1
|
Ma X, Mei S, He Y, Wuyun Q, Zhou L, Cai Z, Luo Q, Wen Y, Yan J. Unraveling the association and regulatory role of miR-146b-5p in coronary artery disease. BMC Cardiovasc Disord 2025; 25:81. [PMID: 39910430 PMCID: PMC11796014 DOI: 10.1186/s12872-025-04530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Coronary artery disease (CAD), one of the most prevalent cardiovascular diseases, is a critical health issue that affects millions of individuals worldwide. It has been reported that miR-146b-5p exhibited a strong correlation with inflammatory responses and atherosclerosis. However, its association with the incidence and severity of CAD has not been substantiated in a large cohort. In the study, we focus on the expression of miR-146b-5p in peripheral blood mononuclear cells (PBMCs) of patients with CAD and preliminarily investigate its function and underlying mechanism. METHODS AND RESULTS The study encompassed a total of 452 participants, consisting 295 patients with CAD and 157 individuals without CAD. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to assess miR-146b-5p expression in PBMCs. We found that miR-146b-5p was significantly increased in PBMCs of patients with CAD compared with the control group. Binary logistic regression revealed that miR-146b-5p was associated with CAD. Receiver Operation Characteristic (ROC) analysis showed that the sensitivity and specificity of miR-146b-5p in discriminating CAD patients from non-CAD patients were meaningful. Subsequent subgroup analysis showed that miR-146b-5p was related to the severity of CAD. Furthermore, gain- and loss-of-function experiments in THP-1 cells showed that miR-146b-5p inhibited inflammation, cell proliferation, and migration. Mechanically, miR-146b-5p was involved in the classical NF-κB inflammatory pathway by directly targeting IKKβ. CONCLUSION Our study revealed that miR-146b-5p was higher in the PBMCs of CAD patients than non-CAD individuals, and established a correlation between miR-146b-5p and occurrence and severity of CAD. In addition, the inflammatory role of miR-146b-5p is mediated by targeting IKKβ.
Collapse
Affiliation(s)
- Xiaozhu Ma
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Shuai Mei
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yi He
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qidamugai Wuyun
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Li Zhou
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ziyang Cai
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qiushi Luo
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yi Wen
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiangtao Yan
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| |
Collapse
|
2
|
Lu C, Han M, Ma Q, Ying L, Zhang Y. Identification of biomarkers associated with coronary artery disease and non-alcoholic fatty liver disease by bioinformatics analysis and machine learning. Sci Rep 2025; 15:3557. [PMID: 39875572 PMCID: PMC11775188 DOI: 10.1038/s41598-025-87923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
The constantly emerging evidence indicates a close association between coronary artery disease (CAD) and non-alcoholic fatty liver disease (NAFLD). However, the exact mechanisms underlying their mutual relationship remain undefined. This study aims to explore the common signature genes, potential mechanisms, diagnostic markers, and therapeutic targets for CAD and NAFLD. We downloaded CAD and NAFLD datasets from the Gene Expression Omnibus (GEO) database and analyzed the differentially expressed genes (DEGs) by limma. Protein-protein interaction (PPI) network was constructed with common DEGs (co-DEGs), and hub genes were screened by Maximal Clique Centrality (MCC) algorithm. Candidate biomarkers were selected from intersection of three machine learning algorithms. Expression levels, nomogram, the areas under the receiver operating characteristic curve (AUC) of candidate biomarkers were performed. CIBERSORT algorithm was used to assess the immune cell infiltration, and Spearman's correlations tests were used for calculating the correlation of biomarker genes. A total of 554 overlapping DEGs associated with CAD and NAFLD were obtained by analysis of GSE113079 and GSE89632 datasets. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the co-DEGs were significantly enriched in immune effector process, inflammation response and lipid metabolism. The PPI network generated a 1245-edge network, and top 50 genes were selected using the MCC algorithm. The candidate biomarkers were screened from intersection of machine learning in GSE89632, including CEBPA, CXCL2, JUN and FOXO1. The ROC results showed that these four biomarker genes have good diagnostic value for patients with both CAD and NAFLD. Then we explored the immune landscape, immune infiltration and the correlation between biomarker gene expression in CAD and NAFLD samples. In this study, we predict that CEBPA, CXCL2, JUN and FOXO1 can be used to diagnose CAD and NAFLD. Our study provided new insights for potential biomarkers, molecular mechanism and therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Chuan Lu
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, 116021, China
| | - Mei Han
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116021, China
| | - Qiqi Ma
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116021, China
| | - Li Ying
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116021, China.
| | - Yue Zhang
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
3
|
Wojciechowska M, Nizio M, Wróbel K, Momot K, Czarzasta K, Flis K, Zarębiński M. Predictive Value of Selected Plasma Biomarkers in the Assessment of the Occurrence and Severity of Coronary Artery Disease. Int J Mol Sci 2025; 26:537. [PMID: 39859253 PMCID: PMC11765375 DOI: 10.3390/ijms26020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Despite significant advances in imaging modalities for diagnosing coronary artery disease (CAD), there remains a need for novel diagnostic approaches with high predictive values and fewer limitations. Circulating biomarkers, including cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8), cell adhesion molecules such as soluble vascular cell adhesion molecule-1 (sVCAM-1), peptides secreted by endothelial cells such as endothelin-1 (ET-1), and enzymes involved in extracellular matrix remodeling such as a disintegrin and metalloproteinase with thrombospondin motifs-1 (ADAMTS-1) offer a promising alternative. This study aimed to evaluate the correlation between the plasma levels of selected biomarkers and the presence and severity of CAD. We enrolled 40 patients admitted for elective coronary angiography. CAD was defined as having at least one coronary artery stenosis ≥ 50%. The severity of CAD was assessed using the Gensini Score (GS). IL-8 levels were significantly higher in the CAD group, with a mean of 9.78 (SD 0.46) compared to 8.37 (SD 0.40) in the non-CAD group (p = 0.0228). No significant differences were observed for the other biomarkers between the groups. A positive Spearman correlation was found between IL-8 levels and the GS (ρ = 0.39, p = 0.017). These findings suggest that IL-8 may have potential as an additional tool for diagnosing or excluding atherosclerosis. Further studies with larger sample sizes are needed to validate its clinical utility.
Collapse
Affiliation(s)
- Małgorzata Wojciechowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.W.); (M.N.); (K.W.); (K.M.); (K.C.)
| | - Michał Nizio
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.W.); (M.N.); (K.W.); (K.M.); (K.C.)
| | - Katarzyna Wróbel
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.W.); (M.N.); (K.W.); (K.M.); (K.C.)
| | - Karol Momot
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.W.); (M.N.); (K.W.); (K.M.); (K.C.)
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.W.); (M.N.); (K.W.); (K.M.); (K.C.)
| | - Krzysztof Flis
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, 05-825 Grodzisk Mazowiecki, Poland;
| | - Maciej Zarębiński
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, 05-825 Grodzisk Mazowiecki, Poland;
| |
Collapse
|
4
|
Sheikh MSA, Salma U. Impact of microRNAs on cardiovascular diseases and aging. J Int Med Res 2024; 52:3000605241279190. [PMID: 39370977 PMCID: PMC11459564 DOI: 10.1177/03000605241279190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality for both men and women among all ethnicities worldwide. Although significant improvements in the management of CVD occurred in the 20th century, non-invasive, universal, early diagnostic biomarkers and newer therapeutic drugs are needed for clinical treatment by physicians. MicroRNAs (miRNAs) are a class of endogenous, non-coding, single-stranded, small RNA molecules that are critically controlled by all human biological processes. Moreover, dysregulated miRNA expression is directly involved in various CVDs, including stable coronary artery disease and acute coronary syndrome. Several miRNAs that are enriched in the plasma of CVD patients have potential as clinical biomarkers, and overexpression or inhibition of specific miRNAs has novel therapeutic significance in the management of CVD. Aging is a multifactorial physiological process that gradually deteriorates tissue and organ function and is considered a non-modifiable major risk factor for CVDs. Recently, several studies established that various miRNAs essentially regulate aging and aging-related disease processes. This narrative review briefly discusses the recently updated molecular involvement of miRNAs in CVDs, their possible diagnostic, prognostic, and therapeutic value, and their relationship to the aging process.
Collapse
Affiliation(s)
- Md Sayed Ali Sheikh
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Umme Salma
- Department of Gynecology and Obstetrics, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Zhou J, Wei C, Li G, He W, Song M, Liu X, Feng J, Liu J. The involvement of circulating miR-146a and miR-27a in patients with atherosclerotic cardiovascular disease after SARS-CoV-2 infection. Clin Cardiol 2024; 47:e24274. [PMID: 38884329 PMCID: PMC11181128 DOI: 10.1002/clc.24274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) is a group of clinical diseases based on pathology of atherosclerosis that is the leading cause of mortality worldwide. There is a bidirectional interaction between ASCVD and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Alterations in circulating miRNAs levels are involved in the development of ASCVD in patients infected with SARS-CoV-2, however, the correlation between ASCVD co-infection with SARS-CoV-2 and alterations of cardiac-specific miRNAs is not well understood. HYPOTHESIS The circulating miR-146a and miR-27a are involved in bidirectional interactions between ASCVD and SARS-CoV-2 infections. METHODS Circulating miR-146a and miR-27a levels were measured in serum and PBMCs deriving from ASCVD patients and controls after SARS-CoV-2 infection by qRT-PCR analysis. The levels of neutralizing antibodies-resistant SARS-CoV-2 in human serum was determined by competitive magnetic particle chemiluminescence method. Interleukin (IL)-6 levels were detected by automatic biochemical analyzer using electrochemiluminescence. RESULTS Significant downregulation of circulating miR-146a and upregulation of miR-27a in ASCVD patients after infection with SARS-CoV-2 compared with controls were observed, among which the alterations were more evident in ASCVD patients comorbid with hyperlipidemia and diabetes mellitus. Consistently, correlation analysis revealed that serum miR-146a and miR-27a levels were associated with the levels of lipids and glucose, inflammatory response, and immune function in ASCVD patients. Remarkably, SARS-CoV-2 S protein RBD stimulation of PBMCs derived from both ASCVD and controls significantly downregulated miR-146a, upregulated miR-27a expression levels, and promoted IL-6 release in vitro. CONCLUSIONS The circulating miR-146a and miR-27a are involved in metabolism, inflammation, and immune levels in patients with ASCVD after SARS-CoV-2 infection, laying the foundation for the development of strategies to prevent the risk of SARS-CoV-2 infection in ASCVD patients.
Collapse
Affiliation(s)
- Jiahong Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Chao Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Guangrong Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Wenwei He
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Miao Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical DiseasesMolecular Diagnosis of Clinical Diseases Key Laboratory of LuzhouLuzhouChina
| |
Collapse
|
6
|
Liu R, Zhong L, Wang C, Sun Y, Ru W, Dai W, Yang S, Zhong A, Xie X, Chen X, Li S. MiR-3646 accelerates inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis in hypertension model. Clin Exp Hypertens 2023; 45:2166948. [PMID: 36751048 DOI: 10.1080/10641963.2023.2166948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Inflammatory response of human vascular smooth muscle cells (hVSMCs) is a driving factor in hypertension progression. It has been reported that miR-3646 was significantly up-regulated in serum samples from patients with coronary artery disease and acute myocardial infarction mice. However, its role and underlying molecular mechanism related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs remain unclear. OBJECTIVE We aimed to explore the potential molecular mechanisms related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs. METHODS Ang II-induced hypertension model was established after hVSMCs treated with 1 μM Ang II at 24 h. The interaction between microRNA 3646 (miR-3646) and cytochrome P450 2J2 (CYP2J2) was assessed by dual-luciferase reporter gene assay. MTS assay, Lipid Peroxidation MDA Assay Kit, ELISA, Western blot, and qRT-PCR were performed to examine viability, malondialdehyde (MDA) level, inflammatory cytokine levels, and the level of genes and proteins. RESULTS Our findings illustrated that miR-3646 was up-regulated but CYP2J2 was down-regulated in Ang II-induced hVSMCs. Mechanically, miR-3646 negatively targeted to CYP2J2 in Ang II-induced hVSMCs. These findings indicated that miR-3646 regulated inflammatory response of Ang II-induced hVSMCs via targeting CYP2J2. Moreover, functional researches showed that CYP2J2 overexpression alleviated inflammatory response of Ang II-induced hVSMCs via epoxyeicosatrienoic acids/peroxisome proliferator-activated receptor-γ (EETs/PPARγ) axis, and miR-3646 aggravated inflammatory response of Ang II-induced hVSMCs via mediating CYP2J2/EETs axis. CONCLUSION MiR-3646 accelerated inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis. Our findings illustrated the specific molecular mechanism of miR-3646 regulating hypertension.
Collapse
Affiliation(s)
- Runzhi Liu
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Liying Zhong
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Cong Wang
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Yehai Sun
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Wunjuan Ru
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Wei Dai
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Shengnan Yang
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - Aimin Zhong
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| | - XiuMei Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - XiaoBin Chen
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Shundong Li
- Department of Geriatrics, The Third Hospital of Changsha City, Changsha, Hunan Province, P.R. China
| |
Collapse
|
7
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
8
|
Ibrahim HA, Zakaria SS, El-Batch MM, El-Shanshory MR, Alrayes ZR, Kabel AM, Eldardiry SA. The Value of SIRT1/FOXO1 Signaling Pathway in Early Detection of Cardiovascular Risk in Children with β-Thalassemia Major. Biomedicines 2022; 10:2601. [PMID: 36289866 PMCID: PMC9599077 DOI: 10.3390/biomedicines10102601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Atherosclerosis represents one of the major causes of morbidity in children with β-thalassemia major (β-TM). Aim: This study was designed to investigate SIRT1-FOXO1 signaling in β-TM children and their role in early detection of premature atherosclerosis. Methods: We equally subdivided 100 Egyptian children aged 6−14 years with β-TM according to carotid intima media thickness (CIMT) into 50 with CIMT < 0.5 mm and 50 with CIMT ≥ 0.5 mm, and 50 healthy children of matched age were included. They were subjected to evaluation of SIRT1, heat shock protein 72 (HSP72), and hepcidin levels via ELISA and forkhead box protein 1 (FOXO1) mRNA expression using real-time PCR in PBMCs; meanwhile, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase activities were evaluated spectrophotometrically. Results: Our results show significantly high values for CIMT, β-stiffness, atherogenic index of plasma (AIP), MDA, HSP72 and FOXO1, ferritin with significantly low hepcidin, SOD, catalase, and SIRT1 in β-TM as compared to controls with a more significant difference in β-TM with CIMT ≥ 0.5 mm than those with CIMT < 0.5 mm. A significant positive correlation between CIMT and MDA, HSP72, and FOXO1 gene expression was found, while a significant negative correlation with hepcidin, SOD, catalase, and SIRT1 was found. FOXO1 gene expression and HSP72 levels were the strongest independent determinants of CIMT. Conclusion: In β-TM, FOXO1 signaling is activated with low levels of SIRT1, and this is attributed to accelerated atherosclerosis in β-TM, which would be crucial in prediction of atherosclerosis.
Collapse
Affiliation(s)
- Hoda A. Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Soha S. Zakaria
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Medical Biochemistry Department, Imam Muhammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
| | - Manal M. El-Batch
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Zahrah R. Alrayes
- Department of Biology, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Samia A. Eldardiry
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
9
|
A Network Pharmacology Study to Explore the Underlying Mechanism of Safflower ( Carthamus tinctorius L.) in the Treatment of Coronary Heart Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3242015. [PMID: 35607519 PMCID: PMC9124127 DOI: 10.1155/2022/3242015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
Safflower has long been used to treat coronary heart disease (CHD). However, the underlying mechanism remains unclear. The goal of this study was to predict the therapeutic effect of safflower against CHD using a network pharmacology and to explore the underlying pharmacological mechanisms. Firstly, we obtained relative compounds of safflower based on the TCMSP database. The TCMSP and PubChem databases were used to predict targets of these active compounds. Then, we built CHD-related targets by the DisGeNET database. The protein-protein interaction (PPI) network graph of overlapping genes was obtained after supplying the common targets of safflower and CHD into the STRING database. The PPI network was then used to determine the top ten most significant hub genes. Furthermore, the DAVID database was utilized for the enrichment analysis on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). To validate these results, a cell model of CHD was established in EAhy926 cells using oxidized low-density lipoprotein (ox-LDL). Safflower was determined to have 189 active compounds. The TCMSP and PubChem databases were used to predict 573 targets of these active compounds. The DisGeNET database was used to identify 1576 genes involved in the progression of CHD. The top ten hub genes were ALB, IL6, IL1B, VEGFA, STAT3, MMP9, TLR4, CCL2, CXCL8, and IL10. GO functional enrichment analysis yielded 92 entries for biological process (BP), 47 entries for cellular component (CC), 31 entries for molecular function (MF), and 20 signaling pathways, which were obtained from KEGG pathway enrichment screening. Based on these findings, the FoxO signaling pathway is critical in the treatment of CHD by safflower. The in vitro results showed that safflower had an ameliorating effect on ox-LDL-induced apoptosis and mitochondrial membrane potential. The western blot results showed that safflower decreased Bax expression and acetylation of FoxO1 proteins while increasing the expression of Bcl-2 and SIRT1 proteins. Safflower can be used in multiple pathways during CHD treatment and can exert anti-apoptotic effects by regulating the expression of Bax, Bcl-2, and SIRT1/FoxO1 signaling pathway-related proteins.
Collapse
|
10
|
Radojičić O, Dobrijević Z, Robajac D, Gligorijević N, Mandić Marković V, Miković Ž, Nedić O. Gestational Diabetes is Associated with an Increased Expression of miR-27a in Peripheral Blood Mononuclear Cells. Mol Diagn Ther 2022; 26:421-435. [PMID: 35578107 DOI: 10.1007/s40291-022-00591-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dysregulation of microRNA-based mechanisms is associated with various human pathologies, including gestational diabetes mellitus (GDM), suggesting they may be potential diagnostic and/or prognostic biomarkers of GDM. METHODS The expression of miR-340-5p, miR-27a-3p and miR-222-3p in peripheral blood mononuclear cells (PBMCs) obtained from patients with GDM (n = 42) and healthy controls (n = 34) were evaluated, together with their correlation to the clinical parameters of participants and their newborns. Expression of the selected microRNAs was quantified by quantitative real-time polymerase chain reaction (qPCR), after reverse transcription with microRNA-specific stem-loop primers. RESULTS The expression of miR-27a-3p was significantly higher in patients with GDM than in controls (p = 0.036), whereas no significant difference between groups was found for the other two tested microRNAs. The expression level of miR-27a-3p in GDM patients was found to negatively correlate with the number of erythrocytes, concentration of haemoglobin, haematocrit, and low- and high-density lipoprotein (LDL/HDL) ratio, and positively with the concentration of glycated haemoglobin (HbA1c). In the case of miR-222-3p, a negative correlation between its expression and the concentration of cholesterol, LDL and LDL/HDL ratio was found only in healthy pregnant women. The expression level of miR-340-5p negatively correlated with erythrocyte count, haemoglobin concentration and haematocrit in GDM patients, as well as with the concentration of cholesterol, LDL and LDL/HDL ratio in healthy women. CONCLUSIONS The results obtained illustrate the potential of PBMC-derived microRNA miR-27a-3p to serve as a diagnostic biomarker of GDM. On the other hand, MiR-27a and miR-340 may help in assessing the metabolic status relevant for pregnancy.
Collapse
Affiliation(s)
- Ognjen Radojičić
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia.
| | - Dragana Robajac
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Nikola Gligorijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Vesna Mandić Marković
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Željko Miković
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Ma J, Liu J, Li T, Ren J. Hsa_circ_0030042 Facilitates the Proliferation and Migration of Vascular Smooth Muscle Cells via the miR-514a-3p/FOXO1 Axis. J Endovasc Ther 2022; 29:611-622. [PMID: 35382622 DOI: 10.1177/15266028211057086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Circular RNA (circRNA) has been proved to play a vital role in atherosclerosis (AS) progression, and vascular smooth muscle cells (VSMCs) are involved in the progression of AS. However, the in-depth mechanism by which circRNA regulates VSMC proliferation and migration remains to be elusive. METHODS We used tumor necrosis factor-alpha (TNF-α) to treat VSMCs to establish a cell model of AS. We used Cell Counting Kit-8, terminal-deoxynucleoitidyl transferase-mediated nick end labeling, and transwell assays to assess the proliferation, apoptosis, and migration in TNF-α-induced VSMCs. Moreover, the interaction between molecules was measured by RNA-binding protein immunoprecipitation, RNA pull-down, and luciferase reporter assays. RESULTS Our study found that a novel circRNA hsa_circ_0030042, which is derived from its host gene forkhead box O1 (FOXO1), was upregulated in TNF-α-induced VSMCs. Silencing of hsa_circ_0030042 inhibited proliferation and migration while promoting apoptosis in TNF-α-induced VSMCs. Mechanically, hsa_circ_0030042 positively regulated FOXO1 expression via sponging miR-514a-3p. CONCLUSIONS Our study stated the vital role of the hsa_circ_0030042/miR-514a-3p/FOXO1 axis and provides a profound understanding about the circRNA in AS.
Collapse
Affiliation(s)
- Ji Ma
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Liu C, Liu L, Gao J, Wang J, Liu Y. Identification of Two Long Non-Coding RNAs AC010082.1 and AC011443.1 as Biomarkers of Coronary Heart Disease Based on Logistic Stepwise Regression Prediction Model. Front Genet 2021; 12:780431. [PMID: 34868268 PMCID: PMC8637336 DOI: 10.3389/fgene.2021.780431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Coronary heart disease (CHD) is a global health concern with high morbidity and mortality rates. This study aimed to identify the possible long non-coding RNA (lncRNA) biomarkers of CHD. The lncRNA- and mRNA-related data of patients with CHD were downloaded from the Gene Expression Omnibus database (GSE113079). The limma package was used to identify differentially expressed lncRNAs and mRNAs (DElncRNAs and DEmRNAs, respectively). Then, miRcode, TargetScan, miRDB, and miRTarBase databases were used to form the competing endogenous RNA (ceRNA) network. Furthermore, SPSS Modeler 18.0 was used to construct a logistic stepwise regression prediction model for CHD diagnosis based on DElncRNAs. Of the microarray data, 70% was used as a training set and 30% as a test set. Moreover, a validation cohort including 30 patients with CHD and 30 healthy controls was used to verify the hub lncRNA expression through real-time reverse transcription-quantitative PCR (RT-qPCR). A total of 185 DElncRNAs (114 upregulated and 71 downregulated) and 382 DEmRNAs (162 upregulated and 220 downregulated) between CHD and healthy controls were identified from the microarray data. Furthermore, through bioinformatics prediction, a 38 lncRNA-21miRNA-40 mRNA ceRNA network was constructed. Next, by constructing a logistic stepwise regression prediction model for 38 DElncRNAs, we screened two hub lncRNAs AC010082.1 and AC011443.1 (p < 0.05). The sensitivity, specificity, and area under the curve were 98.41%, 100%, and 0.995, respectively, for the training set and 93.33%, 91.67%, and 0.983, respectively, for the test set. We further verified the significant upregulation of AC010082.1 (p < 0.01) and AC011443.1 (p < 0.05) in patients with CHD using RT-qPCR in the validation cohort. Our results suggest that lncRNA AC010082.1 and AC011443.1 are potential biomarkers of CHD. Their pathological mechanism in CHD requires further validation.
Collapse
Affiliation(s)
- Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Technology Laboratory of Cardiovascular Disease-Syndrome Combination, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Technology Laboratory of Cardiovascular Disease-Syndrome Combination, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
14
|
Sardu C, Trotta MC, Pieretti G, Gatta G, Ferraro G, Nicoletti GF, D' Onofrio N, Balestrieri ML, D' Amico M, Abbatecola A, Ferraraccio F, Panarese I, Paolisso G, Marfella R. MicroRNAs modulation and clinical outcomes at 1 year of follow-up in obese patients with pre-diabetes treated with metformin vs. placebo. Acta Diabetol 2021; 58:1381-1393. [PMID: 34009437 DOI: 10.1007/s00592-021-01743-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUNDS Obese pre-diabetics over express cytokines that influence myocardial function via microRNAs (miRs) expression. OBJECTIVES To evaluate inflammatory/oxidative stress, miRs' expression and cardiovascular function in obese pre-diabetics assigned to metformin therapy vs. placebo vs. normo-glycemics at 12 months of follow-up. MATERIALS AND METHODS Eighty-three obese patients after abdominoplastic surgery were divided in pre-diabetics (n 55), normo-glycemics (n 28), and assigned to hypocaloric diet. Pre-diabetics were assigned to metformin (n 23) or to placebo (n 22) plus hypocaloric diet. RESULTS Obese pre-diabetics in metformin vs. placebo, and obese pre-diabetics with placebo vs. normoglycemics, had significant differences about IMT, MPI, and LVM (p < 0.05). Obese pre-diabetics in metformin vs. placebo showed significant reduction in serum miR-195 and miR-27 (p < 0.05). Obese pre-diabetics in metformin vs. normoglycemics showed higher expression of serum miR-195 and miR-27 (p < 0.05). Finally, we found inverse relation between IMT and insulin, HOMA-IR, miR-195, miR-27; between LVEF and Insulin, HOMA-IR, miR-195 and miR-27. We found inverse correlation between LVM and sirtuin-1, Insulin, HOMA-IR, miR-195 and miR-27, and direct correlation with interleukin-6. MPI inversely linked to miR-195 and miR-27. CONCLUSIONS In obese pre-diabetics', metformin significantly reduces inflammation/oxidative stress, and miR-195 and miR-27, with reduction in LVM, IMT.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gorizio Pieretti
- Department of Plastic Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianluca Gatta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Ferraro
- Department of Plastic Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Nunzia D' Onofrio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Michele D' Amico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Abbatecola
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy
| | - Franca Ferraraccio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Iacopo Panarese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Raffaele Marfella
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
15
|
miRNA-27a Transcription Activated by c-Fos Regulates Myocardial Ischemia-Reperfusion Injury by Targeting ATAD3a. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2514947. [PMID: 34413925 PMCID: PMC8369174 DOI: 10.1155/2021/2514947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
MicroRNA-27a (miR-27a) has been implicated in myocardial ischemia-reperfusion injury (MIRI), but the underlying mechanism is not well understood. This study is aimed at determining the role of miR-27a in MIRI and at investigating upstream molecules that regulate miR-27a expression and its downstream target genes. miR-27a expression was significantly upregulated in myocardia exposed to ischemia/reperfusion (I/R) and cardiomyocytes exposed to hypoxia/reoxygenation (H/R). c-Fos could regulate miR-27a expression by binding to its promoter region. Moreover, overexpression of miR-27a led to a decrease in cell viability, an increase in LDH and CK-MB secretion, and an increase in apoptosis rates. In contrast, suppression of miR-27a expression resulted in the opposite effects. ATPase family AAA-domain-containing protein 3A (ATAD3a) was identified as a target of miR-27a. miR-27a regulated the translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and H/R-induced apoptosis via the regulation of ATAD3a. It was found that inhibiting miR-27a in vivo by injecting a miR-27a sponge could ameliorate MIRI in an isolated rat heart model. In conclusion, our study demonstrated that c-Fos functions as an upstream regulator of miR-27a and that miR-27a regulates the translocation of AIF from the mitochondria to the nucleus by targeting ATAD3a, thereby contributing to MIRI. These findings provide new insight into the role of the c-Fos/miR-27a/ATAD3a axis in MIRI.
Collapse
|
16
|
Rabajdova M, Spakova I, Zelko A, Rosenberger J, Kolarcik P, Sobolova V, Pella D, Marekova M, Madarasova Geckova A. The role of physical activity and miRNAs in the vascular aging and cardiac health of dialysis patients. Physiol Rep 2021; 9:e14879. [PMID: 34042291 PMCID: PMC8157788 DOI: 10.14814/phy2.14879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular comorbidities are independent risk factors for mortality in dialysis patients. MicroRNA signaling has an important role in vascular aging and cardiac health, while physical activity is a primary nonpharmacologic treatment for cardiovascular comorbidities in dialysis patients. To identify the relationships between muscle function, miRNA signaling pathways, the presence of vascular calcifications and the severity of cardiovascular comorbidities, we initially enrolled 90 subjects on hemodialysis therapy and collected complete data from 46 subjects. A group of 26 subjects inactiv group (INC) was monitored during 12 weeks of physical inactivity and another group of 20 patients exercise group (EXC) was followed during 12 weeks of intradialytic, moderate intensity, resistance training intervention applied three times per week. In both groups, we assessed the expression levels of myo‐miRNAs, proteins, and muscle function (MF) before and after the 12‐week period. Data on the presence of vascular calcifications and the severity of cardiac comorbidities were collected from the patients’ EuCliD® records. Using a full structural equitation modelling of the total study sample, we found that the higher the increase in MF was observed in patients, the higher the probability of a decrease in the expression of miR‐206 and TRIM63 and the lower severity of cardiac comorbidities. A reduced structural model in INC patients showed that the higher the decrease in MF, the higher the probability of the presence of calcifications and the higher severity of cardiac comorbidities. In EXC patients, we found that the higher the increase in MF, the lower the probability of higher severity of cardiovascular comorbidities.
Collapse
Affiliation(s)
- Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Ivana Spakova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Aurel Zelko
- Department of Health Psychology and Research Methodology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,Graduate School Kosice Institute for Society and Health, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Jaroslav Rosenberger
- Department of Health Psychology and Research Methodology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,Graduate School Kosice Institute for Society and Health, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,Fresenius Medical Care - Dialysis Services Kosice, Kosice, Slovakia.,Olomouc University Social Health Institute, Palacky University, Olomouc, Czech Republic
| | - Peter Kolarcik
- Department of Health Psychology and Research Methodology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Vladimira Sobolova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Daniel Pella
- 2nd Department of Cardiology, Faculty of Medicine, Pavol Jozef Safarik University and East Slovak Institute of Cardiovascular Diseases, Kosice, Slovakia
| | - Maria Marekova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Andrea Madarasova Geckova
- Department of Health Psychology and Research Methodology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.,Olomouc University Social Health Institute, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
17
|
Mohammad-Rezaei M, Ahmadi R, Rafiei A, Khaledifar A, Fattahi S, Samiei-Sefat A, Emami S, Bagheri N. Serum levels of IL-32 in patients with coronary artery disease and its relationship with the serum levels of IL-6 and TNF-α. Mol Biol Rep 2021; 48:4263-4271. [PMID: 34086163 DOI: 10.1007/s11033-021-06441-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
The coronary artery disease (CAD) is a chronic inflammatory disease caused by atherosclerosis, in which arteries become clogged due to plaque formation, fat accumulation, and various sorts of immune cells. IL-32 is a proinflammatory cytokine, which enhances inflammation through inducing the secretion of different inflammatory cytokines. The main objective of the current study was to assess the serum levels of IL-32 in subjects with obstructive CAD and its relationship with the serum levels of IL-6 and TNF-α. This study was performed on 42 subjects with obstructive CAD and 42 subjects with non-obstructive CAD. The serum levels of TNF-α, IL-6, and IL-32 were measured using the enzyme-linked immunosorbent assay (ELISA). The serum levels of TNF-α, IL-6, and IL-32 were 3.2, 3.48, and 2.7 times higher in obstructive CAD compared to non-obstructive CAD, respectively. Moreover, the serum levels of TNF-α and IL-32 in obstructive CAD with cardiac arterial stenosis in one major vessel were significantly higher than the levels in obstructive CAD with cardiac arterial stenosis in more than one major vessel. ROC curve analysis revealed that the serum levels of TNF-α, IL-6, and IL-32 were good predictors of obstructive CAD. Moreover, multiple logistic regression analyses suggested that the serum levels of TNF-α, IL-6, IL-32, LDL, and ox-LDL were independently related to the presence of obstructive CAD, while serum levels of HDL were not. TNF-α, IL-32, and IL-6 showed an increase in obstructive CAD, and the serum levels of these cytokines showed a satisfactory ability for predicting obstructive CAD.
Collapse
Affiliation(s)
- Mina Mohammad-Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Rafiei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arsalan Khaledifar
- Department of Cardiology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soheila Fattahi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azadeh Samiei-Sefat
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shohreh Emami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
18
|
Wu BW, Wu MS, Liu Y, Lu M, Guo JD, Meng YH, Zhou YH. SIRT1-mediated deacetylation of NF-κB inhibits the MLCK/MLC2 pathway and the expression of ET-1, thus alleviating the development of coronary artery spasm. Am J Physiol Heart Circ Physiol 2021; 320:H458-H468. [PMID: 33095054 DOI: 10.1152/ajpheart.00366.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Coronary artery spasm (CAS) is an intense vasoconstriction of coronary arteries that causes total or subtotal vessel occlusion. The cardioprotective effect of sirtuin-1 (SIRT1) has been extensively highlighted in coronary artery diseases. The aims within this study include the investigation of the molecular mechanism by which SIRT1 alleviates CAS. SIRT1 expression was first determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis in an endothelin-1 (ET-1)-induced rat CAS model. Interaction among SIRT1, nuclear factor-kappaB (NF-κB), myosin light chain kinase/myosin light chain-2 (MLCK/MLC2), and ET-1 was analyzed using luciferase reporter assay, RT-qPCR, and Western blot analysis. After ectopic expression and depletion experiments in vascular smooth muscle cells (VSMCs), contraction and proliferation of VSMCs and expression of contraction-related proteins (α-SMA, calponin, and SM22α) were measured by collagen gel contraction, 5-ethynyl-2'-deoxyuridine (EdU) assay, RT-qPCR, and Western blot analysis. The obtained results showed that SIRT1 expression was reduced in rat CAS models. However, overexpression of SIRT1 inhibited the contraction and proliferation of VSMCs in vitro. Mechanistic investigation indicated that SIRT1 inhibited NF-κB expression through deacetylation. Moreover, NF-κB could activate the MLCK/MLC2 pathway and upregulate ET-1 expression by binding to their promoter regions, thus inducing VSMC contraction and proliferation in vitro. In vivo experimental results also revealed that SIRT1 alleviated CAS through regulation of the NF-κB/MLCK/MLC2/ET-1 signaling axis. Collectively, our data suggested that SIRT1 could mediate the deacetylation of NF-κB, disrupt the MLCK/MLC2 pathway, and inhibit the expression of ET-1 to relieve CAS, providing a theoretical basis for the prospect of CAS treatment and prevention.NEW & NOTEWORTHY Rat coronary artery spasm models exhibit reduced expression of SIRT1. Overexpression of SIRT1 inhibits contraction and proliferation of VSMCs. SIRT1 inhibits NF-κB through deacetylation to modulate VSMC contraction and proliferation. NF-κB activates the MLCK/MLC2 pathway. NF-κB upregulates ET-1 to modulate VSMC contraction and proliferation.
Collapse
Affiliation(s)
- Bo-Wen Wu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Mi-Shan Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yu Liu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Meng Lu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Jin-Dong Guo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yun-Hui Meng
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Internal Medicine, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yu-Hui Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| |
Collapse
|
19
|
Yu W, Chen C, Cheng J. The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy. ESC Heart Fail 2020; 7:3497-3504. [PMID: 33089967 PMCID: PMC7755013 DOI: 10.1002/ehf2.13065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiac hypertrophy can lead to heart failure and cardiovascular events and has become a research hotspot in the field of cardiovascular disease. Despite extensive and in-depth research, the pathogenesis of cardiac hypertrophy is far from being fully understood. Increasing evidence has shown that the transcription factor forkhead box protein O 1 (FoxO1) is closely related to the occurrence and development of cardiac hypertrophy. This review summarizes the current literature on the role and molecular mechanism of FoxO1 in cardiac hypertrophy. We searched the database MEDLINE via PubMed for available evidence on the effect of FoxO1 on cardiac hypertrophy. FoxO1 has many effects on multiple diseases, including cardiovascular diseases, diabetes, cancer, aging, and stem cell activity. Recent studies have shown that FoxO1 plays a critical role in the development of cardiac hypertrophy. Evidence for this relationship includes the following. (i) FoxO1 can regulate cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy and (ii) is controlled by several upstream signalling molecules (e.g. phosphatidylinositol 3-kinase/Akt, AMP-activated protein kinase, and sirtuins) and regulates many downstream transcription proteins (e.g. ubiquitin ligases muscle RING finger 1/muscle atrophy F-box, calcineurin/nuclear factor of activated T cells, and microRNAs). In response to stress or external stimulation (e.g. low energy, oxidative stress, or growth factor signalling), FoxO1 undergoes post-translational modification and transfers from the cytoplasm to nucleus, thus regulating the expression of a series of target genes in myocardium that are involved in cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy. (iii) Finally, targeted regulation of FoxO1 is an effective method of intervening in myocardial hypertrophy. The information reviewed here should be significant for understanding the roles of FoxO1 in cardiac hypertrophy and should contribute to the design of further studies related to FoxO1 and the hypertrophic response. It should also shed light on a potential treatment for cardiac hypertrophy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| | - Chunjuan Chen
- Department of CardiologySecond Affiliated Hospital of Shantou University Medical College69 Dong Xia North RoadShantou515041China
| | - Jidong Cheng
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| |
Collapse
|