1
|
Almeida TAG, Dos Santos OP, Saddi VA, Pereira JX, da Costa Machado H, Santos Carneiro MA, de Paula HM, Figueiredo-Alves RR, Zeferino LC, Rabelo-Santos SH. Association of CD133, ALDH1, CD117 and OCT4 expression with prognosis of patients with cervical cancer. Virchows Arch 2025; 486:791-801. [PMID: 38981932 DOI: 10.1007/s00428-024-03862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Cancer stem cells (CSC), a small population of neoplastic cells, are associated with worse prognosis. The aim of this study was to evaluate the expression of ALDH1, CD117, CD133 and OCT4; potential markers of CSC; and their associations with the prognosis of women diagnosed with cervical cancer. This retrospective cohort study included 126 women diagnosed with cervical cancer whose biopsies were analyzed by immunohistochemistry. Median values of marked cells were used to define cutoff points for low and high expression. For specific survival, multivariate analyses showed statistical significance for lymph node metastases (HR 8.15; 95% CI 3.00-22.18) and borderline significance for high CD133 expression (p = 0.058). For overall survival, multivariate analyses showed statistical significance for IIA-IVB staging (HR 4.60; 95% CI 1.46-14.56), lymph node metastases (HR 5.13; 95% CI 12.02-13.03) and high CD133 expression (2.67; 95% CI 1.11-6.43). Considering only women with SCC, the same clinicopathological variables were associated with worse specific and overall survival in univariate analyses. However, higher expression of CD 133 (HR 11.10; 95% CI 2.42-50.94 and 6.00; 95% CI 2.02-17.87) and staging IIA-IVB (HR 5.96; 95% CI 1.30-27.34 and HR 12.47; 95% CI 2.45-63.54) respectively impacted negatively specific and overall survival, as multivariate analyses showed. Secondarily, it was observed that ALDH1 expression was associated with adenocarcinoma and CD117 expression with squamous cells carcinoma. Higher expression of CD133 was associated with worse specific and overall survival, indicating that it could have relevance as a clinical marker and therapeutic target.
Collapse
Affiliation(s)
| | - Odeony Paulo Dos Santos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
- Center for Social Sciences, Health and Technology, Federal University of Maranhão, Imperatriz, Brazil
| | | | - Jonathas Xavier Pereira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | - Luiz Carlos Zeferino
- Department of Obstetrics and Gynecology, State University of Campinas, São Paulo, Brazil
| | - Silvia Helena Rabelo-Santos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
- School of Pharmacy, Federal University of Goiás, S/N - Setor Leste Universitário, Rua 240, esquina com a 5ª Avenida, s/nº, Goiânia, 74605-170, Brazil.
| |
Collapse
|
2
|
Markowska A, Kojs Z, Twardawa D, Pietras J, Markowska J. Selected markers of ovarian cancer and their relation to targeted therapy (Review). Exp Ther Med 2024; 27:236. [PMID: 38628658 PMCID: PMC11019661 DOI: 10.3892/etm.2024.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Despite advances in surgical treatment techniques and chemotherapy-including anti-angiogenic and immune poly (ADP-ribose) polymerase inhibitors, the 5-year survival rate in ovarian cancer (OC) remains low. The reasons for this are the diagnosis of cancer in advanced clinical stages, chemoresistance and cancer recurrence. New therapeutic approaches are being developed, including the search for new biomarkers that are also targets for targeted therapy. The present review describes new molecular markers with relevance to targeted therapy, which to date have been studied only in experimental research. These include the angiogenic protein angiopoietin-2, the transmembrane glycoprotein ectonucleotide pyrophosphatase/phosphodiesterase 1, the adhesion protein E-cadherin, the TIMP metallopeptidase inhibitor 1 and Kruppel-like factor 7. Drugs affecting cancer stem cells (CSCs) in OC, such as metformin and salinomycin, as well as inhibitors of CSCs markers aldehyde dehydrogenase 1 (with the drug ATRA) and the transcription factor Nanog homeobox (microRNA) are also discussed. A new approach to prevention and possible therapies under investigation such as development of vaccines containing a subpopulation of CD117(+) and CD44(+) stem cells with a promising option for use in women with OC was described.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Zbigniew Kojs
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
| | - Damian Twardawa
- Medical Department, Bausch Health Poland, 02-674 Warsaw, Poland
| | - Joanna Pietras
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | | |
Collapse
|
3
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
4
|
Jasim SA, Al-Hawary SIS, Hjazi A, Ahmad I, Kaur I, Kadhum WR, Alkhafaji AT, Ghildiyal P, Jawad MA, Alsaadi SB. A comprehensive review of lncRNA CRNDE in cancer progression and pathology, with a specific glance at the epithelial-mesenchymal transition (EMT) process. Pathol Res Pract 2024; 256:155229. [PMID: 38484655 DOI: 10.1016/j.prp.2024.155229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 04/14/2024]
Abstract
It has been suggested that the long non-coding RNAs (lncRNAs), such as colorectal neoplasia differentially expressed (CRNDE), may contribute to the formation of human cancer. It is yet unknown, though, what therapeutic significance CRNDE expression has for different forms of cancer. CRNDE has recently been proposed as a possible diagnostic biomarker and prognostic pred for excellent specificity and sensitivity in cancer tissues and plasma. To provide the groundwork for potential future therapeutic uses of CRNDE, we briefly overview its biological action and related cancer-related pathways. Next, we mainly address the impact of CRNDE on the epithelial-mesenchymal transition (EMT). The epithelial-mesenchymal transition, or EMT, is an essential biological mechanism involved in the spread of cancer.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut, Wasit 52001, Iraq; Advanced research center, Kut University College, Kut, Wasit 52001, Iraq
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq
| |
Collapse
|
5
|
Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M, Baghbanzadeh A, Baradaran B. Nanog, as a key cancer stem cell marker in tumor progression. Gene X 2022; 827:146448. [PMID: 35337852 DOI: 10.1016/j.gene.2022.146448] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of malignant cells that induce tumor onset and development. CSCs share similar features with normal stem cells in the case of self-renewal and differentiation. They also contribute to chemoresistance and metastasis of cancer cells, leading to therapeutic failure. To identify CSCs, multiple cell surface markers have been characterized, including Nanog, which is found at high levels in different cancers. Recent studies have revealed that Nanog upregulation has a substantial association with the advanced stages and poor prognosis of malignancies, playing a pivotal role through tumorigenesis of multiple human cancers, including leukemia, liver, colorectal, prostate, ovarian, lung, head and neck, brain, pancreatic, gastric and breast cancers. Nanog through different signaling pathways, like JAK/STAT and Wnt/β-catenin pathways, induces stemness, self-renewal, metastasis, invasiveness, and chemoresistance of cancer cells. Some of these signaling pathways are common in various types of cancers, but some have been found in one or two cancers. Therefore, this review aimed to focus on the function of Nanog in multiple cancers based on recent studies surveying the suitable approaches to target Nanog and inhibit CSCs residing in tumors to gain favorable results from cancer treatments.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
7
|
Alemohammad H, Motafakkerazad R, Asadzadeh Z, Farsad N, Hemmat N, Najafzadeh B, Vasefifar P, Baradaran B. siRNA-mediated silencing of Nanog reduces stemness properties and increases the sensitivity of HepG2 cells to cisplatin. Gene 2022; 821:146333. [PMID: 35182674 DOI: 10.1016/j.gene.2022.146333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Liver cancer is one of the most lethal cancers having worldwide prevalence. Despite significant progress in cancer therapy, liver cancer-induced mortality is very high. Nanog, as an essential transcription factor modulating cellular multipotency, causes tumor progression, drug resistance, and preserves stemness properties in various tumors such as liver cancer. Thus, this research was conducted to evaluate the impact of combination therapy of Nanog siRNA/cisplatin on the sensitivity of liver cancer cells to this drug. HepG2 cells were transfected with Nanog siRNA and treated with cisplatin, individually and in combination. Then, it was observed that in transfected HepG2 cells, Nanog expression was significantly reduced at mRNA level and also these cells were sensitized to cisplatin. In addition, to assess the impact of Nanog siRNA and cisplatin individually and in combination on cells' viability, migration capacity, apoptosis, and cell cycle progression, the MTT, wound healing, colony formation assay, Annexin V/PI staining, and flow cytometry assays were applied on HepG2 cells, respectively. Also, the quantitive Real-Time PCR was used to check the expression of stemness-associated genes (CD44, CD133, and Sox2), and apoptosis-related genes (caspase-3, 8, 9, BAX and Bcl2) after combination therapy. It is indicated that the combination of Nanog siRNA and cisplatin significantly reduced proliferation, migration, and colony formation ability, as well as increased apoptosis rate, and cell cycle arrest. Also, it is found that the combination of Nanog siRNA and cisplatin down-regulated the expression of stemness-associated genes and up-regulated apoptosis-related genes in HepG2 cells. Hence, it can be suggested that Nanog inhibition in combination with cisplatin is a potential therapeutic strategy for developing new therapeutic approaches for liver cancer.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Najafzadeh B, Motafakkerazad R, Najafi S, Amini M, Alemohammad H, Vasefifar P, Baradaran B. Nanog suppression enhanced the chemosensitivity of Human Non-Small-Cell Lung Cancer cells to Cisplatin and inhibited cell migration. Pathol Res Pract 2022; 233:153869. [DOI: 10.1016/j.prp.2022.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
|
9
|
Li W, Duan X, Zhu C, Liu X, Jeyarajan AJ, Xu M, Tu Z, Sheng Q, Chen D, Zhu C, Shao T, Cheng Z, Salloum S, Schaefer EA, Kruger AJ, Holmes JA, Chung RT, Lin W. Hepatitis B and Hepatitis C Virus Infection Promote Liver Fibrogenesis through a TGF-β1-Induced OCT4/Nanog Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:672-684. [PMID: 35022275 PMCID: PMC8770612 DOI: 10.4049/jimmunol.2001453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
Hepatitis B virus (HBV)/hepatitis C virus (HCV) coinfection accelerates liver fibrosis progression compared with HBV or HCV monoinfection. Octamer binding transcription factor 4 (OCT4) and Nanog are direct targets of the profibrogenic TGF-β1 signaling cascade. We leveraged a coculture model to monitor the effects of HBV and HCV coinfection on fibrogenesis in both sodium taurocholate cotransporting polypeptide-transfected Huh7.5.1 hepatoma cells and LX2 hepatic stellate cells (HSCs). We used CRISPR-Cas9 to knock out OCT4 and Nanog to evaluate their effects on HBV-, HCV-, or TGF-β1-induced liver fibrogenesis. HBV/HCV coinfection and HBx, HBV preS2, HCV Core, and HCV NS2/3 overexpression increased TGF-β1 mRNA levels in sodium taurocholate cotransporting polypeptide-Huh7.5.1 cells compared with controls. HBV/HCV coinfection further enhanced profibrogenic gene expression relative to HBV or HCV monoinfection. Coculture of HBV and HCV monoinfected or HBV/HCV coinfected hepatocytes with LX2 cells significantly increased profibrotic gene expression and LX2 cell invasion and migration. OCT4 and Nanog guide RNA independently suppressed HBV-, HCV-, HBV/HCV-, and TGF-β1-induced α-SMA, TIMP-1, and Col1A1 expression and reduced Huh7.5.1, LX2, primary hepatocyte, and primary human HSC migratory capacity. OCT4/Nanog protein expression also correlated positively with fibrosis stage in liver biopsies from patients with chronic HBV or HCV infection. In conclusion, HBV and HCV independently and cooperatively promote liver fibrogenesis through a TGF-β1-induced OCT4/Nanog-dependent pathway.
Collapse
Affiliation(s)
- Wenting Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan Province, China
| | - Chuanlong Zhu
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Liu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Southwest University, College of Animal Science and Technology, Chongqing, China
| | - Andre J Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Min Xu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zeng Tu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Microbiology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Qiuju Sheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dong Chen
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chuanwu Zhu
- Department of Hepatology, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zhimeng Cheng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shadi Salloum
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Esperance A Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Annie J Kruger
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC; and
| | - Jacinta A Holmes
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
| |
Collapse
|
10
|
Chen Y, Zhao H, Liang W, Jiang E, Zhou X, Shao Z, Liu K, Shang Z. Autophagy regulates the cancer stem cell phenotype of head and neck squamous cell carcinoma through the noncanonical FOXO3/SOX2 axis. Oncogene 2022; 41:634-646. [PMID: 34795388 PMCID: PMC8799462 DOI: 10.1038/s41388-021-02115-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is an essential catabolic process that orchestrates cellular homeostasis and plays dual roles in tumor promotion and suppression. However, the mechanism by which autophagy affects the self-renewal of cancer stem cells (CSCs) remains unclear. In this study, we investigated whether autophagy activation contributes to CSC properties of head and neck squamous cell carcinoma (HNSCC). The results showed that the autophagy level and CSC properties of HNSCC cells were elevated in response to several adverse conditions, including treatment with cisplatin, starvation, and hypoxia. Pretreatment with autophagy inhibitors, such as 3-MA and chloroquine, diminished the CSC properties acquired under adverse conditions. In addition, the isolated CSCs were endowed with stronger autophagic activity than non-CSCs, and the CSC properties were dampened when autophagy was inhibited either by 3-MA, chloroquine, or Beclin1 knockdown. Notably, the tumor-initiating activity of CSCs was decreased upon knocking down Beclin1. Further study revealed that FOXO3, a substrate for autophagy, was enriched in the nucleus of cells with lower autophagy levels. Nuclear FOXO3 directly bound to the promoter region of SOX2 and negatively regulated its transcriptional activity. Overexpression of FOXO3 decreased the expression of SOX2 and thereby impaired the CSC phenotype both in vitro and in vivo. Taken together, our findings suggest that the activation of autophagy is essential for the acquisition of CSC properties in adverse conditions and the self-renewal of CSCs. We clarify the role of autophagy in regulating the CSC phenotype and demonstrate that the noncanonical FOXO3/SOX2 axis is the intrinsic regulatory mechanism.
Collapse
Affiliation(s)
- Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine (Wuhan University), Ministry of Education (Hubei-MOST KLOS & KLOBM), Wuhan, China
| | - Hui Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine (Wuhan University), Ministry of Education (Hubei-MOST KLOS & KLOBM), Wuhan, China
| | - Weilian Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine (Wuhan University), Ministry of Education (Hubei-MOST KLOS & KLOBM), Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine (Wuhan University), Ministry of Education (Hubei-MOST KLOS & KLOBM), Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine (Wuhan University), Ministry of Education (Hubei-MOST KLOS & KLOBM), Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine (Wuhan University), Ministry of Education (Hubei-MOST KLOS & KLOBM), Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine (Wuhan University), Ministry of Education (Hubei-MOST KLOS & KLOBM), Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province & Key Laboratory of Oral Biomedicine (Wuhan University), Ministry of Education (Hubei-MOST KLOS & KLOBM), Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
12
|
Interplay between SOX9 transcription factor and microRNAs in cancer. Int J Biol Macromol 2021; 183:681-694. [PMID: 33957202 DOI: 10.1016/j.ijbiomac.2021.04.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
SOX transcription factors are critical regulators of development, homeostasis and disease progression and their dysregulation is a common finding in various cancers. SOX9 belongs to SOXE family located on chromosome 17. MicroRNAs (miRNAs) possess the capacity of regulating different transcription factors in cancer cells by binding to 3'-UTR. Since miRNAs can affect differentiation, migration, proliferation and other physiological mechanisms, disturbances in their expression have been associated with cancer development. In this review, we evaluate the relationship between miRNAs and SOX9 in different cancers to reveal how this interaction can affect proliferation, metastasis and therapy response of cancer cells. The tumor-suppressor miRNAs can decrease the expression of SOX9 by binding to the 3'-UTR of mRNAs. Furthermore, the expression of downstream targets of SOX9, such as c-Myc, Wnt, PI3K/Akt can be affected by miRNAs. It is noteworthy that other non-coding RNAs including lncRNAs and circRNAs regulate miRNA/SOX9 expression to promote/inhibit cancer progression and malignancy. The pre-clinical findings can be applied as biomarkers for diagnosis and prognosis of cancer patients.
Collapse
|