesity," "Diabetes," and "Hypertension." RESULTS The monomer ginsenoside Rg1 can be relatively easily obtained and has therapeutic potentials against AD. In vitro and in vivo experiments have demonstrated the therapeutic potentials of ginsenoside Rg1 against the drug-controllable risk factors of AD including depression, obesity, diabetes, and hypertension. Thus, ginsenoside Rg1 alleviates diseases resulting from AD risk factors by regulating multiple targets and pathways. CONCLUSIONS Ginsenoside Rg1 has the potentials to prevent AD by alleviating depression, obesity, diabetes, and hypertension.
Collapse
Affiliation(s)
- Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
16
|
Xu Y, Liu RR, Yu XJ, Liu XN, Zhang X, Jiang ZH, Cong ZF, Li QQ, Gao P. Quality markers of Dajianzhong decoction based on multicomponent qualitative and quantitative analysis combined with network pharmacology and chemometric analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:146-162. [PMID: 37731278 DOI: 10.1002/pca.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-β-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| | - Run-Run Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Jun Yu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xiao-Nan Liu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Xin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhi-Hui Jiang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Zhu-Feng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, P. R. China
| | - Qin-Qing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
- National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, P. R. China
| |
Collapse
|
17
|
Yang G, Gao Y, Gao L, Zhao Z, Zhao Y, Wang C, Li S. Increasing minor ginsenosides contents and enhancing neuroprotective effects of total ginsenosides fermented by Lactiplantibacillus plantarum. Fitoterapia 2024; 172:105769. [PMID: 38065234 DOI: 10.1016/j.fitote.2023.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024]
Abstract
Minor ginsenosides have been proven to have higher pharmacological activity than the major ginsenosides. The transformation of major ginsenosides to minor ginsenosides by lactic acid bacteria was considered to be a promising method. Therefore, this study focuses on utilizing glycosidase-producing Lactiplantibacillus plantarum GLP40 to transform total ginsenosides (TG) and increase the content of minor ginsenosides, as well as investigate the neuroprotective effects of fermented total ginsenosides (FTG). After 21d fermentation, the transformation products were purified using D101 macroporous resin column chromatography, and identified by HPLC and LC-MS analyses. The neuroprotective effect of FTG was evaluated using MPTP-induced neural injury mice model. Lact. plantarum GLP40 fermentation increased the contents of minor ginsenosides in TG, such as Rg3, Rh2, CK, and Rk3. FTG showed stronger alleviation of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Hydrochloride (MPTP) induced memory loss and dyskinesia in mice, and inhibited tyrosine hydroxylase (TH) depletion and ionized calcium binding adapter molecule 1 (Iba-1) production than TG. Further, FTG significantly increased serum IL-10 levels and inhibited the expression of pro-inflammatory cytokines compared to TG. Moreover, FTG treatment activated the anti-apoptotic PI3K/AKT/mTOR signaling pathway and inhibited the expression of the inflammatory NF-κB/COX-2/iNOS pathway. In conclusion, Lact. plantarum GLP40 fermentation enhances the neuroprotective effects of total ginsenosides by increasing minor ginsenosides. FTG protected MPTP induced neural injury in mice by regulating inflammation and cell apoptosis signaling pathways.
Collapse
Affiliation(s)
- Ge Yang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China
| | - Yansong Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China
| | - Lei Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China
| | - Zijian Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China
| | - Yujuan Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China
| | - Chao Wang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China
| | - Shengyu Li
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, PR China.
| |
Collapse
|
18
|
Liu X, Zhang S, Dong Y, Xie Y, Li Q. SENP1-mediated SUMOylation of SIRT1 affects glioma development through the NF-κB pathway. Exp Cell Res 2023; 433:113822. [PMID: 37866458 DOI: 10.1016/j.yexcr.2023.113822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Gliomas are the most common primary brain tumors in adults. Although they exist in different malignant stages, most gliomas are clinically challenging because of their infiltrative growth patterns and inherent relapse tendency with increased malignancy. Epigenetic alterations have been suggested to be an important factor for glioma genesis. Using mRNA probe hybridization, we identified SUMO-specific protease 1 (SENP1) as the most significantly upregulated SUMOylation regulator in glioma. Moreover, SENP1 was overexpressed in gliomas and predicted poor prognoses. Depletion of SENP1 reduced glioma cell activity, cycle arrest, and increased apoptotic activity. Mechanistically, SENP1 inhibited the protein expression of sirtuin 1 (SIRT1) through de-SUMOylation, and SIRT1 inhibited the activity of nuclear factor kappaB (NF-κB) by deacetylation. Rescue experiments revealed that downregulation of SIRT1 reversed the inhibitory effect of sh-SENP1 on glioma cell malignant phenotype, while downregulation of NF-κB reversed the activating effect of sh-SIRT1 on glioma cell malignant phenotype. Thus, SENP1-mediated de-SUMOylation of SIRT1 might be therapeutically important in gliomas.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China
| | - Shenglin Zhang
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China
| | - Yi Dong
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China
| | - Yunpeng Xie
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China.
| | - Qingshan Li
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, PR China.
| |
Collapse
|
19
|
Lv S, Zhang G, Huang Y, Zhong X, Yi Y, Lu Y, Li J, Ma Y, Teng J. Adult hippocampal neurogenesis: pharmacological mechanisms of antidepressant active ingredients in traditional Chinese medicine. Front Pharmacol 2023; 14:1307746. [PMID: 38152691 PMCID: PMC10751940 DOI: 10.3389/fphar.2023.1307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
He H, Xie X, Kang X, Zhang J, Wang L, Hu N, Xie L, Peng C, You Z. Ginsenoside Rg1 ameliorates depressive-like behavior by inhibiting NLRP3 inflammasome activation in mice exposed to chronic stress. Eur J Pharmacol 2023; 960:176120. [PMID: 37863415 DOI: 10.1016/j.ejphar.2023.176120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Microglia-mediated inflammatory process is recognized as a target in the treatment of depression. Ginsenoside Rg1 (GRg1), the active ingredient of traditional ginseng, regulates microglial phenotypes to resist stress-induced inflammatory responses. Here we used a mouse model of stress-induced depression to investigate the involvement of microglial Nod-like receptor protein 3 (NLRP3) in the antidepressant effects of GRg1. Male C57BL/6J mice were exposed to chronic mild stress (CMS) for three weeks, followed by intraperitoneal injection of GRg1 (20 mg/kg) or the antidepressant imipramine (20 mg/kg) for another three weeks. Depressive-like behaviors were assessed by sucrose preference test, forced swimming test, and tail suspension test. Microglial phenotypes were assessed in terms of morphological features and cytokine profiles; inflammasome activity, in terms of levels of complexes containing NLRP3, apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1; and neurogenesis, in terms of numbers of proliferating, differentiating, and mature neurons identified by immunostaining. GRg1 reduced abnormal animal behaviors caused by CMS, such as anhedonia and desperate behaviors, without affecting locomotor behaviors. GRg1 also reduced the number of ASC-specks, implying inhibition of inflammasome activation, which was associated with weaker activation of pro-inflammatory microglia. At the same time, GRg1 rescued impairment of hippocampal neurogenesis in vivo and in vitro, which correlated with modulation of microglial phenotypes. GRg1 exert antidepressant effects by preventing stress from activating the NLRP3 inflammasome in microglia, promoting a proneurogenic phenotype and allowing adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hui He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xixi Kang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lu Wang
- The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu, 610036, China
| | - Nan Hu
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lei Xie
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zili You
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
21
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
22
|
Su D, Jiang W, Yuan Q, Guo L, Liu Q, Zhang M, Kang C, Xiao C, Yang C, Li L, Xu C, Zhou T, Zhang J. Chronic exposure to aflatoxin B1 increases hippocampal microglial pyroptosis and vulnerability to stress in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114991. [PMID: 37172405 DOI: 10.1016/j.ecoenv.2023.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Chronic aflatoxin B1 (AFB1) exposure may increase the risk of multiple neuropsychiatric disorders. Stress is considered one of the main contributors to major depressive disorder. Whether and how chronic AFB1 exposure affects vulnerability to stress is unclear. METHODS Mice were exposed for three weeks to AFB1 (100 µg/kg/d) and/or chronic mild stress (CMS). The vulnerability behaviors in response to stress were assessed in the forced swimming test (FST), sucrose preference test (SPT), and tail suspension test (TST). Microglial pyroptosis was investigated using immunofluorescence, enzyme-linked immunosorbent assays, and western blot assay in the hippocampus of mice. Hippocampal neurogenesis and the effects of AFB1-treated microglia on proliferation and differentiation of neural stem/precursor cells (NSPCs) were assessed via immunofluorescence in the hippocampus of mice. RESULTS Mice exposed to CMS in the presence of AFB1 exhibited markedly greater vulnerability to stress than mice treated with CMS or AFB1 alone, as indicated by reduced sucrose preference and longer immobility time in the forced swimming test. Chronic aflatoxin B1 exposure resulted in changes in the microglial morphology and increase in TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. When mice were exposed to both CMS and AFB1, pyroptosis-related molecules (such as NLRP3, caspase-1, GSDMD-N, and interleukin-1β) were significantly upregulated in the hippocampus. These molecules were also significantly enhanced by AFB1 in primary microglial cultures. AFB1-treated mice showed decrease in the numbers of BrdU+, BrdU-DCX+, and BrdU-NeuN+ cells in the hippocampal dentate gyrus, as well as the percentages of BrdU+ cells that were NeuN+ in the presence or absence of CMS when compared with vehicle-treated mice. The combination of AFB1 and CMS exacerbated these effects to an even greater extent. The number of DCX+ cells correlated negatively with the percentage of ameboid microglia, TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. AFB1-treated microglia suppressed the proliferation and neuronal differentiation of NSPCs in vitro. CONCLUSION Chronic AFB1 exposure induces microglial pyroptosis, promoting an adverse neurogenic microenvironment that impairs hippocampal neurogenesis, which may render mice more vulnerable to stress.
Collapse
Affiliation(s)
- Dapeng Su
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Weike Jiang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qingsong Yuan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qin Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Mengmeng Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chuangzhi Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changgui Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chunyun Xu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
23
|
Li B, Xu M, Wang Y, Feng L, Xing H, Zhang K. Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116038. [PMID: 36529248 DOI: 10.1016/j.jep.2022.116038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE The causes of depression are complex. Many factors are involved in its pathogenesis, including the individual's biological and social environment. Although numerous studies have reported that the gut microbiota plays a significant role in depression, drugs that regulate the gut microbiota to treat depression have not yet been comprehensively reviewed. At the same time, more and more attention has been paid to the characteristics of traditional Chinese medicine (TCM) in improving depression by regulating gut microbiota. In ancient times, fecal microbiota transplantation was recorded in TCM for the treatment of severe diseases. There are also records in Chinese ancient books about the use of TCM to adjust gut microbiota to treat diseases, which has opened up a unique research field in TCM. Therefore, this article focuses on the pharmacological effects, targets, and mechanisms of TCM in improving depression by mediating the influence of gut microbiota. AIM OF THIS REVIEW To summarize the role the gut microbiota plays in depression, highlight potential regulatory targets, and elucidate the anti-depression mechanisms of TCMs through regulation of the gut microbiota. METHODS A systematic review of 256 clinical trials and pharmaceutical studies published until June 2022 was conducted in eight electronic databases (Web of Science, PubMed, SciFinder, Research Gate, ScienceDirect, Google Scholar, Scopus, and China Knowledge Infrastructure), according to the implemented PRISMA criteria, using the search terms "traditional Chinese medicine," "depression," and "gut microbiota." RESULTS Numerous studies reported the effects of different gut bacteria on depression and that antidepressants work through the gut microbiota. TCM preparations based on compound Chinese medicine, the Chinese Materia Medica, and major bioactive components exerted antidepressant-like effects by improving levels of neurotransmitters, short-chain fatty acids, brain-derived neurotrophic factor, kynurenine, and cytokines via regulation of the gut microbiota. CONCLUSION This review summarized the anti-depression effects of TCM on the gut microbiota, providing evidence that TCMs are safe and effective in the treatment of depression and may provide a new therapeutic approach.
Collapse
Affiliation(s)
- Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jiangsu Kanion Pharmaceutical Co, Ltd, Lianyungang, 222001, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Tianjin UBasio Biotechnology Group, Tianjin, 300457, China.
| |
Collapse
|
24
|
Jiang H, Zhang Y, Wang ZZ, Chen NH. Connexin 43: An Interface Connecting Neuroinflammation to Depression. Molecules 2023; 28:molecules28041820. [PMID: 36838809 PMCID: PMC9961786 DOI: 10.3390/molecules28041820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Major depressive disorder (MDD) is a leading chronic mental illness worldwide, characterized by anhedonia, pessimism and even suicidal thoughts. Connexin 43 (Cx43), mainly distributed in astrocytes of the brain, is by far the most widely and ubiquitously expressed connexin in almost all vital organs. Cx43 forms gap junction channels in the brain, which mediate energy exchange and effectively maintain physiological homeostasis. Increasing evidence suggests the crucial role of Cx43 in the pathogenesis of MDD. Neuroinflammation is one of the most common pathological features of the central nervous system dysfunctions. Inflammatory factors are abnormally elevated in patients with depression and are closely related to nearly all links of depression. After activating the inflammatory pathway in the brain, the release and uptake of glutamate and adenosine triphosphate, through Cx43 in the synaptic cleft, would be affected. In this review, we have summarized the association between Cx43 and neuroinflammation, the cornerstones linking inflammation and depression, and Cx43 abnormalities in depression. We also discuss the significant association of Cx43 in inflammation and depression, which will help to explore new antidepressant drug targets.
Collapse
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.-Z.W.); (N.-H.C.); Tel.: +86-10-6316-5182 (Z.-Z.W.); +86-10-63165177 (N.-H.C.)
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical, Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.-Z.W.); (N.-H.C.); Tel.: +86-10-6316-5182 (Z.-Z.W.); +86-10-63165177 (N.-H.C.)
| |
Collapse
|
25
|
Xie M, Wang H, Gao T, Peng J, Meng P, Zhang X, Guo D, Liu G, Shi J, Peng Q. The protective effect of luteolin on the depression-related dry eye disorder through Sirt1/NF-κB/NLRP3 pathway. Aging (Albany NY) 2023; 15:261-275. [PMID: 36641776 PMCID: PMC9876631 DOI: 10.18632/aging.204479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/29/2022] [Indexed: 01/16/2023]
Abstract
Luteolin has been reported to exhibit therapeutic effect on depressive-like behaviors in mice. Nevertheless, the therapeutic effect of luteolin on the depression-related dry eye disorder remains inconclusive. In this study, C57 mice were subjected to chronic unpredictable mild stress in a dry environment (relative humidity in the cage <40%). The behavioral test and phenol red cotton thread test were employed to select the mice with both dry eye and depression-like behavior. The mechanism of luteolin on depression-related dry eye disorder was assessed by the Sirt1 selective inhibitor EX-527. Luteolin alleviated depressive-like behaviors induced by CUMS, increased tear secretion and restored corneal defects in mice. The secretions of pro-inflammatory factors IL-1β, IL-6, IL-18 and TNF-α were decreased in hippocampi and corneal tissues by Luteolin treatment. Luteolin treatment up-regulated Sirt1 expression and down-regulated Ac-NF-κB, NLRP3, Ac-Caspase-1, GSDMD-N, Cleaved IL-1β, and Cleaved IL-18 expressions. In addition, the selective inhibition of Sirt1 could weaken the therapeutic effect of luteolin on depression-related dry eye disorder. The beneficial effect of luteolin through Sirt1/NF-κB/NLRP3 signaling pathway might be a therapeutic strategy for the depression-related dry eye disorder.
Collapse
Affiliation(s)
- Mingxia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder and Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Tiantian Gao
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jun Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Pan Meng
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder and Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xi Zhang
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Dongwei Guo
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Guangya Liu
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Jian Shi
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Qinghua Peng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
26
|
Jiang N, Lv J, Zhang Y, Sun X, Yao C, Wang Q, He Q, Liu X. Protective effects of ginsenosides Rg1 and Rb1 against cognitive impairment induced by simulated microgravity in rats. Front Pharmacol 2023; 14:1167398. [PMID: 37168997 PMCID: PMC10164943 DOI: 10.3389/fphar.2023.1167398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Microgravity experienced during space flight is known to exert several negative effects on the learning ability and memory of astronauts. Few effective strategies are currently available to counteract these effects. Rg1 and Rb1, the major steroidal components of ginseng, have shown potent neuroprotective effects with a high safety profile. The present study aimed to investigate the effects of Rg1 and Rb1 on simulated microgravity-induced learning and memory dysfunction and its underlying mechanism in the hindlimb suspension (HLS) rat model. Administration of Rg1 (30 and 60 μmol/kg) and Rb1 (30 and 60 μmol/kg) for 2 weeks resulted in a significant amelioration of impaired spatial and associative learning and memory caused by 4-week HLS exposure, measured using the Morris water maze and Reward operating conditioning reflex (ROCR) tests, respectively. Furthermore, Rg1 and Rb1 administration alleviated reactive oxygen species production and enhanced antioxidant enzyme activities in the prefrontal cortex (PFC). Rg1 and Rb1 also assisted in the recovery of mitochondrial complex I (NADH dehydrogenase) activities, increased the expression of Mfn2 and decreased the fission marker dynamin-related protein (Drp)-1expression. Additionally, Rg1 and Rb1 treatment increased the SYN, and PSD95 protein expressions and decreased the ratio of Bax:Bcl-2 and reduced the expression of cleaved caspase-3 and cytochrome C. Besides these, the BDNF-TrkB/PI3K-Akt pathway was also activated by Rg1 and Rb1 treatment. Altogether, Rg1 and Rb1 treatment attenuated cognitive deficits induced by HLS, mitigated mitochondrial dysfunction, attenuated oxidative stress, inhibited apoptosis, increased synaptic plasticity, and restored BDNF-TrkB/PI3K-Akt signaling.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghu He
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xinmin Liu,
| |
Collapse
|
27
|
Zhang N, Jiang H, Wang H, Wang Y, Peng Y, Liu Y, Xia C, Yan X, Chu S, Zhang Y, Wang Z, Chen N. Novel Antidepressant Mechanism of Ginsenoside Rg1 in Regulating the Dysfunction of the Glutamatergic System in Astrocytes. Int J Mol Sci 2022; 24:ijms24010575. [PMID: 36614017 PMCID: PMC9820673 DOI: 10.3390/ijms24010575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Ginsenoside Rg1, a traditional Chinese medicine monomer, has been shown to have antidepressant effects. We previously found that Rg1 exerts antidepressant effects by improving the gap junction channels (GJCs) dysfunction; however, the downstream mechanisms through which Rg1 ameliorates GJC dysfunction remain unclear. Since hemichannels directly release glutamate, GJC dysfunction decreases the expression levels of glutamate transporters in astrocytes, and glutamatergic system dysfunction plays an essential role in the pathogenesis of depression. The glutamatergic system may be a potential downstream target of Rg1 that exerts antidepressant effects. Therefore, in this study, we aimed to determine the downstream mechanisms by which Rg1 ameliorated GJC dysfunction and exerted its antidepressant effects. Corticosterone (CORT) is used to mimic high glucocorticoid levels in patients with depression in vitro. Primary cortical astrocytes were isolated and phosphorylation of connexin43 (Cx43) as well as the functions of hemichannels, GJCs, and the glutamatergic system were evaluated after drug treatment. Rg1 pretreatment reversed the anomalous activation of Cx43 phosphorylation as well as the dysfunction of hemichannels, GJCs, and the glutamatergic system induced by CORT. These results suggest that Rg1 can ameliorate CORT-induced dysfunction of the glutamatergic system in astrocytes by potentially reducing Cx43 phosphorylation and inhibiting opening of hemichannels, thereby improving GJC dysfunction.
Collapse
Affiliation(s)
- Ningning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huiqin Wang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Yating Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ye Peng
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Yangbo Liu
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Congyuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.W.); (N.C.); Tel.: +86-10-6316-5182 (Z.W.); +86-10-6316-5177 (N.C.)
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- School of Pharmacy, Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
- Correspondence: (Z.W.); (N.C.); Tel.: +86-10-6316-5182 (Z.W.); +86-10-6316-5177 (N.C.)
| |
Collapse
|
28
|
Reguilón MD, Ballestín R, Miñarro J, Rodríguez-Arias M. Resilience to social defeat stress in adolescent male mice. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110591. [PMID: 35697171 DOI: 10.1016/j.pnpbp.2022.110591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
Adverse social experiences during adolescence are associated with the appearance of mental illness in adulthood. Social defeat (SD) is an ethologically valid murine model to study the consequences of social stress. In adolescent mice, SD induces depressive-like behaviors, increased anxiety and potentiates the reinforcing effects of cocaine and alcohol. However, not all mice exposed to SD will be susceptible to these effects. Adult mice resilient to the effects of SD show a consistent phenotype being resilient to depressive-like behaviors and to the increase in cocaine and alcohol consumption. The aim of the present study was to characterize the resilient phenotype to depressive-like behaviors and increase cocaine and ethanol rewarding effects of mice socially defeated during adolescence. To that end, adolescent mice were exposed to repeated SD, and 24 h after the last encounter, they underwent a social interaction test (SIT) in order to evaluate depressive-like behaviors. Cocaine-induced reward conditioning and ethanol intake was evaluated in two different sets of mice 3 weeks after the last SD using cocaine-induced conditioned place preference (CPP) and oral ethanol self-administration (SA). The neuroinflammation response was measured at the end of the experimental procedure by measuring striatal and cortical levels of IL-6 and CX3CL1. The results confirmed that a comparable percentage of adolescent mice develop resilience to depressive-like behaviors to that observed in adult mice. However, increased anxiety was more severe in resilient mice. Likewise, an increased preference for an ineffective dose of cocaine and an increased ethanol consumption was observed in resilient mice compared to controls. The increase in IL-6 and CX3CL1 was mainly observed in the striatum of susceptible mice compared to that of control mice. Our results confirm that, contrary to prior assumptions in adults, responses to SD stress are more complex and singular in adolescents, and caution should be taken for the correct interpretation and translation of those phenotypes.
Collapse
Affiliation(s)
- Marina D Reguilón
- Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Raúl Ballestín
- Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - José Miñarro
- Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Marta Rodríguez-Arias
- Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.
| |
Collapse
|
29
|
García-Gómez L, Castillo-Fernández I, Perez-Villalba A. In the pursuit of new social neurons. Neurogenesis and social behavior in mice: A systematic review. Front Cell Dev Biol 2022; 10:1011657. [PMID: 36407114 PMCID: PMC9672322 DOI: 10.3389/fcell.2022.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Social behaviors have become more relevant to our understanding of the human nervous system because relationships with our peers may require and modulate adult neurogenesis. Here, we review the pieces of evidence we have to date for the divergence of social behaviors in mice by modulation of adult neurogenesis or if social behaviors and the social environment can drive a change in neurogenic processes. Social recognition and memory are deeply affected by antimitotic drugs and irradiation, while NSC transgenic mice may run with lower levels of social discrimination. Interestingly, social living conditions can create a big impact on neurogenesis. Social isolation and social defeat reduce the number of new neurons, while social dominance and enrichment of the social environment increase their number. These new “social neurons” trigger functional modifications with amazing transgenerational effects. All of these suggest that we are facing two bidirectional intertwined variables, and the great challenge now is to understand the cellular and genetic mechanisms that allow this relationship to be used therapeutically.
Collapse
|
30
|
Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9017021. [PMID: 36248428 PMCID: PMC9553455 DOI: 10.1155/2022/9017021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has been regarded as a critical risk factor for pulmonary tuberculosis (PTB). Ginsenoside Rg1 has been identified as a potential therapeutic agent for T2DM by suppressing the inflammatory response. However, the effect of Rg1 on T2DM-associated PTB has not been reported. In this study, we aimed to explore the function of Rg1 in the regulation of T2DM-associated PTB. We established a T2DM-associated PTB mouse model and found that the fibrosis of lung tissues was inhibited by Rg1 in T2DM-associated PTB mice. The lung injury of T2DM-associated PTB mice was repressed by Rg1. Moreover, the levels of IL-6, TNF-α, and IL-1β in the lung tissues and serum were decreased by Rg1 in T2DM-associated PTB mice. The treatment with Rg1 inhibited the levels of free fatty acid and enhanced the expression of miR-15b-5p in lung tissues of T2DM-associated PTB mice. MiR-15b-5p targeted and inhibited the STAT3 expression. The expression of STAT3 was downregulated by Rg1, while the inhibition of miR-15b-5p reversed the downregulation. The expression of miR-15b-5p was reduced, but the expression of STAT3 was upregulated in the lung tissues of T2DM-associated PTB mice. We validated that miR-15b-5p attenuated inflammation and lung injury in the T2DM-associated PTB mouse model. The overexpression of STAT3 or the suppression of miR-15b-5p restored lung fibrosis and injury inhibited by Rg1 in T2DM-associated PTB mice. Meanwhile, the Rg1-repressed levels of IL-6, TNF-α, and IL-1β were enhanced by the overexpression of STAT3 or the suppression of miR-15b-5p. In addition, the levels of free fatty acid repressed by Rg1 were reversed by STAT3 overexpression and miR-15b-5p inhibition. Thus, we conclude that ginsenoside Rg1 inhibits the STAT3 expression by miR-15b-5p to attenuate lung injury in mice with type 2 diabetes mellitus-associated pulmonary tuberculosis.
Collapse
|
31
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Intermittent voluntary wheel running promotes resilience to the negative consequences of repeated social defeat in mice. Physiol Behav 2022; 254:113916. [PMID: 35850205 DOI: 10.1016/j.physbeh.2022.113916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
A novel approach to reduce the incidence of substance use disorders is to promote resilience to stress using environmental resources such as physical exercise. In the present study we test the hypothesis that Voluntary Wheel Running (VWR) during adolescence blocks the negative consequences of stress induced by intermittent repeated social defeat (IRSD). Four groups of adolescent male C57BL/6 mice were employed in the experiment; two groups were exposed to VWR (1 h, 3 days/week) from postnatal day (PND) 21 until the first social defeat (PND 47), while the remaining two groups did not have access to activity wheels (controls). On PND 47, 50, 53 and 56 mice, who had performed VWR, were exposed to an episode of social defeat by a resident aggressive mouse (VWR+IRSD group) or allowed to explore an empty cage (VWR+EXPL group). The same procedure was performed with control mice that had not undergone VWR (CONTROL+IRSD and CONTROL+EXPL groups). On PND 57, all the mice performed the Elevated Plus Maze (EPM), Hole-Board, Social Interaction, Tail Suspension and Splash tests. After an interval of 3 weeks, all mice underwent a conditioned place preference (CPP) procedure with 1 mg/kg of cocaine. Exposure to VWR prevented the negative consequences of social stress in the EPM, splash test and CPP, since the VWR+IRSD group did not display anxiety- or depression-like effects or the potentiation of cocaine reward observed in the Control+IRSD group. Our results support the idea that physical exercise promotes resilience to stress and represents an excellent target in drug abuse prevention.
Collapse
Affiliation(s)
- C Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M A Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M P García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - M A Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
32
|
Hepatoprotective Mechanism of Ginsenoside Rg1 against Alcoholic Liver Damage Based on Gut Microbiota and Network Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5025237. [PMID: 36052161 PMCID: PMC9427247 DOI: 10.1155/2022/5025237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Alcoholic liver disease (ALD) is a major public health problem worldwide, which needs to be effective prevention. Ginsenoside Rg1 (GRg1), a bioactive ingredient extracted from ginseng, has benefit effects on health. In this study, 11 potential targets of GRg1 against ALD were firstly obtained by network pharmacology. KEGG pathway enrichment showed that GRg1-target-ALD was closely related to Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathways. In addition, GRg1 decreased antioxidant levels and increased oxidative levels in alcohol-treated mice, which alleviated oxidative stress-induced hepatic damage. GRg1 enhanced intestinal barrier function via upregulating the levels of tight junction protein and immunoglobulin A. GRg1 also reduced alcohol-induced inflammation by suppressing TLR4/NF-κB pathway, which was consistent with the prediction of network targets. Moreover, GRg1 altered GM population, and Verrucomicrobia, Bacteroidetes, Akkermansia, Bacteroides, Lachnospiraceae_NK4A136_group, and Alloprevotella played positive association with intestinal barrier indicators and negative correlation with hepatic inflammation biomarkers. The results suggest that GRg1 administration might be a promising strategy for protection of alcohol-induced liver damage.
Collapse
|
33
|
New Therapeutic Approaches to and Mechanisms of Ginsenoside Rg1 against Neurological Diseases. Cells 2022; 11:cells11162529. [PMID: 36010610 PMCID: PMC9406801 DOI: 10.3390/cells11162529] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), stroke, cerebral infarction, ischemia-reperfusion injury, depression and, stress, have high incidence and morbidity and often lead to disability. However, there is no particularly effective medication against them. Therefore, finding drugs with a suitable efficacy, low toxicity and manageable effects to improve the quality of life of patients is an urgent problem. Ginsenoside Rg1 (Rg1) is the main active component of ginseng and has a variety of pharmacological effects. In this review, we focused on the therapeutic potential of Rg1 for improving neurological diseases. We introduce the mechanisms of Ginsenoside Rg1 in neurological diseases, including apoptosis, neuroinflammation, the microRNA (miRNA) family, the mitogen-activated protein kinase (MAPK) family, oxidative stress, nuclear factor-κB (NF-κB), and learning and memory of Rg1 in neurological diseases. In addition, Rg1 can also improve neurological diseases through the interaction of different signal pathways. The purpose of this review is to explore more in-depth ideas for the clinical treatment of neurological diseases (including PD, AD, HD, stroke, cerebral infarction, ischemia–reperfusion injury, depression, and stress). Therefore, Rg1 is expected to become a new therapeutic method for the clinical treatment of neurological diseases.
Collapse
|
34
|
Liu D, Wang J, Chang L, Zhu Q, Jiang N, Azhar M, Zeng G. Effect of Qingyangshen glycosides on social defeat mice model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115253. [PMID: 35390471 DOI: 10.1016/j.jep.2022.115253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingyangshen (Cynanchum otophyllum C.K.Schneid.PI.Wilson.) is the folk medicine of Yunnan which is renowned for its use in the management of neuropsychiatric diseases. The isolated glycosides from Qingyangshen have demonstrated relief in the social defeat stress, however, mechanism of action has not yet been elucidated. AIM OF THE STUDY This study is aimed to elucidate the effect of Qingyangshen glycosides (QYS) on chronic social defeat stress (CSDS)-induced depression-like symptoms and the related mechanism. MATERIALS AND METHODS In mice, CSDS model was developed, and the effect of QYS was evaluated by observing the behavioral performance of these mice exposed to tasks related to depression-like activities. Moreover, microscopic pathological examinutesation was also done. Furthermore, the protein expressions related to social defeat stress were also determined to elucidate the possible underlying mechanism. RESULTS Our results indicated that QYS treatment reversed the CSDS-induced depressive-like behaviors as measured by the increased sucrose preference, open field activity, and social interactions among mice. The reversal of the morphological changes in the hippocampus of the CSDS mice was also noted. Additionally, QYS treatment also upregulated the silent mating type information regulation 2 homolog 1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), fibronectin III domain containing protein 5 (FNDC5), brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), and mitogen-activated protein kinase (MAPK) proteins. CONCLUSIONS Our study indicated that QYS had a good anti-social defeat stress effect on CSDS-induced depression in mice, mainly through SIRT1/PGC-1α/FNDC5/BDNF-TrkB signaling pathway activation.
Collapse
Affiliation(s)
- Dingding Liu
- College of Pharmacy & Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jingru Wang
- College of Pharmacy & Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lulu Chang
- College of Pharmacy & Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qiang Zhu
- College of Pharmacy & Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Mudassar Azhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research International Center for Chemical and Biological Sciences University of Karachi, Karachi, 75270, Pakistan
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, 410331, China.
| |
Collapse
|
35
|
Tang Y, Wang H, Nie K, Gao Y, Su H, Wang Z, Lu F, Huang W, Dong H. Traditional herbal formula Jiao-tai-wan improves chronic restrain stress-induced depression-like behaviors in mice. Biomed Pharmacother 2022; 153:113284. [PMID: 35717786 DOI: 10.1016/j.biopha.2022.113284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Jiao-tai-wan (JTW) has been often used to treat insomnia and diabetes mellitus. Recent studies found its antidepressant activity, but the related mechanism is not clear. This study is to evaluate the therapeutic effects of JTW on chronic restraint stress (CRS)-induced depression mice and explore the potential mechanisms. METHODS CRS was used to set up a depression model. Mice in different groups were treated with 0.9 % saline, JTW and fluoxetine. After the last day of CRS, the behavioral tests were conducted. The levels of neurotransmitters, inflammatory cytokines and HPA axis index were detected and the protein expressions of NLRP3 inflammasome complex were determined. H&E, NISSL, TUNEL and immunofluorescence staining were used to observe histopathological changes and the activation of microglia and astrocytes. The potential mechanisms were explored via network pharmacology and verified by Western blot. RESULTS The assessment of liver and kidney function showed that JTW was non-toxic. Behavioral tests proved that JTW can effectively ameliorate depression-like symptoms in CRS mice, which may be related to the inhibition of NLRP3 inflammasome activation. JTW can also improve the inflammatory state and HPA axis hyperactivity in mice, and has a protective effect on CRS-induced hippocampal neurons damage. The network pharmacology analysis and the results of Western blot suggested that the antidepressant effects of JTW may be related to the MAPK signaling pathway. CONCLUSION Our findings indicated that JTW may exert antidepressant effects in CRS-induced mice by inhibiting NLRP3 inflammasome activation and improving inflammatory state, and MAPK signaling pathway may also be involved.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
36
|
Li Y, Guo Q, Huang J, Wang Z. Antidepressant Active Ingredients From Chinese Traditional Herb Panax Notoginseng: A Pharmacological Mechanism Review. Front Pharmacol 2022; 13:922337. [PMID: 35795547 PMCID: PMC9252462 DOI: 10.3389/fphar.2022.922337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is one of the most common mental illnesses in the world and is highly disabling, lethal, and seriously endangers social stability. The side effects of clinical drugs used to treat depression are obvious, and the onset time is longer. Therefore, there is a great demand for antidepressant drugs with better curative effects, fewer side effects, and shorter onset time. Panax notoginseng, a Chinese herbal medication, has been used to treat depression for thousands of years and shown to have a therapeutic effect on depression. This review surveyed PubMed’s most recent 20 years of research on Panax notoginseng’s use for treating depression. We mainly highlight animal model research and outlined the pathways influenced by medicines. We provide a narrative review of recent empirical evidence of the anti-depressive effects of Panax Notoginseng and novel ideas for developing innovative clinical antidepressants with fewer side effects.
Collapse
Affiliation(s)
- Yanwei Li
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingwan Guo
- Interdisciplinary Institute for Personalized Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Junqing Huang, ; Ziying Wang,
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Junqing Huang, ; Ziying Wang,
| |
Collapse
|
37
|
Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022; 19:132. [PMID: 35668399 PMCID: PMC9168645 DOI: 10.1186/s12974-022-02492-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder is a highly debilitating psychiatric disorder involving the dysfunction of different cell types in the brain. Microglia are the predominant resident immune cells in the brain and exhibit a critical role in depression. Recent studies have suggested that depression can be regarded as a microglial disease. Microglia regulate inflammation, synaptic plasticity, and the formation of neural networks, all of which affect depression. In this review, we highlighted the role of microglia in the pathology of depression. First, we described microglial activation in animal models and clinically depressed patients. Second, we emphasized the possible mechanisms by which microglia recognize depression-associated stress and regulate conditions. Third, we described how antidepressants (clinical medicines and natural products) affect microglial activation. Thus, this review aimed to objectively analyze the role of microglia in depression and focus on potential antidepressants. These data suggested that regulation of microglial actions might be a novel therapeutic strategy to counteract the adverse effects of devastating mental disorders.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Siyu Ren
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Mingxia Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
38
|
Yang Y, Wang L, Zhang C, Guo Y, Li J, Wu C, Jiao J, Zheng H. Ginsenoside Rg1 improves Alzheimer's disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSK-3β/β-catenin signaling pathway. Chem Biol Drug Des 2022; 99:884-896. [PMID: 35313087 DOI: 10.1111/cbdd.14041] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/11/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that can cause cognitive impairment. Ginsenoside Rg1 (Rg1) has a significant neuroprotective effect on animals with memory impairment. However, the mechanism of how Rg1 mediates the Wnt signaling pathway and improves cognitive function by regulating oxidative stress, apoptosis, and neuroinflammation is still unclear. In this study, the spatial memory ability of tree shrews was tested by Morris water maze, the expression levels of amyloid protein (Aβ1-42), ionized calcium-binding adapter molecule 1 (iba-1), nitrotyrosine (NT), and 8-hydroxyguanine (8-OHG) were detected by immunohistochemistry. Subsequently, the activity of catalase (CAT) and the glutathione peroxidase (GSH-Px) was, respectively, measured by the ammonium molybdate method and the 5,5'-dithiobis (2-nitrobenzoic acid). Furthermore, the malondialdehyde (MDA) concentration was determined by the thiobarbituric acid test. Finally, the expression levels of Beta-secretase (BACE1), superoxide dismutase (SOD), BCL2-Associated X (Bax), B-cell lymphoma-2 (Bcl-2), caspase-anti-apoptotic factor Cleaved-caspase-3 (Caspase-3), microtubule-associated proteins 2 (MAP2), Neuronal nuclear antigen (NeuN), as well as the phosphorylation of GSK-3β and β-catenin were detected by Western blot. This study implied that Rg1 reduced the phosphorylation of Tau protein, the deposition of Aβ1-42, and the expression of BACE1. It also showed that Rg1 increased the antioxidant activity of SOD, CAT, GPx, and instead reduced the oxidation products of NT, 8-OHG, and MDA, as wells as the inflammatory factor interleukin-1 and iba-1. It further showed that Rg1 increased the ratio of Bcl-2 to Bax and expression of neuronal markers MAP2 and NeuN, but instead reduced the expression of Caspase-3, GSK-3β, and β-catenin. In conclusion, by regulating the Wnt/GSK-3β/β-catenin signaling pathway, Rg1 of moderate and high dose could alleviate oxidative stress damage, improve neuroinflammation, protect neurons, finally improve the cognitive impairment of the AD tree shrew. This study provides theoretical basis for the Rg1 clinical application in AD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Limei Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Caijun Zhang
- Experiment Center of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yuqian Guo
- Affiliated Hospital of Medical Sergeant School, Army Medical University, Shijiazhuang, China
| | - Jintao Li
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Chao Wu
- Department of Pharmacy, Hefei Ion Medical Center, Hefei, China
| | - Jianlin Jiao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hong Zheng
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| |
Collapse
|
39
|
Jiang N, Zhang Y, Yao C, Huang H, Wang Q, Huang S, He Q, Liu X. Ginsenosides Rb1 Attenuates Chronic Social Defeat Stress-Induced Depressive Behavior via Regulation of SIRT1-NLRP3/Nrf2 Pathways. Front Nutr 2022; 9:868833. [PMID: 35634375 PMCID: PMC9133844 DOI: 10.3389/fnut.2022.868833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ginsenoside Rb1, a diol-type ginseng saponin, has various positive effects on the central nervous system. This study aimed to evaluate the antidepressant effects of Rb1 on chronic social defeat stress (CSDS) induced behavioral deficits and the exact neural cascades linked with inflammatory processes. The results of behavioral tests such as social interaction, tail suspension, and forced swimming revealed that oral treatment of Rb1 (35 and 70 mg/kg) alleviates depression-like behavior. Rb1 treatment increased antioxidant enzyme activity (SOD and CAT) and reduced lipid peroxidation (LPO) content in the hippocampus. Rb1 also suppressed the production of inflammatory cytokines (TNF-α, IL-18, and IL-1β) as well as microglial activation (Iba1) in response to CSDS. Moreover, Rb1 administration considerably reduced the protein expression of NLRP3 (inflammasome) and promoted the protein expressions of Nrf2, HO-1 and Sirtuin1(SIRT1) activation in the hippocampus. Our findings showed that Rb1 effectively restores the depressive-like behavior in CSDS-induced model mice, mediated in part by the normalization of oxidative stress levels. The suppression of neuroinflammation is mediated by the regulation of SIRT1-NLRP3/Nrf2 pathways. Our results asserted that the Rb1 is a novel therapeutic candidate for treating depression.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
- Affiliated TCM Hospital, School of Pharmacy, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Shuangxue Huang
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
| | - Qinghu He
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Hunan University of Chinese Medicine, College of Traditional Chinese Medicine, Changsha, China
- *Correspondence: Xinmin Liu
| |
Collapse
|
40
|
Wu Q, Duan WZ, Chen JB, Zhao XP, Li XJ, Liu YY, Ma QY, Xue Z, Chen JX. Extracellular Vesicles: Emerging Roles in Developing Therapeutic Approach and Delivery Tool of Chinese Herbal Medicine for the Treatment of Depressive Disorder. Front Pharmacol 2022; 13:843412. [PMID: 35401216 PMCID: PMC8988068 DOI: 10.3389/fphar.2022.843412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 01/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells, which play an essential role in intercellular communication by delivering cellular components including DNA, RNA, lipids, metabolites, cytoplasm, and cell surface proteins into recipient cells. EVs play a vital role in the pathogenesis of depression by transporting miRNA and effector molecules such as BDNF, IL34. Considering that some herbal therapies exhibit antidepressant effects, EVs might be a practical delivery approach for herbal medicine. Since EVs can cross the blood-brain barrier (BBB), one of the advantages of EV-mediated herbal drug delivery for treating depression with Chinese herbal medicine (CHM) is that EVs can transfer herbal medicine into the brain cells. This review focuses on discussing the roles of EVs in the pathophysiology of depression and outlines the emerging application of EVs in delivering CHM for the treatment of depression.
Collapse
Affiliation(s)
- Qian Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wen-Zhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Peng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
41
|
Lu Q, Li R, Yang Y, Zhang Y, Zhao Q, Li J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem 2022; 368:130610. [PMID: 34419798 DOI: 10.1016/j.foodchem.2021.130610] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/09/2023]
Abstract
Inflammation occurs when the immune system responses to external harmful stimuli and infection. Chronic inflammation induces various diseases. A variety of foods are prescribed in the traditional medicines of many countries all over the world, which gave birth to the concept of medicine food homology. Over the past few decades, a number of secondary metabolites from medicine food homology plants have been demonstrated to have anti-inflammatory effects. In the present review, the effects and mechanisms of the medicine food homology plants-derived active components on relieving inflammation and inflammation-mediated diseases were summarized and discussed. The information provided in this review is valuable to future studies on anti-inflammatory ingredients derived from medicine food homology plants as drugs or food supplements.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yujin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jian Li
- School of Medicine, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
42
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
43
|
Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177:106099. [DOI: 10.1016/j.phrs.2022.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/15/2022]
|
44
|
Yang XD, Chen Z, Ye L, Chen J, Yang YY. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF- κB p65 pathway. PHARMACEUTICAL BIOLOGY 2021; 59:922-932. [PMID: 34243681 PMCID: PMC8274538 DOI: 10.1080/13880209.2021.1945112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Esculin, an active coumarin compound, has been demonstrated to exert anti-inflammatory effects. However, its potential role in non-alcoholic steatohepatitis (NASH) remains unclear. OBJECTIVE This study explored the hepatoprotective effect and the molecular mechanism of esculin in methionine choline-deficient (MCD) diet-induced NASH. MATERIALS AND METHODS Fifty C57BL/6J mice were divided into five groups: control, model, low dosage esculin (oral, 20 mg/kg), high dosage esculin (oral, 40 mg/kg), and silybin (oral, 105 mg/kg). All animals were fed a MCD diet, except those in the control group (control diet), for 6 weeks. RESULTS Esculin (20 and 40 mg/kg) inhibited MCD diet-induced hepatic lipid content (triglyceride: 16.95 ± 0.67 and 14.85 ± 0.78 vs. 21.21 ± 1.13 mg/g; total cholesterol: 5.10 ± 0.34 and 4.08 ± 0.47 vs. 7.31 ± 0.58 mg/g), fibrosis, and inflammation (ALT: 379.61 ± 40.30 and 312.72 ± 21.45 vs. 559.51 ± 37.01 U/L; AST: 428.22 ± 34.29 and 328.23 ± 23.21 vs. 579.36 ± 31.93 U/L). In vitro, esculin reduced tumour necrosis factor-α, interleukin-6, fibronectin, and collagen 4A1 levels, but had no effect on lipid levels in HepG2 cells induced by free fatty acid. Esculin increased Sirt1 expression levels and decreased NF-κB acetylation levels in vivo and in vitro. Interfering with Sirt1 expression attenuated the beneficial effect of esculin on inflammatory and fibrotic factor production in HepG2 cells. CONCLUSIONS These findings demonstrate that esculin ameliorates MCD diet-induced NASH by regulating the Sirt1/ac-NF-κB signalling pathway. Esculin could thus be employed as a therapy for NASH.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Geriatrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling Ye
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Arafa ESA, Refaey MS, Abd El-Ghafar OAM, Hassanein EHM, Sayed AM. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition. Heliyon 2021; 7:e08354. [PMID: 34825082 PMCID: PMC8605069 DOI: 10.1016/j.heliyon.2021.e08354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
The p38 mitogen-activated protein kinases (p38 MAPK) is a 38kD polypeptide recognized as the target for many potential anti-inflammatory agents. Accumulating evidence indicates that p38 MAPK could perform many roles in human disease pathophysiology. Therefore, great therapeutic benefits can be attained from p38 MAPK inhibitors. Ginseng is an exceptionally valued medicinal plant of the family Araliaceae (Panax genus). Recently, several studies targeted the therapeutic effects of purified individual ginsenoside, the most significant active ingredient of ginseng, and studied its particular molecular mechanism(s) of action rather than whole-plant extracts. Interestingly, several ginsenosides: ginsenosides compound K, F1, Rb1, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, Rg5, Rh1, Rh2, Ro, notoginsenoside R1, and protopanaxadiol have shown to possess great therapeutic potentials mediated by their ability to downregulate p38 MAPK signaling in different cell lines and experimental animal models. Our review compiles the research findings of various ginsenosides as potent anti-inflammatory agents, highlighting the crucial role of p38 MAPK suppression in their pharmacological actions. In addition, in silico studies were conducted to explore the probable binding of these ginsenosides to p38 MAPK. The results obtained proposed p38 MAPK involvement in the beneficial pharmacological activities of ginsenosides in different ailments. p38 MAPK plays many roles in human disease pathophysiology. Therefore, great therapeutic benefits can be attained from p38 MAPK inhibitors. Several ginsenosides showed to possess great therapeutic potentials mediated by its ability to downregulate p38 MAPK signaling. in silico studies were conducted to explore the binding of these ginsenosides to p38 MAPK and evidenced the promising their inhibitory effect.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates.,Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufiya, 32958, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
46
|
Chai X, Li X, Zhang W, Tan X, Wang H, Yang Z. Legumain knockout improved cognitive impairment via reducing neuroinflammation in right unilateral common carotid artery occlusion mice. Life Sci 2021; 285:119944. [PMID: 34509465 DOI: 10.1016/j.lfs.2021.119944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022]
Abstract
AIMS Chronic cerebral hypoperfusion (CCH) is a state of chronic cerebral blood flow reduction, and it is the main cause of cognitive impairment and neurodegenerative diseases. The abnormal upregulation of legumain, a lysosomal cysteine protease, trigger synaptic plasticity impairment and neuroinflammation, which are involved in the underlying pathophysiology of CCH. At present, few studies have reported the role of legumain in cognitive impairment caused by CCH. In our study, we aimed to investigate the involvement of legumain knockout in cognitive function and neuroinflammation in a CCH mouse model. MAIN METHODS In this study, right unilateral common carotid artery occlusion (rUCCAO) was used to simulate the pathological state of cerebral ischemic injury. Various behavioural tests were executed to assess cognitive performance. In vivo electrophysiological recordings were used to measure synaptic functions. Western blotting, Golgi staining, haematoxylin/eosin staining, and immunofluorescence assays were conducted to examine pathological changes and molecular mechanisms. KEY FINDINGS The data showed that the level of legumain was significantly increased in the hippocampus of mice subjected to rUCCAO. Legumain knockout significantly improved cognitive function and synaptic plasticity induced by rUCCAO, suggesting that legumain knockout-regulation effectively protected against CCH-induced behavioural dysfunctions. Moreover, legumain knockout suppressed rUCCAO-induced microglial activation, reduced the abnormal expression of inflammatory cytokines and the inflammasome complex, and impeded the activation of P65 and pyroptosis. SIGNIFICANCE These findings suggest that legumain is an effective regulator of CCH, and may be an ideal target for the development of cerebral ischemia treatments in the future.
Collapse
Affiliation(s)
- Xueqing Chai
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaolin Li
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Wenxin Zhang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
47
|
Song Y, Wu Z, Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev Neurosci 2021; 33:427-438. [PMID: 34757706 DOI: 10.1515/revneuro-2021-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022]
Abstract
Sirt1, a member of the sirtuins family, is a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase. It can be involved in the regulation of several processes including inflammatory response, apoptosis, oxidative stress, energy metabolism, and autophagy by exerting deacetylation. Nuclear factor-κB (NF-κB), a crucial nuclear transcription factor with specific DNA binding sequences, exists in almost all cells and plays a vital role in several biological processes involving inflammatory response, immune response, and apoptosis. As the hub of multiple intracellular signaling pathways, the activity of NF-κB is regulated by multiple factors. Sirt1 can both directly deacetylate NF-κB and indirectly through other molecules to inhibit its activity. We would like to emphasize that Sirt1/NF-κB is a signaling pathway that is closely related to neuroinflammation. Many recent studies have demonstrated the neuroprotective effects of Sirt1/NF-κB signaling pathway activation applied to the treatment of neurological related diseases. In this review, we focus on new advances in the neuroprotective effects of the Sirt1/NF-κB pathway. First, we briefly review Sirt1 and NF-κB, two key molecules of cellular metabolism. Next, we discuss the connection between NF-κB and neuroinflammation. In addition, we explore how Sirt1 regulates NF-κB in nerve cells and relevant evidence. Finally, we analyze the therapeutic effects of the Sirt1/NF-κB pathway in several common neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
48
|
Jiang N, Huang H, Zhang Y, Lv J, Wang Q, He Q, Liu X. Ginsenoside Rb1 Produces Antidepressant-Like Effects in a Chronic Social Defeat Stress Model of Depression Through the BDNF-Trkb Signaling Pathway. Front Pharmacol 2021; 12:680903. [PMID: 34658847 PMCID: PMC8511306 DOI: 10.3389/fphar.2021.680903] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Ginsenoside Rb1 (Rb1), an important bioactive ingredient of Panax ginseng, has potent neuroprotective effects. The objective of the study is to elucidate the impact of Rb1 treatment on chronic social defeat stress (CSDS)–induced depressive-like behaviors and its related mechanism. According to the obtained results, the daily oral administration of Rb1 (35 and 70 mg/kg) and imipramine (15 mg/kg) for 28 days significantly reversed the social avoidance behavior, anhedonia, and behavioral despair via CSDS exposure, as demonstrated by the considerable elevation in the time in the zone in the social interaction test, consumption of sucrose solution in the sucrose preference test, and decrease in immobility time in the forced swim test. Moreover, Rb1 obviously restored the CSDS-induced decrease in the BDNF signaling pathway and hippocampal neurogenesis. Rb1 significantly increased the hippocampal levels of ERK, AKT, and CREB phosphorylation and increased the number of DCX+ cells in DG. Importantly, the antidepressant effects of Rb1 were completely blocked in mice by using K252a (the nonselective tyrosine kinase B inhibitor). In conclusion, our results indicated that Rb1 exerts promising antidepressant-like effects in mice with CSDS-induced depression, and its effects were facilitated by enhancing the BDNF signaling cascade and upregulation of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China.,Affiliated TCM Hospital/School of Pharmacy/Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Qinghu He
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
49
|
Montagud-Romero S, Miñarro J, Rodríguez-Arias M. Unravelling the Neuroinflammatory Mechanisms Underlying the Effects of Social Defeat Stress on Use of Drugs of Abuse. Curr Top Behav Neurosci 2021; 54:153-180. [PMID: 34628585 DOI: 10.1007/7854_2021_260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The immune system provides the first line of the organism's defenses, working to maintain homeostasis against external threats and respond also to internal danger signals. There is much evidence to suggest that modifications of inflammatory parameters are related to vulnerability to develop mental illnesses, such as depression, autism, schizophrenia, and substance use disorders. In addition, not only are inflammatory parameters related to these disorders, but stress also induces the activation of the immune system, as recent preclinical research demonstrates. Social stress activates the immune response in the central nervous system through a number of mechanisms; for example, by promoting microglial stimulation, modifying peripheral and brain cytokine levels, and altering the blood brain barrier, which allows monocytes to traffic into the brain. In this chapter, we will first deal with the most important short- and long-term consequences of social defeat (SD) stress on the neuroinflammatory response. SD experiences (brief episodes of social confrontations during adolescence and adulthood) induce functional modifications in the brain, which are accompanied by an increase in proinflammatory markers. Most importantly, inflammatory mechanisms play a significant role in mediating the process of adaptation in the face of adversity (resilience vs susceptibility), allowing us to understand individual differences in stress responses. Secondly, we will address the role of the immune system in the vulnerability and enhanced sensitivity to drugs of abuse after social stress. We will explore in depth the effects seen in the inflammatory system in response to social stress and how they enhance the rewarding effects of drugs such as alcohol or cocaine. To conclude, we will consider pharmacological and environmental interventions that seek to influence the inflammatory response to social stress and diminish increased drug intake, as well as the translational potential and future directions of this exciting new field of research.
Collapse
Affiliation(s)
- S Montagud-Romero
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain. .,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
50
|
Yuan C, Yao Y, Liu T, Jin Y, Yang C, Loh XJ, Li Z. Research Progress on Natural Compounds Exerting an Antidepressant Effect through Anti-inflammatory. Curr Med Chem 2021; 29:934-956. [PMID: 34420503 DOI: 10.2174/0929867328666210820115259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Depression is a common mental illness that belongs to the category of emotional disorders that causes serious damage to the health and life of patients, while inflammation is considered to be one of the important factors that causes depression. In this case, it might be important to explore the possible therapeutic approach by using natural compounds exerting an anti-inflammatory and antidepressant effect, which it filed has not been systematically reviewed recently. Hence, this review aims to systematically sort the literature related to the mechanism of exerting an antidepressant effect through anti-inflammatory actions, and to summarize the related natural products in the past 20 years, in terms of a number of inflammatory related pathways (i.e., the protein kinase B (Akt) pathway, monoamine neurotransmitters (5-hydroxytryptamine and norepinephrine) (5-HT and NE), the nod-like receptor protein-3 (NLRP3) inflammasome, proinflammatory cytokines, neurotrophins, or cytokine-signaling pathways), which might provide a useful reference for the potential treatment of depression.
Collapse
Affiliation(s)
- Caixia Yuan
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102. China
| | - Yucen Yao
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang, 154007. China
| | - Tao Liu
- College Pharmacy, Harbin University of commerce, 1Xuehai Street, Harbin, Heilongjiang, 150028. China
| | - Ying Jin
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003. China
| | - Chunrong Yang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang, 154007, China. China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634. Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634. Singapore
| |
Collapse
|