1
|
Qu L, Wang F, Wang Y, Li Z. The regulation of LRPs by miRNAs in cancer: influencing cancer characteristics and responses to treatment. Cancer Cell Int 2025; 25:182. [PMID: 40382654 PMCID: PMC12085831 DOI: 10.1186/s12935-025-03804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) family is a group of cell surface receptors that participate in a variety of biological processes, including lipid metabolism, Wnt signaling, and bone metabolism. miRNAs are small non-coding RNA molecules that regulate gene expression and play a role in many biological processes, including the occurrence and development of tumors. Accumulating evidence demonstrates that LRP members are modulated by miRNAs across multiple cancer types, influencing key oncogenic processes-including tumor cell proliferation, apoptosis suppression, extracellular matrix remodeling, cell adhesion, and angiogenesis. The LRPs, miRNAs, their upstream lncRNAs, and downstream signaling molecules often form complex signaling pathways to regulate the activity of tumor cells. However, the tissue-specific roles and mechanistic underpinnings of these pathways remain incompletely understood. When examining the emerging concept of the interaction between miRNAs and LRPs, we emphasize the significance of these complex regulatory layers in the initiation and progression of cancer. Collectively, these findings are critical for advancing our understanding of the role of the LRPs family in the occurrence and development of tumors, as well as for the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Lianyue Qu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Fan Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yuxiang Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zixuan Li
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
- Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
| |
Collapse
|
2
|
Patel B, Gaikwad S, Prasad S. Exploring the significance of extracellular vesicles: Key players in advancing cancer and possible theranostic tools. CANCER PATHOGENESIS AND THERAPY 2025; 3:109-119. [PMID: 40182121 PMCID: PMC11963151 DOI: 10.1016/j.cpt.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/05/2025]
Abstract
Metastasis remains a critical challenge in cancer treatment and the leading cause of cancer-related mortality. Ongoing research has demonstrated the key role of extracellular vesicles (EVs) in facilitating communication between distant organs. Cancer cells release a substantial number of EVs that carry distinct cargo molecules, including oncogenic proteins, DNA fragments, and various RNA species. Upon uptake, these cargo molecules profoundly influence the biology of both normal and cancerous cells. This review consolidates the understanding of how EVs promote tumorigenesis by regulating processes such as proliferation, migration, metastasis, angiogenesis, stemness, and immunity. The exploration of EVs as a non-invasive method for cancer detection holds great promise, given that different cancer types exhibit unique protein and RNA signatures that can serve as valuable biomarkers for early diagnosis. Furthermore, growing interest exists in the potential bioengineering EVs for use as prospective therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- Bhaumik Patel
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Jamali Z, Razipour M, Zargar M, Ghasemnejad-Berenji H, Akrami SM. Ovarian cancer extracellular vesicle biomarkers. Clin Chim Acta 2025; 565:120011. [PMID: 39437983 DOI: 10.1016/j.cca.2024.120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Ovarian cancer (OC) remains a significant women's health concern due to its high mortality rate and the challenges posed by late detection. Exploring novel biomarkers could lead to earlier, more specific diagnoses and improved survival rates for OC patients. This review focuses on biomarkers associated with extracellular vesicles (EVs) found in various proximal fluids, including urine, ascites, utero-tubal lavage fluid of OC patients. We highlight these proximal fluids as rich sources of potential biomarkers. The review explains the roles of EV biomarkers in ovarian cancer progression and discusses EV-related proteins and miRNAs as potential diagnostic or prognostic indicators and therapeutic targets. Finally, we highlighted the limitations of examining proximal fluids as sources of biomarkers and encourage researchers to proactively pursue innovative solutions to overcome these challenges.
Collapse
Affiliation(s)
- Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Zargar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Deuis JR, Klasfauseweh T, Walker L, Vetter I. The 'dispanins' and related proteins in physiology and neurological disease. Trends Neurosci 2024; 47:622-634. [PMID: 39025729 DOI: 10.1016/j.tins.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
The dispanins are a family of 15 transmembrane proteins that have diverse and often unclear physiological functions. Many dispanins, including synapse differentiation induced gene 1 (SynDIG1), proline-rich transmembrane protein 1 (PRRT1)/SynDIG4, and PRRT2, are expressed in the central nervous system (CNS), where they are involved in the development of synapses, regulation of neurotransmitter release, and interactions with ion channels, including AMPA receptors (AMPARs). Others, including transmembrane protein 233 (TMEM233) and trafficking regulator of GLUT4-1 (TRARG1), are expressed in the peripheral nervous system (PNS); however, the function of these dispanins is less clear. Recently, a family of neurotoxins isolated from the giant Australian stinging tree was shown to target TMEM233 to modulate the function of voltage-gated sodium (NaV) channels, suggesting that the dispanins are inherently druggable. Here, we review current knowledge about the structure and function of the dispanins, in particular TMEM233 and its two most closely related homologs PRRT2 and TRARG1, which may be drug targets involved in neurological disease.
Collapse
Affiliation(s)
- Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Tabea Klasfauseweh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lucinda Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
5
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
6
|
Guo Q, Zhou Y, Xie T, Yuan Y, Li H, Shi W, Zheng L, Li X, Zhang W. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis 2024; 11:101043. [PMID: 38292177 PMCID: PMC10825311 DOI: 10.1016/j.gendis.2023.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huilong Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wanjin Shi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
7
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
8
|
Zhong F, Wang Y. YY1-regulated lncRNA SOCS2-AS1 suppresses HCC cell stemness and progression via miR-454-3p/CPEB1. Biochem Biophys Res Commun 2023; 679:98-109. [PMID: 37677983 DOI: 10.1016/j.bbrc.2023.08.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cancer stem cells are one fundamental reason for the high recurrence rate of hepatocellular carcinoma (HCC) and its resistance to treatment. This study explored the mechanism by which SOCS2-AS1 affects HCC cell stemness. METHODS Stem cells of HCC cell lines Huh7 and SNU-398 were sorted as NANOG-positive by flow cytometry. Stem cell sphere formation ability was detected. Stem cell viability, migration, invasion, and apoptosis were assessed by colony formation assays, Transwell assays, wound-healing assays, and TUNEL assays, respectively. The binding sites for SOCS2-AS1, miR-454-3p, miR-454-3p, and CPEB1 mRNA were assessed by dual-luciferase reporter assays. Quantitative real-time PCR (qPCR) and Western blot studies were performed to evaluate gene expression levels. ChIP and EMSA assays were conducted to confirm that YY1 binds with the SOCS2-AS1 promoter. A subcutaneous xenograft model was used to verify results in vivo. Tumor tissues were analyzed by H&E and TUNEL staining. RESULTS SOCS2-AS1 was expressed at low levels in NANOG+ HCC stem cells, and HCC patients with a high level of SOCS2-AS1 expression had a higher survival rate. SOCS2-AS1 inhibited HCC cell stemness, migration, and invasion, and increased the cisplatin sensitivity of HCC cells by regulating miR-454-3p/CPEB1. YY1 was confirmed as a transcription factor of SOCS2-AS1, and served to inhibit SOCS2-AS1 transcription. YY1 knockdown suppressed HCC stemness via SOCS2-AS1. The role of SOCS2-AS1 was confirmed in a subcutaneous xenograft model, and SOCS2-AS1 overexpression enhanced the inhibitory effect of cisplatin on HCC in vivo. CONCLUSIONS YY1-regulated lncRNA SOCS2-AS1 suppresses HCC cell stemness and progression via miR-454-3p/CPEB1.
Collapse
Affiliation(s)
- Feng Zhong
- Department of General Surgery, Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yuanxi Wang
- Vascular and Endovascular Surgery, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China.
| |
Collapse
|
9
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Asadnia A, Nazari E, Goshayeshi L, Zafari N, Moetamani-Ahmadi M, Goshayeshi L, Azari H, Pourali G, Khalili-Tanha G, Abbaszadegan MR, Khojasteh-Leylakoohi F, Bazyari M, Kahaei MS, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Kiani MA, Peters GJ, Ferns GA, Batra J, Lam AKY, Giovannetti E, Avan A. The Prognostic Value of ASPHD1 and ZBTB12 in Colorectal Cancer: A Machine Learning-Based Integrated Bioinformatics Approach. Cancers (Basel) 2023; 15:4300. [PMID: 37686578 PMCID: PMC10486397 DOI: 10.3390/cancers15174300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Introduction: Colorectal cancer (CRC) is a common cancer associated with poor outcomes, underscoring a need for the identification of novel prognostic and therapeutic targets to improve outcomes. This study aimed to identify genetic variants and differentially expressed genes (DEGs) using genome-wide DNA and RNA sequencing followed by validation in a large cohort of patients with CRC. Methods: Whole genome and gene expression profiling were used to identify DEGs and genetic alterations in 146 patients with CRC. Gene Ontology, Reactom, GSEA, and Human Disease Ontology were employed to study the biological process and pathways involved in CRC. Survival analysis on dysregulated genes in patients with CRC was conducted using Cox regression and Kaplan-Meier analysis. The STRING database was used to construct a protein-protein interaction (PPI) network. Moreover, candidate genes were subjected to ML-based analysis and the Receiver operating characteristic (ROC) curve. Subsequently, the expression of the identified genes was evaluated by Real-time PCR (RT-PCR) in another cohort of 64 patients with CRC. Gene variants affecting the regulation of candidate gene expressions were further validated followed by Whole Exome Sequencing (WES) in 15 patients with CRC. Results: A total of 3576 DEGs in the early stages of CRC and 2985 DEGs in the advanced stages of CRC were identified. ASPHD1 and ZBTB12 genes were identified as potential prognostic markers. Moreover, the combination of ASPHD and ZBTB12 genes was sensitive, and the two were considered specific markers, with an area under the curve (AUC) of 0.934, 1.00, and 0.986, respectively. The expression levels of these two genes were higher in patients with CRC. Moreover, our data identified two novel genetic variants-the rs925939730 variant in ASPHD1 and the rs1428982750 variant in ZBTB1-as being potentially involved in the regulation of gene expression. Conclusions: Our findings provide a proof of concept for the prognostic values of two novel genes-ASPHD1 and ZBTB12-and their associated variants (rs925939730 and rs1428982750) in CRC, supporting further functional analyses to evaluate the value of emerging biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Alireza Asadnia
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (M.R.A.); (M.S.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran;
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48954, Iran;
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Mehrdad Moetamani-Ahmadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (M.R.A.); (M.S.K.)
| | - Lena Goshayeshi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48954, Iran;
| | - Haneih Azari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (M.R.A.); (M.S.K.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - MohammadJavad Bazyari
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
| | - Mir Salar Kahaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (M.R.A.); (M.S.K.)
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | | | - Mohammad Ali Kiani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 13944-91388, Iran;
| | - Godefridus J. Peters
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Cancer Center Amsterdam, Amsterdam U.M.C., VU University Medical Center (VUMC), Department of Medical Oncology, 1081 HV Amsterdam, The Netherlands
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK;
| | - Jyotsna Batra
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
| | - Alfred King-yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Amsterdam U.M.C., VU University Medical Center (VUMC), Department of Medical Oncology, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per La Scienza, 56017 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran; (A.A.); (N.Z.); (M.M.-A.); (H.A.); (G.P.); (G.K.-T.); (F.K.-L.); (E.G.); (M.K.); (S.M.H.)
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
| |
Collapse
|
11
|
Sun S, Deng M, Wen J, Chen X, Xu J, Liu Y, Wan H, Wang J, Yan L, He Y, Xu Y. Aspartate beta-hydroxylase domain containing 1 as a prognostic marker associated with immune infiltration in skin cutaneous melanoma. BMC Cancer 2023; 23:292. [PMID: 37004045 PMCID: PMC10063950 DOI: 10.1186/s12885-023-10625-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is an extremely malignant tumor and accounts for the majority of skin cancer deaths. Aspartate beta-hydroxylase domain containing 1 (ASPHD1) may participate in cancer progression through controlling α-ketoglutarate-dependent dioxygenases. However, its role in skin cutaneous melanoma (SKCM) has not been well studied. METHODS The gene expression data of ASPDH1 and differentially expressed genes (DEGs) from TCGA and GTEx were evaluated, and verified via the GEO database. Then, we performed GO/KEGG, GSEA, PPI network analysis to analyze the functional implications of the DEGs related to ASPHD1. Then, the association between the ASPHD1 expression and clinical parameters was investigated by Cox regression analysis. Subsequently, the survival time of SKCM patients was evaluated by plotting Kaplan-Meier curves. Moreover, we investigated the correlation between the ASPHD1 expression and lymphocytic infiltration by using the data from TISIDB and TIMER 2.0. Next, we explored the association between ASPHD1 expression and drug sensitivity. Finally, we validate the expression differences by analyzing the results of qPCR, Western blot from human normal epidermal melanocytes and melanoma cells, and immunohistochemistry (IHC) from non-tumor skin as well as melanoma tissues. RESULTS The ASPHD1 expression level was significantly upregulated in several cancers, including SKCM especially SKCM-metastasis tissues, and patients with an increased ASPHD1 expression had longer overall survival time than low expression ones. The functional enrichment analysis of ASPHD1-related DEGs showed an association with cell development regulation and tumorigenic pathways. Furthermore, the increased ASPHD1 expression level was associated with the level of immunostimulors, immunoinhibitors, chemokines, and TILs, such as CD4+, CD8+ T cell, mast cell, Th2 cell, and dendritic cell. More interesting, we found that ASPHD1 expression was tightly associated with CTLA4 and CD276 which are immune checkpoint markers. Moreover, the upregulated expression of ASPHD1 exhibited higher IC50 values for 24 chemotherapy drugs, including doxorubicin, and masitinib. Finally, the differential expression of ASPHD1 in SKCM was validated by the results of qPCR, Western blot, and IHC. CONCLUSION The expression of ASPHD1 in SKCM patients is closely related to patient survival. ASPHD1 may participate in the regulation of tumor immune microenvironment. Additionally, it may serve as a prognostic biomarker for SKCM and future in-depth studies are necessary to explore its value.
Collapse
Affiliation(s)
- Shiquan Sun
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Min Deng
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Juan Wen
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaoyuan Chen
- School of Medicine, Southeast University, Nanjing, 211189, China
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Jiaqi Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Liu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Huanhuan Wan
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jin Wang
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Leping Yan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yong He
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
12
|
Ismail A, Abulsoud AI, Fathi D, Elshafei A, El-Mahdy HA, Elsakka EG, Aglan A, Elkhawaga SY, Doghish AS. The role of miRNAs in Ovarian Cancer Pathogenesis and Therapeutic Resistance - A Focus on Signaling Pathways Interplay. Pathol Res Pract 2022; 240:154222. [DOI: 10.1016/j.prp.2022.154222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
13
|
Song Y, Pan S, Li K, Chen X, Wang ZP, Zhu X. Insight into the role of multiple signaling pathways in regulating cancer stem cells of gynecologic cancers. Semin Cancer Biol 2022; 85:219-233. [PMID: 34098106 DOI: 10.1016/j.semcancer.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Mounting evidence has demonstrated that a myriad of developmental signaling pathways, such as the Wnt, Notch, Hedgehog and Hippo, are frequently deregulated and play a critical role in regulating cancer stem cell (CSC) activity in human cancers, including gynecologic malignancies. In this review article, we describe an overview of various signaling pathways in human cancers. We further discuss the developmental roles how these pathways regulate CSCs from experimental evidences in gynecologic cancers. Moreover, we mention several compounds targeting CSCs in gynecologic cancers to enhance the treatment outcomes. Therefore, these signaling pathways might be the potential targets for developing targeted therapy in gynecologic cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shuya Pan
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Kehan Li
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xin Chen
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
14
|
Yang Q, Zhu L, Ye M, Zhang B, Zhan P, Li H, Zou W, Liu J. Tumor Suppressor 4.1N/EPB41L1 is Epigenetic Silenced by Promoter Methylation and MiR-454-3p in NSCLC. Front Genet 2022; 13:805960. [PMID: 35795202 PMCID: PMC9251189 DOI: 10.3389/fgene.2022.805960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Non–small-cell lung cancer (NSCLC) is divided into three major histological types, namely, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and large-cell lung carcinoma (LCLC). We previously identified that 4.1N/EPB41L1 acts as a tumor suppressor and is reduced in NSCLC patients. In the current study, we explored the underlying epigenetic mechanisms of 4.1N/EPB41L1 reduction in NSCLC. The 4.1N/EPB41L1 gene promoter region was highly methylated in LUAD and LUSC patients. LUAD patients with higher methylation level in the 4.1N/EPB41L1 gene promoter (TSS1500, cg13399773 or TSS200, cg20993403) had a shorter overall survival time (Log-rank p = 0.02 HR = 1.509 or Log-rank p = 0.016 HR = 1.509), whereas LUSC patients with higher methylation level in the 4.1N/EPB41L1 gene promoter (TSS1500 cg13399773, TSS1500 cg07030373 or TSS200 cg20993403) had a longer overall survival time (Log-rank p = 0.045 HR = 0.5709, Log-rank p = 0.018 HR = 0.68 or Log-rank p = 0.014 HR = 0.639, respectively). High methylation of the 4.1N/EPB41L1 gene promoter appeared to be a relatively early event in LUAD and LUSC. DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine restored the 4.1N/EPB41L1 expression at both the mRNA and protein levels. MiR-454-3p was abnormally highly expressed in NSCLC and directly targeted 4.1N/EPB41L1 mRNA. MiR-454-3p expression was significantly correlated with 4.1N/EPB41L1 expression in NSCLC patients (r = −0.63, p < 0.0001). Therefore, we concluded that promoter hypermethylation of the 4.1N/EPB41L1 gene and abnormally high expressed miR-454-3p work at different regulation levels but in concert to restrict 4.1N/EPB41L1 expression in NSCLC. Taken together, this work contributes to elucidate the underlying epigenetic disruptions of 4.1N/EPB41L1 deficiency in NSCLC.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- School of Medical Laboratory, Shao Yang University, Shaoyang, China
| | - Lin Zhu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Univers ity, Changsha, China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Peihe Zhan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Li
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Molecular Science and Biomedicine Laboratory, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Univers ity, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Jing Liu, ; Wen Zou, ; Hui Li,
| |
Collapse
|
15
|
Characteristics of Extracellular Vesicles and Preclinical Testing Considerations Prior to Clinical Applications. Biomedicines 2022; 10:biomedicines10040869. [PMID: 35453619 PMCID: PMC9030546 DOI: 10.3390/biomedicines10040869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Cell therapy products have significant limitations, such as storage instability, difficulties with transportation, and toxicity issues such as tumorigenicity and immunogenicity. Extracellular vesicles (EVs) secreted from cells show potential for therapeutic agent development. EVs have not been widely examined as investigational drugs, and non-clinical studies for the clinical approval of EV therapeutic agents are challenging. EVs contain various materials, such as DNA, cellular RNA, cytokines, chemokines, and microRNAs, but do not proliferate or divide like cells, thus avoiding safety concerns related to tumorigenicity. However, the constituents of EVs may induce the proliferation of normal cells; therefore, the suitability of vesicles should be verified through non-clinical safety evaluations. In this review, the findings of non-clinical studies on EVs are summarized. We describe non-clinical toxicity studies of EVs, which should be useful for researchers who aim to develop these vesicles into therapeutic agents. A new method for evaluating the immunotoxicity and tumorigenicity of EVs should also be developed.
Collapse
|
16
|
Liu QW, He Y, Xu WW. Molecular functions and therapeutic applications of exosomal noncoding RNAs in cancer. Exp Mol Med 2022; 54:216-225. [PMID: 35352001 PMCID: PMC8980040 DOI: 10.1038/s12276-022-00744-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most difficult diseases in human society. Therefore, it is urgent for us to understand its pathogenesis and improve the cure rate. Exosomes are nanoscale membrane vesicles formed by a variety of cells through endocytosis. As a new means of intercellular information exchange, exosomes have attracted much attention. Noncoding RNAs exist in various cell compartments and participate in a variety of cellular reactions; in particular, they can be detected in exosomes bound to lipoproteins and free circulating molecules. Increasing evidence has suggested the potential roles of exosomal noncoding RNAs in the progression of tumors. Herein, we present a comprehensive update on the biological functions of exosomal noncoding RNAs in the development of cancer. Specifically, we mainly focus on the effects of exosomal noncoding RNAs, including microRNAs, circular RNAs, long noncoding RNAs, small nuclear RNAs, and small nucleolar RNAs, on tumor growth, metastasis, angiogenesis, and chemoresistance. Moreover, we outline the current clinical implications concerning exosomal noncoding RNAs in cancer treatment.
Collapse
Affiliation(s)
- Qin-Wen Liu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yan He
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Oncogenic tetraspanins: Implications for metastasis, drug resistance, cancer stem cell maintenance and diagnosis of leading cancers in females. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Li L, Xiong Y, Wang N, Zhu M, Gu Y. Breast cancer stem cells-derived extracellular vesicles affect PPARG expression by delivering microRNA-197 in breast cancer cells. Clin Breast Cancer 2022; 22:478-490. [DOI: 10.1016/j.clbc.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
|
19
|
Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death Dis 2022; 13:64. [PMID: 35042862 PMCID: PMC8766448 DOI: 10.1038/s41419-022-04510-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Chemoresistance and metastasis are the major challenges for the current ovarian cancer treatment. Understanding the mechanisms of ovarian cancer progression and metastasis is critically important for developing novel therapies. The advances in extracellular vesicles (EVs) research in recent years have attracted extensive attention. EVs contain a variety of proteins, RNAs, DNAs, and metabolites. Accumulating evidence indicates that ovarian cancer cells secrete a large amount of EVs, playing an important role in tumor progression and recurrence. In the microenvironment of ovarian tumor, EVs participate in the information transmission between stromal cells and immune cells, promoting the immune escape of ovarian cancer cells and facilitating cancer metastasis. Here, we review the recent advances of EVs in chemoresistance, mechanisms of metastasis, and immune evasion of ovarian cancer. Furthermore, we also discuss the challenges of EV research and future application of EVs as promising biomarker sources in response to therapy and in therapy-delivery approaches for ovarian cancer patients.
Collapse
|
20
|
Zhang Y, Wei YJ, Zhang YF, Liu HW, Zhang YF. Emerging Functions and Clinical Applications of Exosomal ncRNAs in Ovarian Cancer. Front Oncol 2021; 11:765458. [PMID: 34804970 PMCID: PMC8604153 DOI: 10.3389/fonc.2021.765458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies worldwide and has a high mortality rate. Its dismal prognosis is closely related to late diagnosis and drug resistance. Exosomes are a novel means of intercellular communication that are involved in the genesis and development of tumors by delivering a variety of biologically active molecules, including proteins, lipids, and nucleic acids. As an important component, noncoding RNAs (ncRNAs) are selectively enriched in exosomes and participate in the regulation of specific aspects of OC development, such as proliferation, invasion, metastasis, angiogenesis, immune escape, and treatment resistance. Therefore, strategies that specifically target exosomal ncRNAs may be attractive therapeutic options. Exosomes are readily available in almost all types of human biological fluids and are biocompatible, making them promising biomarkers of OC as well as targets for therapeutic applications. In this review, we briefly summarize the biology of exosomes, the function of exosomal ncRNAs in OC development, and their potential clinical applications as biomarkers and therapeutic tools. Ideally, exosomal ncRNAs will become increasingly valuable in the diagnosis and treatment of OC in the near future.
Collapse
Affiliation(s)
- Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Jing Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Yi Y, Wu M, Zeng H, Hu W, Zhao C, Xiong M, Lv W, Deng P, Zhang Q, Wu Y. Tumor-Derived Exosomal Non-Coding RNAs: The Emerging Mechanisms and Potential Clinical Applications in Breast Cancer. Front Oncol 2021; 11:738945. [PMID: 34707990 PMCID: PMC8544822 DOI: 10.3389/fonc.2021.738945] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and is ranking the leading cause of cancer-related death among women worldwide. At present, BC is still an intricate challenge confronted with high invasion, metastasis, drug resistance, and recurrence rate. Exosomes are membrane-enclosed extracellular vesicles with the lipid bilayer and recently have been confirmed as significant mediators of tumor cells to communicate with surrounding cells in the tumor microenvironment. As very important orchestrators, non-coding RNAs (ncRNAs) are aberrantly expressed and participate in regulating gene expression in multiple human cancers, while the most reported ncRNAs within exosomes in BC are microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Notably, ncRNAs containing exosomes are novel frontiers to shape malignant behaviors in recipient BC cells such as angiogenesis, immunoregulation, proliferation, and migration. It means that tumor-derived ncRNAs-containing exosomes are pluripotent carriers with intriguing and elaborate roles in BC progression via complex mechanisms. The ncRNAs in exosomes are usually excavated based on specific de-regulated expression verified by RNA sequencing, bioinformatic analyses, and PCR experiments. Here, this article will elucidate the recent existing research on the functions and mechanisms of tumor-derived exosomal miRNA, lncRNA, circRNA in BC, especially in BC cell proliferation, metastasis, immunoregulation, and drug resistance. Moreover, these tumor-derived exosomal ncRNAs that existed in blood samples are proved to be excellent diagnostic biomarkers for improving diagnosis and prognosis. The in-depth understanding of tumor-derived exosomal ncRNAs in BC will provide further insights for elucidating the BC oncogenesis and progress and exploring novel therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Deng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Jayaseelan VP, Arumugam P. Exosome-derived ncRNAs as potential drivers of epigenetic reprogramming of cancer stem cells. Epigenomics 2021; 13:1439-1441. [PMID: 34596418 DOI: 10.2217/epi-2021-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Vijayashree Priyadharsini Jayaseelan
- Clinical Genetics Lab, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 60077, Tamil Nadu, India
| | - Paramasivam Arumugam
- Molecular Biology Lab, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 60077, Tamil Nadu, India
| |
Collapse
|
23
|
The functions and potential roles of extracellular vesicle noncoding RNAs in gynecological malignancies. Cell Death Dis 2021; 7:258. [PMID: 34552067 PMCID: PMC8458395 DOI: 10.1038/s41420-021-00645-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are small membranous vesicles secreted by multiple kinds of cells and are widely present in human body fluids. EVs containing various constituents can transfer functional molecules from donor cells to recipient cells, thereby mediating intercellular communication. Noncoding RNAs (ncRNAs) are a type of RNA transcript with limited protein-coding capacity, that have been confirmed to be enriched in EVs in recent years. EV ncRNAs have become a hot topic because of their crucial regulating effect in disease progression, especially in cancer development. In this review, we summarized the biological functions of EV ncRNAs in the occurrence and progression of gynecological malignancies. In addition, we reviewed their potential applications in the diagnosis and treatment of gynecological malignancies.
Collapse
|
24
|
Lee NK, Kothandan VK, Kothandan S, Byun Y, Hwang SR. Exosomes and Cancer Stem Cells in Cancer Immunity: Current Reports and Future Directions. Vaccines (Basel) 2021; 9:vaccines9050441. [PMID: 34062950 PMCID: PMC8147426 DOI: 10.3390/vaccines9050441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), which have the capacity to self-renew and differentiate into various types of cells, are notorious for their roles in tumor initiation, metastasis, and therapy resistance. Thus, underlying mechanisms for their survival provide key insights into developing effective therapeutic strategies. A more recent focus has been on exosomes that play a role in transmitting information between CSCs and non-CSCs, resulting in activating CSCs for cancer progression and modulating their surrounding microenvironment. The field of CSC-derived exosomes (CSCEXs) for different types of cancer is still under exploration. A deeper understanding and further investigation into CSCEXs’ roles in tumorigenicity and the identification of novel exosomal components are necessary for engineering exosomes for the treatment of cancer. Here, we review the features of CSCEXs, including surface markers, cargo, and biological or physiological functions. Further, reports on the immunomodulatory effects of CSCEXs are summarized, and exosome engineering for CSC-targeting is also discussed.
Collapse
Affiliation(s)
- Na-Kyeong Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (N.-K.L.); (Y.B.)
| | - Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Sangeetha Kothandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600073, India;
| | - Youngro Byun
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (N.-K.L.); (Y.B.)
| | - Seung-Rim Hwang
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Correspondence:
| |
Collapse
|
25
|
Zhao W, Wang M, Cai M, Zhang C, Qiu Y, Wang X, Zhang T, Zhou H, Wang J, Zhao W, Shao R. Transcriptional co-activators YAP/TAZ: Potential therapeutic targets for metastatic breast cancer. Biomed Pharmacother 2020; 133:110956. [PMID: 33189066 DOI: 10.1016/j.biopha.2020.110956] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. Although routine and targeted therapies have improved the survival rate, there are still considerable challenges in the treatment of breast cancer. Metastasis is the leading cause of death in patients diagnosed with breast cancer. Yes-associated protein (YAP) and/or PDZ binding motif (TAZ) are usually abnormally activated in breast cancer leading to a variety of effects on tumour promotion, such as epithelial-mesenchymal transition, cancer stem cell production and drug-resistance. The abnormal activation of YAP/TAZ can affect metastasis-related processes and promote cancer progression and metastasis by interacting with some metastasis-related factors and pathways. In this article, we summarise the evidence that YAP/TAZ regulates breast cancer metastasis, its post-translational modification mechanisms, and the latest advances in the treatment of YAP/TAZ-related breast cancer metastasis, besides providing a new strategy of YAP/TAZ-based treatment of human breast cancer.
Collapse
Affiliation(s)
- Wenxia Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Mengyan Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Meilian Cai
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Conghui Zhang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Yuhan Qiu
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xiaowei Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Tianshu Zhang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Huimin Zhou
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Junxia Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Rongguang Shao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|