1
|
Li Z, Ren K, Chen J, Zhuang Y, Dong S, Wang J, Liu H, Ding J. Bioactive hydrogel formulations for regeneration of pathological bone defects. J Control Release 2025; 380:686-714. [PMID: 39880040 DOI: 10.1016/j.jconrel.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remain a significant challenge for orthopedic surgeons. The precise local treatments for these pathological complications are essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner. Additionally, hydrogel formulations can be tailored for specific mechanical strengths and degradation profiles by adjusting their physical and chemical properties, which are crucial for prolonged drug retention and effective bone repair. This review summarizes recent advances in bioactive hydrogel formulations as three-dimensional scaffolds that support cell proliferation and differentiation. It also highlights their role as smart drug-delivery systems with capable of continuously releasing antibacterial agents, anti-inflammatory drugs, chemotherapeutic agents, and osteogenesis-related factors to enhance bone regeneration in pathological areas. Furthermore, the limitations of hydrogel formulations in pathological bone repair are discussed, and future development directions are proposed, which is expected to pave the way for the repair of pathological bone defects.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiajia Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
2
|
Yue W, Sun N, Zhang J, Zhang W, Wu Y, Qu X, Zong J, Xu G. Alleviated diabetic osteoporosis and peripheral neuropathic pain by Rehmannia glutinosa Libosch polysaccharide via increasing regulatory T cells. Int J Biol Macromol 2024; 277:134241. [PMID: 39084449 DOI: 10.1016/j.ijbiomac.2024.134241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Diabetic peripheral neuropathy (DPN) and diabetic osteoporosis (DOP) are conditions that significantly impact the quality of life of patients worldwide. Rehmanniae Radix Preparata, a component of traditional Chinese medicine with a history spanning thousands of years, has been utilized in the treatment of osteoporosis and diabetes. Specifically, Rehmannia glutinosa Libosch polysaccharide (RGP), a key bioactive compound of Rehmanniae Radix Preparata, has demonstrated immune-modulating properties and beneficial effects on hyperglycemia, hyperlipidemia, and vascular inflammation in diabetic mice. Despite these known actions, the precise mechanisms of RGP in addressing DOP and DPN remain unclear. Our study aimed to explore the impact of RGP on osteoporosis and peripheral neuropathic pain in diabetic mice induced by streptozotocin (STZ). The findings revealed that RGP not only improved hyperglycemia and osteoporosis in STZ-induced diabetic mice but also enhanced osteogenesis, insulin production, and nerve health. Specifically, RGP alleviated distal pain, improved nerve conduction velocity, nerve fiber integrity, and immune cell balance in the spleen. Mechanistically, RGP was found to upregulate HDAC6 mRNA expression in regulatory T cells, potentially shedding light on novel pathways for preventing DOP and DPN. These results offer promising insights for the development of new therapeutic approaches for diabetic complications.
Collapse
Affiliation(s)
- Wenjie Yue
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Na Sun
- Department of Pharmacy, The Third People's Hospital of Dalian, Dalian 116091, China
| | - Jing Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Wanhao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yueshu Wu
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochen Qu
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian 116011, Liaoning Province, China
| | - Junwei Zong
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian 116011, Liaoning Province, China
| | - Gang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian 116011, Liaoning Province, China.
| |
Collapse
|
3
|
Smit A, Meijer O, Winter E. The multi-faceted nature of age-associated osteoporosis. Bone Rep 2024; 20:101750. [PMID: 38566930 PMCID: PMC10985042 DOI: 10.1016/j.bonr.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Age-associated osteoporosis (AAOP) poses a significant health burden, characterized by increased fracture risk due to declining bone mass and strength. Effective prevention and early treatment strategies are crucial to mitigate the disease burden and the associated healthcare costs. Current therapeutic approaches effectively target the individual contributing factors to AAOP. Nonetheless, the management of AAOP is complicated by the multitude of variables that affect its development. Main intrinsic and extrinsic factors contributing to AAOP risk are reviewed here, including mechanical unloading, nutrient deficiency, hormonal disbalance, disrupted metabolism, cognitive decline, inflammation and circadian disruption. Furthermore, it is discussed how these can be targeted for prevention and treatment. Although valuable as individual targets for intervention, the interconnectedness of these risk factors result in a unique etiology for every patient. Acknowledgement of the multifaceted nature of AAOP will enable the development of more effective and sustainable management strategies, based on a holistic, patient-centered approach.
Collapse
Affiliation(s)
- A.E. Smit
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - O.C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - E.M. Winter
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
- Department of Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
4
|
Sheng N, Xing F, Wang J, Zhang QY, Nie R, Li-Ling J, Duan X, Xie HQ. Recent progress in bone-repair strategies in diabetic conditions. Mater Today Bio 2023; 23:100835. [PMID: 37928253 PMCID: PMC10623372 DOI: 10.1016/j.mtbio.2023.100835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Bone regeneration following trauma, tumor resection, infection, or congenital disease is challenging. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia. It can result in complications affecting multiple systems including the musculoskeletal system. The increased number of diabetes-related fractures poses a great challenge to clinical specialties, particularly orthopedics and dentistry. Various pathological factors underlying DM may directly impair the process of bone regeneration, leading to delayed or even non-union of fractures. This review summarizes the mechanisms by which DM hampers bone regeneration, including immune abnormalities, inflammation, reactive oxygen species (ROS) accumulation, vascular system damage, insulin/insulin-like growth factor (IGF) deficiency, hyperglycemia, and the production of advanced glycation end products (AGEs). Based on published data, it also summarizes bone repair strategies in diabetic conditions, which include immune regulation, inhibition of inflammation, reduction of oxidative stress, promotion of angiogenesis, restoration of stem cell mobilization, and promotion of osteogenic differentiation, in addition to the challenges and future prospects of such approaches.
Collapse
Affiliation(s)
- Ning Sheng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jie Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Duan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
5
|
Huang S, Wen J, Zhang Y, Bai X, Cui ZK. Choosing the right animal model for osteomyelitis research: Considerations and challenges. J Orthop Translat 2023; 43:47-65. [PMID: 38094261 PMCID: PMC10716383 DOI: 10.1016/j.jot.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 03/22/2024] Open
Abstract
Osteomyelitis is a debilitating bone disorder characterized by an inflammatory process involving the bone marrow, bone cortex, periosteum, and surrounding soft tissue, which can ultimately result in bone destruction. The etiology of osteomyelitis can be infectious, caused by various microorganisms, or noninfectious, such as chronic nonbacterial osteomyelitis (CNO) and chronic recurrent multifocal osteomyelitis (CRMO). Researchers have turned to animal models to study the pathophysiology of osteomyelitis. However, selecting an appropriate animal model that accurately recapitulates the human pathology of osteomyelitis while controlling for multiple variables that influence different clinical presentations remains a significant challenge. In this review, we present an overview of various animal models used in osteomyelitis research, including rodent, rabbit, avian/chicken, porcine, minipig, canine, sheep, and goat models. We discuss the characteristics of each animal model and the corresponding clinical scenarios that can provide a basic rationale for experimental selection. This review highlights the importance of selecting an appropriate animal model for osteomyelitis research to improve the accuracy of the results and facilitate the development of novel treatment and management strategies.
Collapse
Affiliation(s)
| | | | - Yiqing Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
The role of Vitamin D as an adjunct for bone regeneration: A systematic review of literature. Saudi Dent J 2023; 35:220-232. [PMID: 37091280 PMCID: PMC10114593 DOI: 10.1016/j.sdentj.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Background and objectives In spite of bone's healing capacity, critical-size bone defect regeneration and peri-implant osseointegration are challenging. Tissue engineering provides better outcomes, but requires expensive adjuncts like stem cells, growth factors and bone morphogenic proteins. Vitamin D (Vit.D) regulates calcium and phosphorus metabolism, and helps maintain bone health. Vit.D supplements in deficient patients, accentuates bone healing and regeneration. Therefore the aim of this systematic review was to evaluate the role of adjunctive Vit.D on bone defect regeneration. Methods Comprehensive database search of indexed literature, published between January 1990 and June 2022, was carried out. English language articles fulfilling inclusion criteria (clinical/in vivo studies evaluating bone regeneration including osseointegration and in vitro studies assessing osteogenic differentiation, with adjunct Vit.D) were identified and screened. Results Database search identified 384 titles. After sequential title, abstract and full-text screening, 23 studies (in vitro - 9/in vivo - 14) were selected for review. Vit.D as an adjunct with stem cells and osteoblasts resulted in enhanced osteogenic differentiation and upregulation of genes coding for bone matrix proteins and alkaline phosphatase. When used in vivo, Vit.D resulted in early and increased new bone formation and mineralization within osseous defects, and better bone implant contact and osseointegration, around implants. Adjunct Vit.D in animals with induced systemic illnesses resulted in bone defect regeneration and osseointegration comparable to healthy animals. While systemic and local administration of Vit.D resulted in enhanced bone defect healing, outcomes were superior with systemic route. Conclusions Based on this review, adjunct Vit.D enhances bone defect regeneration and osseointegration. In vitro application of Vit.D to stem cells and osteoblasts enhances osteogenic differentiation. Vit.D is a potentially non-invasive and inexpensive adjunct for clinical bone regeneration and osseointegration. Long term clinical trials are recommended to establish protocols relating to type, dosage, frequency, duration and route of administration.
Collapse
|
7
|
Hatch JM, Segvich DM, Kohler R, Wallace JM. Skeletal manifestations in a streptozotocin-induced C57BL/6 model of Type 1 diabetes. Bone Rep 2022; 17:101609. [PMID: 35941910 PMCID: PMC9356200 DOI: 10.1016/j.bonr.2022.101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes Mellitus is a metabolic disease which profoundly affects many organ systems in the body, including the skeleton. As is often the case with biology, there are inherent differences between the sexes when considering skeletal development and disease progression and outcome. Therefore, the aim of this study was to develop a protocol to reliably induce diabetes in both sexes of the C57BL/6 mouse utilizing streptozotocin (STZ) and to characterize the resulting bone phenotype. We hypothesized that destruction of the β-cells in the pancreatic islet by STZ would result in a diabetic state with downstream skeletal manifestations. Beginning at 8 weeks of age, mice were injected for 5 consecutive days with STZ (65 mg/kg males, 90 mg/kg females) dissolved in a citrate buffer. The diabetic state of the mice was monitored for 5 weeks to ensure persistent hyperglycemia and mice were euthanized at 15 weeks of age. Diabetes was confirmed through blood glucose monitoring, glucose and insulin tolerance testing, HbA1c measurement, and histological staining of the pancreas. The resulting bone phenotype was characterized using microcomputed tomography to assess bone structure, and whole bone mechanical testing to assess bone functional integrity. Mice from both sexes experienced loss of β-cell mass and increased glycation of hemoglobin, as well as reduced trabecular thickness and trabecular tissues mineral density (TMD), and reduced cortical thickness and cortical bone area fraction. In female mice the change area fraction was driven by a reduction in overall bone size while in male mice, the change was driven by increased marrow area. Males also experienced reduced cortical TMD. Mechanical bending tests of the tibiae showed significant results in females with a reduction in yield force and ultimate force driving lower work to yield and total work and a roughly 40 % reduction of stiffness. When tissue level parameters were estimated using beam theory, there was a significant reduction in yield and ultimate stresses as well as elastic modulus. The previously reported mechanistic similarity in the action of STZ on murine animals, as well as the ease of STZ administration via IP injection make this model is a strong candidate for future exploration of osteoporotic bone disease, Diabetes Mellitus, and the link between estrogen and glucose sensitivity.
Collapse
Affiliation(s)
- Jennifer M. Hatch
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Dyann M. Segvich
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Rachel Kohler
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
8
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
9
|
Yuk SA, Kim H, Abutaleb NS, Dieterly AM, Taha MS, Tsifansky MD, Lyle LT, Seleem MN, Yeo Y. Nanocapsules modify membrane interaction of polymyxin B to enable safe systemic therapy of Gram-negative sepsis. SCIENCE ADVANCES 2021; 7:7/32/eabj1577. [PMID: 34362742 PMCID: PMC8346222 DOI: 10.1126/sciadv.abj1577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 05/17/2023]
Abstract
Systemic therapy of Gram-negative sepsis remains challenging. Polymyxin B (PMB) is well suited for sepsis therapy due to the endotoxin affinity and antibacterial activity. However, the dose-limiting toxicity has limited its systemic use in sepsis patients. For safe systemic use of PMB, we have developed a nanoparticulate system, called D-TZP, which selectively reduces the toxicity to mammalian cells but retains the therapeutic activities of PMB. D-TZP consists of an iron-complexed tannic acid nanocapsule containing a vitamin D core, coated with PMB and a chitosan derivative that controls the interaction of PMB with endotoxin, bacteria, and host cells. D-TZP attenuated the membrane toxicity associated with PMB but retained the ability of PMB to inactivate endotoxin and kill Gram-negative bacteria. Upon intravenous injection, D-TZP protected animals from pre-established endotoxemia and polymicrobial sepsis, showing no systemic toxicities inherent to PMB. These results support D-TZP as a safe and effective systemic intervention of sepsis.
Collapse
Affiliation(s)
- Simseok A Yuk
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Hyungjun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Applied Chemistry, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, VA 24061, USA
| | - Alexandra M Dieterly
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Maie S Taha
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael D Tsifansky
- Pediatric Cardiac Critical Care Medicine and Pediatric Pulmonology, Children's National Medical Center, Michigan Ave NW, Washington, DC 20310, USA
| | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, VA 24061, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Role of Metabolism in Bone Development and Homeostasis. Int J Mol Sci 2020; 21:ijms21238992. [PMID: 33256181 PMCID: PMC7729585 DOI: 10.3390/ijms21238992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Carbohydrates, fats, and proteins are the underlying energy sources for animals and are catabolized through specific biochemical cascades involving numerous enzymes. The catabolites and metabolites in these metabolic pathways are crucial for many cellular functions; therefore, an imbalance and/or dysregulation of these pathways causes cellular dysfunction, resulting in various metabolic diseases. Bone, a highly mineralized organ that serves as a skeleton of the body, undergoes continuous active turnover, which is required for the maintenance of healthy bony components through the deposition and resorption of bone matrix and minerals. This highly coordinated event is regulated throughout life by bone cells such as osteoblasts, osteoclasts, and osteocytes, and requires synchronized activities from different metabolic pathways. Here, we aim to provide a comprehensive review of the cellular metabolism involved in bone development and homeostasis, as revealed by mouse genetic studies.
Collapse
|