1
|
Chen CY, Zhang Y. Berberine: An isoquinoline alkaloid targeting the oxidative stress and gut-brain axis in the models of depression. Eur J Med Chem 2025; 290:117475. [PMID: 40107207 DOI: 10.1016/j.ejmech.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Depression seriously affects people's quality of life, and there is an urgent need to find novel drugs to cure treatment-resistant depression. Berberine (BBR), extracted from Coptis chinensis Franch., Phellodendron bark, Berberis vulgaris, and Berberis petiolaris, could be a potential multi-target drug for depression. To summarize the effects of BBR on depression in terms of in vitro or in vivo experiments, we searched electronic databases, such as PubMed, Web of Science, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure, from inception until May 2024. Then, we summarize that BBR has indirect antidepressant properties to improve depressive symptoms, manifesting in modulating the gut microbial community, strengthening the intestinal barrier, increasing the abundance of short-chain fatty acid-producing bacteria, and regulating tryptophan metabolism. BBR also exerts antidepressant-like effects via remodulating nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway, hypothalamic-pituitary-adrenal axis, and peroxisome proliferators-activated receptor-delta. Nevertheless, further clinical trials and more high-quality animal studies are needed to show the actual clinical value of BBR for depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Sharma S, Kaur I, Dubey N, Goswami N, Tanwar SS. Berberine can be a Potential Therapeutic Agent in Treatment of Huntington's Disease: A Proposed Mechanistic Insight. Mol Neurobiol 2025:10.1007/s12035-025-05054-6. [PMID: 40377895 DOI: 10.1007/s12035-025-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by CAG repeat expansion in the HTT gene, producing mutant huntingtin (mHTT) protein. This leads to neuronal damage through protein aggregation, transcriptional dysregulation, excitotoxicity, and mitochondrial dysfunction. mHTT impairs protein clearance and alters gene expression, energy metabolism, and synaptic function. Therapeutic strategies include enhancing mHTT degradation, gene silencing via antisense oligonucleotides and RNAi, promoting neuroprotection through BDNF signaling, and modulating neurotransmitters like glutamate and dopamine. Berberine, a natural isoquinoline alkaloid, has emerged as a promising therapeutic option for HD due to its multifaceted neuroprotective properties. Research indicates that berberine can mitigate the progression of neurodegenerative diseases, including HD, by targeting various molecular pathways. It exhibits antioxidant, anti-inflammatory, and autophagy-enhancing effects, which are crucial in reducing neuronal damage and apoptosis associated with HD. These properties make berberine a potential candidate for therapeutic intervention in HD, as demonstrated in both cellular and animal models. Berberine activates the PI3K/Akt pathway, which is vital for cell survival and neuroprotection. It reduces oxidative stress and neuroinflammation, both of which are implicated in HD pathology. Berberine enhances autophagic processes, promoting the degradation of mutant huntingtin protein, a key pathological feature of HD. In transgenic HD mouse models, berberine administration has been shown to alleviate motor dysfunction and prolong survival. It effectively reduces the accumulation of mutant huntingtin in cultured cells, suggesting a direct impact on the disease's molecular underpinnings. Berberine's safety profile, established through its use in treating other conditions, supports its potential for clinical trials in HD patients. Its ability to modulate neurotransmitter levels and engage multiple signaling pathways further underscores its therapeutic promise. While berberine shows significant potential as a therapeutic agent for HD, further research is necessary to fully elucidate its mechanisms and optimize its clinical application. The current evidence in the review paper, primarily from preclinical studies, provides a strong foundation for future investigations into berberine's efficacy and safety in human HD patients.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
- Research Scholar, Department of Pharmacology, SAGE University, Indore, M.P, India
| | - Inderpreet Kaur
- Department of Pharmacy, Shivalik College of Pharmacy, Nangal, Punjab, India
| | - Naina Dubey
- Department of Pharmaceutical Sciences, SAGE University, Bhopal, M.P, India
| | - Neelima Goswami
- Department of Pharmaceutics, Sagar Institute of Research Technology and Science-Pharmacy, Bhopal, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
3
|
Yeni Y, Cicek B, Hacimuftuoglu A, Ozkaraca M, Lacin BB. Protective Effect of HMG-CoA Reductase Inhibitor Rosuvastatin on Doxorubicin-Induced Cognitive Impairment, Oxidative Stress and Neuroinflammation: Possible Role of CREB, ERK1/2, and BDNF. J Neuroimmune Pharmacol 2025; 20:53. [PMID: 40358798 PMCID: PMC12075306 DOI: 10.1007/s11481-025-10213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
During or after chemotherapy, cognitive impairments characterized by forgetfulness, difficulty concentrating, and depressive and anxiety-like symptoms are observed. There is limited research examining the effects of rosuvastatin (RVS), an HMG-CoA reductase inhibitor, in the context of neuroinflammation-related cognitive disruption. Here, we aimed to investigate the neuroprotective potential of RVS against doxorubicin (DOX)-induced cognitive impairments. Experimental groups were planned as control (normal saline, intraperitoneal), DOX (total cumulative dose 10 mg/kg, intraperitoneal), RVS (10 mg/kg, oral, 20 days), and RVS + DOX. Efficacy was monitored by applying a battery of behavioral assessments, as well as biochemical, genetic, histopathological, and immunohistochemical examinations. Results from Morris water maze (MWM), passive avoidance, locomotion activity, and elevated plus maze (EPM) tests showed that DOX administration caused behavioral disorders. Moreover, DOX increased the levels of inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α), while decreasing the levels of interleukin-10 (IL-10), glutathione (GSH), superoxide dismutase, catalase (SOD), endothelial nitric oxide (eNOS), and catalase (CAT). Co-treatment with RSV significantly attenuated DOX-induced behavioral changes and oxidative stress markers. In addition, similar to the immunohistochemical results, we determined that it increased the expression levels of extracellular signal-related kinases 1/2 (ERK1/2), cyclic adenosine monophosphate response element binding protein (CREB), and brain-derived neurotrophic factor (BDNF) and restored the histopathological structure of the brain. Therefore, these results indicated that RSV has a neuroprotective effect against DOX-induced cognitive impairment by reducing neurobehavioral impairments, exerting antioxidant and anti-inflammatory effects, and modulating brain growth factors.
Collapse
Affiliation(s)
- Yesim Yeni
- Faculty of Medicine, Department of Medical Pharmacology, Malatya Turgut Ozal University, Malatya, Turkey.
- Faculty of Medicine, Department of Pharmacology, Malatya Turgut Ozal University, Battalgazi-Malatya, 44210, Turkey.
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ahmet Hacimuftuoglu
- Faculty of Medicine, Department of Medical Pharmacology, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkaraca
- Faculty of Veterinary Medicine, Department of Pathology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak Batuhan Lacin
- Faculty of Veterinary Medicine, Department of Physiology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Feng WD, Liu DN, Shang YF, Zhang WF, Xu S, Feng DH, Wang YH. Neuroimmune modulators derived from natural products: Mechanisms and potential therapies. Pharmacol Ther 2025; 269:108830. [PMID: 40015519 DOI: 10.1016/j.pharmthera.2025.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/26/2024] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Neuroimmunology is a multidisciplinary field that investigates the interactions between the nervous and immune systems. Neuroimmune interactions persist throughout the entire lifespan, and their dysregulation can lead to the onset and development of multiple diseases. Despite significant progress over the past decades in elucidating the interaction between neuroscience and immunology, the exact mechanism underlying neuroimmune crosstalk has not yet been fully elucidated. In recent years, natural products have emerged as a promising avenue for the therapeutic implications of neuroimmune diseases. Naturally derived anti-neuroimmune disease agents, such as polyphenols, flavonoids, alkaloids, and saponins, have been extensively studied for their potential neuroimmune modulatory effects. This comprehensive review delves into the specific molecular mechanisms of bidirectional neuro-immune interactions, with particular emphasis on the role of neuro-immune units. The review synthesizes a substantial body of evidence from in vitro and in vivo experiments as well as clinical studies, highlighting the therapeutic potential of various natural products in intervening in neuroimmune disorders.
Collapse
Affiliation(s)
- Wan-Di Feng
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dong-Ni Liu
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Fu Shang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Fang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang Xu
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan-Hong Feng
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Wang X, Sun Q, Li J, Lai B, Pei X, Chen N. Effect of Fangxia-Dihuang Decoction on doxorubicin-induced cognitive impairment in breast cancer animal model. Front Oncol 2025; 15:1515498. [PMID: 40356765 PMCID: PMC12066564 DOI: 10.3389/fonc.2025.1515498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Objective Based on the murine model, this study explored the efficacy of Fangxia-Dihuang Decoction (FXDH) in interfering with cognitive impairment induced by doxorubicin (DOX) after chemotherapy for breast cancer. Methods Build 4T1 breast cancer xenograft tumor model in Balb/c mice, intraperitoneal injection of DOX (5mg/kg) once a week, build the model of DOX induced chemotherapy related cognitive impairment (CRCI), and the administration lasted for three weeks. From the first week, while DOX was given, FXDH was given high, medium and low doses by gavage every day. Conduct Y-maze and Novel object recognition (NOR) tests, detect inflammatory factors and oxidative stress-related indicators in serum and hippocampus, observe neuroinflammation and neurodegenerative changes through immunofluorescence and Nissl staining. Observation of heart and liver injury through blood routine and cardiac Hematoxylin-Eosin(HE)Staining. Results Administration of FXDH significantly improved cognitive impairment in mice. FXDH reduced the levels of pro-inflammatory cytokines IL-6, IL-12p70, and TNF-α (P<0.05), and increased the levels of anti-inflammatory cytokines IL-10 and IL-4 (P<0.05). FXDH increased the levels of GSH, GSH-PX, SOD, and CAT in serum and hippocampus (P<0.05), and decreased the level of MDA (P<0.05). The results of Nissl staining and immunofluorescence staining showed that FXDH improved the neurodegenerative lesions caused by DOX and the neuroinflammatory response in the hippocampus (P<0.05). The intermediate dose group of FXDH showed better efficacy. The results of blood routine and cardiac HE staining showed that compared with the 4T1 group, the serum ALT, AST, CK, LDH, and CKMB in DOX group mice were significantly increased (P<0.05). After FXDH administration, all indicators in mice were decreased, but there was no statistical difference. FXDH improved the disordered arrangement of myocardial cells, uneven cytoplasmic staining, and loose and disordered arrangement of myocardial fibers caused by DOX. Conclusion In the animal model, FXDH has the effect of anti-cognitive impairment after chemotherapy for breast cancer, and can improve the DOX induced learning, memory and cognitive impairment in mice. FXDH can reverse DOX induced neuroinflammation by improving the neurodegenerative changes caused by DOX, reducing pro-inflammatory cytokine levels in mouse serum and hippocampus, increasing anti-inflammatory cytokine levels, and reducing oxidative stress response.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Sun
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jianrong Li
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Baoyong Lai
- The Xiamen Hospital of Beijing University of Chinese Medicine, Xiamen, China
| | - Xiaohua Pei
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Nana Chen
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Elazab ST, Hsu WH. α-Bisabolol alleviates doxorubicin-induced cognitive dysfunction in rats via enhancing the hippocampal BDNF/TrKB signaling and inhibiting neuroinflammation. Front Pharmacol 2025; 16:1549009. [PMID: 40124785 PMCID: PMC11925949 DOI: 10.3389/fphar.2025.1549009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Chemofog is a serious sequela commonly manifested among cancer patients receiving doxorubicin (DOX) chemotherapy. Our goal was to explore the abrogative action of α-Bisabolol (BISA), a phytochemical sesquiterpene, against DOX-induced cognitive deficit. Rats were allocated into 5 groups: Group I: control; Group II received BISA orally (100 mg/kg/day for 4 weeks); Group III received DOX (2 mg/kg/week/i.p.) for 4 weeks; Groups IV and V were administered BISA orally at 50 and 100 mg/kg, respectively plus DOX, i. p. Results: 1) BISA attenuated DOX-induced chemofog as shown in memory-related behavioral tests. 2) BISA restored the hippocampal histological structure and redox homeostasis via diminishing MDA content and upregulating Nrf2 and HO-1 genes. 3) BISA mitigated DOX-induced neuroinflammation through reducing NF-kB, TNF-α, IL-6, IL-1β, and GFAP expressions. 4) BISA repressed the hippocampal apoptosis via downregulating Bax gene and upregulating Bcl-2 gene. 5) BISA enhanced the synaptic plasticity by activating the BDNF/TrKB signaling and increasing the levels of neurotransmitters that enhance memory, i.e., ACh, 5-HT, and DA. BISA at 100 mg/kg/day exerted a better neuroprotection than BISA at 50 mg/kg/day. Thus, BISA may protect cancer patients from cognitive disorders caused by DOX.
Collapse
Affiliation(s)
- Sara T. Elazab
- Department of Pharmacology, Facultyof Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walter H. Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Abdelsalam RM, Hamam HW, Eissa NM, El-Sahar AE, Essam RM. Empagliflozin Dampens Doxorubicin-Induced Chemobrain in Rats: The Possible Involvement of Oxidative Stress and PI3K/Akt/mTOR/NF-κB/TNF-α Signaling Pathways. Mol Neurobiol 2025; 62:3480-3492. [PMID: 39302617 DOI: 10.1007/s12035-024-04499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Chemobrain is a cognitive impairment observed in up to 75% of cancer patients treated with doxorubicin (DOX). Cognitive deficits associated with DOX are complex, and multiple interplay pathways contribute to memory impairment and the loss of concentration. Empagliflozin (EMPA), a sodium-glucose co-transporter-2 (SGLT-2) inhibitor with neuroprotective potential, has recently been elucidated because of its regulatory effects on oxidative stress and neuroinflammation. Thus, this study aimed to explore the protective mechanisms of EMPA in DOX-induced chemobrain. Rats were allocated to four groups: normal (NC), EMPA, DOX, and EMPA + DOX. Chemobrain was induced in the third and fourth groups by DOX (2 mg/kg, IP) on the 0th, 7th, 14th, and 21st days of the study, while EMPA was administered (10 mg/kg, PO) for 28 consecutive days in both the EMPA and EMPA + DOX groups. Behavioral and biochemical assessments were then performed. Rats treated with DOX exhibited significant memory, learning, and muscle coordination dysfunctions. Moreover, DOX boosted oxidative stress in the brain, as evidenced by elevated malondialdehyde (MDA) content together with decreased levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and reduced glutathione (GSH). Neuroinflammation was also observed as an upsurge of tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB) (p65). Additionally, DOX diminished the expression of brain-derived neurotrophic factor (BDNF) and increased phosphoinositol-3-kinase (PI3K), phosphorylated-Akt (pAkt), and mammalian target of rapamycin (mTOR) content. EMPA exhibited potent neuroprotective potential in DOX-induced cognitive impairment, attributed to its antioxidant and neuroplasticity-enhancing properties and suppression of the PI3K/Akt/mTOR/NF-κB/TNF-α signaling pathway.
Collapse
Affiliation(s)
- Rania M Abdelsalam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Hatem W Hamam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Noha M Eissa
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Reham M Essam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
8
|
Aboelnasr FG, George MY, Nasr M, Menze ET. Silymarin nanoparticles counteract cognitive impairment induced by doxorubicin and cyclophosphamide in rats; Insights into mitochondrial dysfunction and Nrf-2/HO-1 axis. Eur J Pharmacol 2025; 988:177217. [PMID: 39706469 DOI: 10.1016/j.ejphar.2024.177217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Most cancer patients suffer cognitive impairment following chemotherapy, recognized as "chemobrain". Principally, doxorubicin and cyclophosphamide are frequently utilized conjointly for the treatment of several kinds of tumors. Silymarin was reported to possess anti-inflammatory, antioxidant, and neuroprotective impacts. The recent study shed light on the neuroprotective attributes of silymarin against cognitive dysfunction instigated in rats with doxorubicin/cyclophosphamide combination. Unfortunately, silymarin suffers reduced absorption following oral administration. Silymarin was formulated as a nanoemulsion to be administered intranasally. Male rats were allocated into six groups: control, doxorubicin (2 mg/kg, ip) and cyclophosphamide (50 mg/kg, ip), doxorubicin and cyclophosphamide + silymarin (200 mg/kg, oral), doxorubicin and cyclophosphamide + silymarin nanoemulsion (1 mg/kg, intranasal), silymarin (200 mg/kg, oral), and silymarin nanoemulsion (1 mg/kg, intranasal) groups, and treated for 21 days. The amount of silymarin reaching the brain was found to be enhanced following formulated nanoemulsion administration. Doxorubicin and cyclophosphamide caused behavioral, as well as memory deficits indicated by locomotor activity, y maze, and passive avoidance tests. Also, they induced histological alteration in hippocampi and the prefrontal cortices of rats. Besides, chemotherapy caused cognitive impairment assessed by acetylcholinesterase activity elevation. Additionally, caspase-3 augmentation and of nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) pathway disturbance were found following chemotherapy treatment. Silymarin treatment opposed such effects via enhancing memory function, preserving brain architecture, and reducing acetylcholinesterase activity and caspase-3 level. Moreover, silymarin treatment improved mitochondrial biogenesis through activation Nrf-2/HO-1 axis. Collectively, silymarin nanoemulsion, at a 200-fold lower dose, can offer an innovative solution for cancer patients globally.
Collapse
Affiliation(s)
- Fatma G Aboelnasr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
9
|
Jannapu Reddy S, Mutalik S, Viswanatha GL, Kumar G, John J, Chamallamudi MR, Das A, Das S, Nandakumar K. Nose-to-brain Drug Delivery System: An Emerging Approach to Chemotherapy-induced Cognitive Impairment. Pharm Nanotechnol 2025; 13:212-238. [PMID: 38757164 DOI: 10.2174/0122117385291482240426101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
The rise in global cancer burden, notably breast cancer, emphasizes the need to address chemotherapy-induced cognitive impairment, also known as chemobrain. Although chemotherapy drugs are effective against cancer, they can trigger cognitive deficits. This has triggered the exploration of preventive strategies and novel therapeutic approaches. Nanomedicine is evolving as a promising tool to be used for the mitigation of chemobrain by overcoming the blood-brain barrier (BBB) with innovative drug delivery systems. Polymer and lipid-based nanoparticles enable targeted drug release, enhancing therapeutic effectiveness. Utilizing the intranasal route of administration may facilitate drug delivery to the central nervous system (CNS) by circumventing first-pass metabolism. Therefore, knowledge of nasal anatomy is critical for optimizing drug delivery via various pathways. Despite challenges, nanoformulations exhibit the potential in enhancing brain drug delivery. Continuous research into formulation techniques and chemobrain mechanisms is vital for developing effective treatments. The intranasal administration of nanoformulations holds promise for improving therapeutic outcomes in chemobrain management. This review offers insights into potential future research directions, such as exploring novel drug combinations, investigating alternative delivery routes, or integrating emerging technologies to enhance the efficacy and safety of nanoformulations for chemobrain management.
Collapse
Affiliation(s)
- Shireesha Jannapu Reddy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Gautam Kumar
- Department of Pharmacy, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Arpita Das
- Department of Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Sudip Das
- College of Pharmacy and Health Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN 46208, United States
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
10
|
El Gazzar WB, Farag AA, Samir M, Bayoumi H, Youssef HS, Marei YM, Mohamed SK, Marei AM, Abdelfatah RM, Mahmoud MM, Aboelkomsan EAF, Khalfallah EKM, Anwer HM. Berberine chloride loaded nano-PEGylated liposomes attenuates imidacloprid-induced neurotoxicity by inhibiting NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Biofactors 2025; 51:e2107. [PMID: 39074847 DOI: 10.1002/biof.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Concerns have been expressed about imidacloprid (IMI), one of the most often used pesticides, and its potential neurotoxicity to non-target organisms. Chronic neuroinflammation is central to the pathology of several neurodegenerative disorders. Hence, exploring the molecular mechanism by which IMI would trigger neuroinflammation is particularly important. This study examined the neurotoxic effects of oral administration of IMI (45 mg/kg/day for 30 days) and the potential neuroprotective effect of berberine (Ber) chloride loaded nano-PEGylated liposomes (Ber-Lip) (10 mg/kg, intravenously every other day for 30 days) using laboratory rat. The histopathological changes, anti-oxidant and oxidative stress markers (GSH, SOD, and MDA), proinflammatory cytokines (IL1β and TNF-α), microglia phenotype markers (CD86 and iNOS for M1; CD163 for M2), the canonical pyroptotic pathway markers (NLRP3, caspase-1, GSDMD, and IL-18) and Alzheimer's disease markers (Neprilysin and beta amyloid [Aβ] deposits) were assessed. Oral administration of IMI resulted in apparent cerebellar histopathological alterations, oxidative stress, predominance of M1 microglia phenotype, significantly upregulated NLRP3, caspase-1, GSDMD, IL-18 and Aβ deposits and significantly decreased Neprilysin expression. Berberine reduced the IMI-induced aberrations in the measured parameters and improved the IMI-induced histopathological and ultrastructure alterations brought on by IMI. This study highlights the IMI neurotoxic effect and its potential contribution to the development of Alzheimer's disease and displayed the neuroprotective effect of Ber-Lip.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharqia, Egypt
- School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Heba S Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Yasmin Mohammed Marei
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Azza M Marei
- Department of Zoology, Faculty of Science, Benha University, Benha City, Qalyubia, Egypt
| | - Reham M Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | | | | | - Eman Kamel M Khalfallah
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Hala Magdy Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| |
Collapse
|
11
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
12
|
Nasr MM, Wahdan SA, El-Naga RN, Salama RM. Neuroprotective effect of empagliflozin against doxorubicin-induced chemobrain in rats: Interplay between SIRT-1/MuRF-1/PARP-1/NLRP3 signaling pathways and enhanced expression of miRNA-34a and LncRNA HOTAIR. Neurotoxicology 2024; 105:216-230. [PMID: 39426736 DOI: 10.1016/j.neuro.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Chemobrain, a challenging side effect of doxorubicin (DOX)-based chemotherapy, impairs cognitive abilities in cancer survivors. DOX triggers chemobrain via oxidative stress, leading to inflammation and apoptosis. Empagliflozin (EMPA), a sodium glucose co-transporter-2 inhibitor, demonstrated neuroprotective effects by reducing reactive oxygen species (ROS) and inflammation, but its protective mechanisms against DOX-induced chemobrain is not fully known. Thus, this study aimed to investigate EMPA's neuroprotective effects on DOX-induced chemobrain in rats and to uncover the underlying protective mechanisms. Fifty male Wistar rats were divided into control, EMPA, DOX (2 mg/kg, IP, once/week for 4 weeks), and two treated groups (DOX+ EMPA 5 and 10 mg/kg/day, PO, for 4 weeks). Behavioral tests showed improved memory, motor performance, and reduced anxiety in EMPA-treated groups compared to DOX, with superior results at the higher dose. Histopathological analysis revealed increased intact neurons in the cortex and hippocampus in EMPA-treated groups, with 346.4 % increase in CA3 (p < 0.0001), 19.1 % in dentate gyrus (p = 0.0006), and 362.6 % in cortex (p < 0.0001) in the high-dose EMPA group. Biochemical investigations of the high-dose EMPA group revealed significant decreases in inflammatory and apoptotic markers (JNK/PARP-1/NLRP3/MuRF-1/FOXO-1), increased SIRT-1 protein expression by 389.9 % (p < 0.0001), and reduced miRNA-34a and LncRNA HOTAIR gene expression (50.4 % and 53.4 % respectively, p < 0.0001) relative to DOX group. Conclusively, EMPA demonstrated superior behavioral and histopathological outcomes particularly at higher dose, positioning it as a promising neuroprotective candidate against DOX-induced chemobrain, possibly through modulating SIRT-1, NF-κb, NLRP3, and oxidative stress pathways.
Collapse
Affiliation(s)
- Merihane M Nasr
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
13
|
Amaro-Leal Â, Afonso AI, Machado F, Shvachiy L, Rocha I, Outeiro TF, Geraldes V. Dose-Dependent Cognitive Decline, Anxiety, and Locomotor Impairments Induced by Doxorubicin: Evidence from an Animal Model. BIOLOGY 2024; 13:939. [PMID: 39596894 PMCID: PMC11592173 DOI: 10.3390/biology13110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Cognitive impairment and anxiety are common side effects of chemotherapy, particularly with the use of doxorubicin (DOX), known as "chemobrain". This study aimed to examine the dose-dependent effects of DOX on cognitive decline, anxiety, and locomotor activity in healthy female Wistar rats. The rats were divided into groups receiving low (2 mg/kg), intermediate (4 mg/kg), and high (5 mg/kg) doses of DOX for four weeks, alongside a control group. Behavioral tests, including open field, elevated plus maze, and Y-maze tests, assessed anxiety, locomotion, and cognitive performance, while brain tissue analysis evaluated neuroinflammation using markers such as GFAP and Iba-1. The results showed that all doses of DOX induced anxiety-like behavior, reduced locomotion, and caused neuroinflammation in the hippocampus, with more severe effects at higher doses. Notably, high-dose DOX also caused short-term memory deficits. These findings highlight the dose-dependent nature of DOX's impact on behavior and cognition, suggesting that DOX plays a key role in the development of cognitive symptoms during chemotherapy. Further research is needed to understand the mechanisms behind these effects and to explore potential interventions.
Collapse
Affiliation(s)
- Ângela Amaro-Leal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Ana I. Afonso
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Filipa Machado
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Liana Shvachiy
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Isabel Rocha
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Vera Geraldes
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Av. Prof Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
14
|
Gupta M, Rumman M, Singh B, Pandey S. Protective effects of berberine against diabetes-associated cognitive decline in mice. Acta Diabetol 2024:10.1007/s00592-024-02411-0. [PMID: 39514003 DOI: 10.1007/s00592-024-02411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
AIMS Diabetes associated cognitive decline (DACD) is a common CNS-related consequence of diabetes. The primary clinical manifestation of DACD includes learning and memory impairment. Unfortunately, there is no cure to delay the cognitive symptoms of diabetes. Although berberine (BBR) has shown promising effect in the treating diabetes and cognitive dysfunction, more research is needed to understand the mechanism of its therapeutic effect. For better understanding, we investigated the functions of BBR involved in anti-inflammation, anti-oxidant and neuroprotection in the hippocampus of diabetic mice. METHODS Diabetes was induced in mice using STZ. BBR was administered for 4 weeks before (pre-treatment), and after (post-treatment) STZ administration. The effect of BBR on cognitive functions in diabetic mice was determined using neurobehavioural test. Moreover, how BBR affected neuroinflammation, oxidative stress, and acetylcholine levels in the hippocampus and BBB permeability were analyzed using standard biochemical assays. Lastly, we evaluated the mRNA expression of neuroprotective genes in the hippocampus to uncover the mechanism of BBR. RESULTS Treatment with BBR improved cognition in diabetic mice. It significantly reduced the levels of IL-6, iNOS, TNF-α, IL-1β, ROS and MDA and increased the levels of TAC, GSH, SOD and Catalase. Moreover, levels of acetylcholine and BBB permeability were reduced in the diabetic mice which was reversed by BBR treatment and increased the expression of IGF and BDNF in the hippocampus of diabetic mice. CONCLUSION Our results suggest that BBR might be a potential therapeutic candidate for the treatment of DACD. Our study might serve as a basis for developing novel drugs for treating DACD.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry , King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biosciences , Integral University , Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry , King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry , King George's Medical University , Lucknow, Uttar Pradesh, India.
| |
Collapse
|
15
|
Demir S, Turkmen Alemdar N, Kucuk H, Ayazoglu Demir E, Menteşe A, Aliyazıcıoğlu Y. Therapeutic effect of berberine against 5-fluorouracil induced ovarian toxicity in rats. Biotech Histochem 2024; 99:379-385. [PMID: 39440588 DOI: 10.1080/10520295.2024.2415005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Berberine (BER) is a naturally occurring alkaloid with a multitude of beneficial effects on human health. Although it is one of the most studied phytochemicals, its curative effect against ovarian damage caused by 5-fluorouracil (5-FU) has not been demonstrated to date. The aim of this study was to investigate the possible protective effect of BER against 5-FU-induced ovotoxicity, focusing on its ability to attenuate oxidative stress, inflammation and apoptosis. The 30 female rats were randomly divided into five groups: Control, BER (2 mg/kg), 5-FU (100 mg/kg), 5-FU+BER (1 mg/kg) and 5-FU+BER (2 mg/kg). The levels of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and caspase-3 were determined using spectrophotometric methods. In addition, ovarian samples were evaluated histopathologically using hematoxylin&eosin staining method. The MDA, TOS, 8-OHdG, IL-6, TNF-α and caspase-3 levels significantly increased by 5-FU administration. Also, we found that 5-FU significantly decreased TAS, SOD and CAT levels. Treatments with BER significantly attenuated the 5-FU-induced ovarian damage via increasing the antioxidant capacity and reducing the oxidative stress, inflammation and apoptosis in a dose-dependent manner. Moreover, the ovoprotective effect of BER was also confirmed by histopathological evaluation. BER may be evaluated as a potential candidate molecule to reduce 5-FU-induced ovarian toxicity.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkiye
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Menteşe
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon, Turkiye
| | - Yuksel Aliyazıcıoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
16
|
Phogat A, Singh J, Sheoran R, Hasanpuri A, Chaudhary A, Bhardwaj S, Antil S, Kumar V, Prakash C, Malik V. Berberine Attenuates Acetamiprid Exposure-Induced Mitochondrial Dysfunction and Apoptosis in Rats via Regulating the Antioxidant Defense System. J Xenobiot 2024; 14:1079-1092. [PMID: 39189176 PMCID: PMC11348026 DOI: 10.3390/jox14030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Acetamiprid (ACMP) is a neonicotinoid insecticide that poses a significant threat to the environment and mankind. Oxidative stress and mitochondrial dysfunction are considered prime contributors to ACMP-induced toxic effects. Meanwhile, berberine (BBR) a natural plant alkaloid, is a topic of interest because of its therapeutic and prophylactic actions. Therefore, this study evaluated the effects of BBR on ACMP-mediated alterations in mitochondrial functions and apoptosis in rat liver tissue. Male Wistar rats were divided into four groups: (I) control, (II) BBR-treated, (III) ACMP-exposed, and (IV) BBR+ACMP co-treated groups. The doses of BBR (150 mg/kg b.wt) and ACMP (1/10 of LD50, i.e., 21.7 mg/kg b.wt) were given intragastrically for 21 consecutive days. The results showed that the administration of ACMP diminished mitochondrial complex activity, downregulated complex I (ND1 and ND2) and complex IV (COX1 and COX4) subunit mRNA expression, depleted the antioxidant defense system, and induced apoptosis in rat liver. BBR pre-treatment significantly attenuated ACMP-induced mitochondrial dysfunction by maintaining mitochondrial complex activity and upregulating ND1, ND2, COX1, and COX4 mRNA expression. BBR reversed ACMP-mediated apoptosis by diminishing Bax and caspase-3 and increasing the Bcl-2 protein level. BBR also improved the mitochondrial antioxidant defense system by upregulating mRNA expression of PGC-1α, MnSOD, and UCP-2 in rat liver tissue. This study is the first to evaluate the protective potential of BBR against pesticide-induced mitochondrial dysfunction in liver tissue. In conclusion, BBR offers protection against ACMP-induced impairment in mitochondrial functions by maintaining the antioxidant level and modulating the apoptotic cascade.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India;
| | - Reena Sheoran
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Arun Hasanpuri
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Aakash Chaudhary
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Shakti Bhardwaj
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Sandeep Antil
- Department of Zoology, ANDC College, University of Delhi, New Delhi 110019, India;
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India;
| | - Chandra Prakash
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| |
Collapse
|
17
|
Singh A, Kumar V, Langeh U, Kapil L, Kaur S, Rana N, Bhattacharya A, Singh R, Bhatti JS, Singh C. In-vitro and in-vivo studies of two-drug cocktail therapy targeting chemobrain via the Nrf2/NF-κB signaling pathway. J Mol Histol 2024; 55:599-625. [PMID: 39042217 DOI: 10.1007/s10735-024-10217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Today, we critically need alternative therapeutic options for chemotherapy-induced cognitive impairment (CICI), often known as chemo brain. Mitochondrial dysfunction and oxidative stress are two of the primary processes that contribute to the development of chemobrain. Therefore, the purpose of this study was to investigate how CoQ10 and berberine shield neurons from chemotherapy-induced damage in in-vitro studies and memory loss in vivo studies. For the in-vitro investigation, we employed SH-SY5Y cell lines, and for the in-vivo study, we used female Swiss albino mice divided into seven different groups. Data from in-vitro studies revealed that treatment with coenzyme Q10 (CoQ10) and berberine improved chemotherapy-induced toxicity by reducing mitochondrial and total cellular ROS, as well as apoptosis-elicited markers (caspase 3 and 9). CoQ10 and berberine therapy inhibited the nuclear translocation of NF-κB and, consequently, the subsequent expressions of NLRP3 and IL-1β, implying the prevention of inflammasome formation. Furthermore, CoQ10 and berberine therapy boosted Nrf2 levels. This is a regulator for cellular resistance to oxidants. The in vivo results showed that treatment with CoQ10 (40 mg/kg) and berberine (200 mg/kg) improved the behavioral alterations induced by CAF (40/4/25 mg/kg) in both the Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests. Furthermore, biochemical and molecular evidence revealed the antioxidant, mitochondrial restorative, and anti-inflammatory potential of CoQ10 (40 mg/kg) and berberine (200 mg/kg) against CAF (40/4/25 mg/kg) subjected mice. In addition, the histological analysis using H&E staining and transmission electron microscopy (for mitochondrial morphology) showed that mice treated with the cocktails had an increased number of healthy neurons with intact mitochondria and a reduced presence of autophagic vacuoles in the hippocampal region of the brain. These findings back up our theory about this novel cocktail method for CAF-induced cognitive impairment.
Collapse
Affiliation(s)
- Arti Singh
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India.
- Department of Pharmaceutical Sciences, School of Health Science & Technology, UPES, Dehradun, India.
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
| | - Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Hyderabad, 500037, Telangana, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy affiliated to I.K Gujral Punjab Technical University, Jalandhar, 142001, Punjab, India
| | - Arka Bhattacharya
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, 142001, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand, 246174, India
| |
Collapse
|
18
|
Ma Y, Chai W, Bu D, Feng X, Ashford JW, He L, Zheng Y, Ashford CB, Li F, Li J, Dong Y, Li S, Zhou X. Toward better understanding and management of chemobrain: the potential utilities of the MemTrax memory test. BMC Womens Health 2024; 24:406. [PMID: 39020328 PMCID: PMC11253354 DOI: 10.1186/s12905-024-03251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE To study the effects of chemotherapy on cognitive function in breast cancer patients, and to investigate the relationship of MemTrax test of memory and related functions to the FACT-Cog functional self-assessment for the evaluation and management of chemobrain. METHODS In this prospective cohort study, clinical information of pathologically confirmed female breast cancer patients who decided to receive chemotherapy were collected in a questionnaire which was developed for this study and provided as a supplementary file. The FACT-Cog self-assessment and MemTrax test were administered before and after the chemotherapy treatments. Patients with chemobrain were identified using published criteria based on FACT-Cog scores, and MemTrax scores from chemobrain patients were analyzed. RESULTS Fifty-six patients participated in this study, of which 41 participants completed 4 or more cycles of chemotherapy and were included in the final analyses here. Using the reported high end of minimal clinical differences (10.6 points) of FACT-Cog before and after chemotherapy, 18 patients suffered from chemobrain in this study. In these 18 chemobrain patients, no cognitive impairments were detected by MemTrax, which paradoxically demonstrated an improvement in the normal cognitive range. CONCLUSION The cognitive impairment induced by chemotherapy in breast cancer patients is detectable by the FACT-Cog in a Chinese cohort but is not detected by the MemTrax memory test. The fact that the more objective MemTrax could not detect the impairment could alleviate patients' concerns which in turn would be beneficial for patients' mental health.
Collapse
Affiliation(s)
- Yun Ma
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| | - Wenying Chai
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| | - Deyong Bu
- Department of Geriatric General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xuemin Feng
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - J Wesson Ashford
- Department of Psychiatry & Behavioral Sciences, Stanford University, War Related Illness & Injury Study Center, VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, USA
| | - Limei He
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Ying Zheng
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | | | - Feng Li
- Kunming Escher Technology Co. Ltd, Kunming, Yunnan, China
| | - Jun Li
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuan Dong
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Shumo Li
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xianbo Zhou
- Center for Alzheimer's Research, Washington Institute of Clinical Research, Vienna, VA, USA
- AstraNeura, Co., Ltd, Shanghai, China
| |
Collapse
|
19
|
Abu-Risha SE, Sokar SS, Elzorkany KE, Elsisi AE. Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/ PGC-1α and p38-MAPK/NF-κB/ IL-1β signaling cascades. Int Immunopharmacol 2024; 134:112240. [PMID: 38744177 DOI: 10.1016/j.intimp.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The mounting evidence of valproate-induced testicular damage in clinical settings is alarming, especially for men taking valproate (VPA) for long-term or at high doses. Both donepezil (DON) and quercetin (QUE) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, this study aimed to determine whether DON, QUE, and their combination could mitigate VPA-induced testicular toxicity and unravel the mechanisms underlying their protective effect. In this study, male albino rats were randomly categorized into six equal groups: control, VPA (500 mg/kg, I.P., for 14 days), DON (3 and 5 mg/kg), QUE (50 mg/kg), and DON 3 + QUE combination groups. The DON and QUE treatments were administered orally for 7 consecutive days before VPA administration and then concomitantly with VPA for 14 days. VPA administration disrupted testicular function by altering testicular architecture, ultrastructure, reducing sperm count, viability, and serum testosterone levels. Additionally, VPA triggered oxidative damage, inflammatory, and apoptotic processes and suppressed the AMPK/SIRT1/PGC-1α signaling cascade. Pretreatment with DON, QUE, and their combination significantly alleviated histological and ultrastructure damage caused by VPA and increased the serum testosterone level, sperm count, and viability. They also suppressed the oxidative stress by reducing testicular MDA content and elevating SOD activity. In addition, they reduced the inflammatory response by suppressing IL-1β level, NF-κB, and the p38-MAPK expression as well as inhibiting apoptosis by diminishing caspase-3 and increasing Bcl-2 expression. These novel protective effects were mediated by upregulating AMPK/SIRT1/PGC-1α signaling cascade. In conclusion, these findings suggest that DON, QUE, and their combination possess potent protective effects against VPA-induced testicular toxicity.
Collapse
Affiliation(s)
- Sally E Abu-Risha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samia S Sokar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Kawthar E Elzorkany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
20
|
El-Shetry ES, Ibrahim IA, Kamel AM, Abdelwahab OA. Quercetin mitigates doxorubicin-induced neurodegenerative changes in the cerebral cortex and hippocampus of rats; insights to DNA damage, inflammation, synaptic plasticity. Tissue Cell 2024; 87:102313. [PMID: 38286061 DOI: 10.1016/j.tice.2024.102313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Doxorubicin (Dox) is one of the most effective anti-neoplastic agents. Quercetin (QE) exhibits antioxidant and anti-inflammatory properties. AIM To detect neuroprotective properties of quercetin in rats exposed to doxorubicin-induced brain injury. MATERIAL AND METHODS 48 rats were allocated equally into four groups: control group: (given normal saline), QE group: (given 80 mg/kg of QE orally daily for 2 weeks), Dox group: (received 2.5 mg/kg of Dox every other day for a total of seven intraperitoneal injections), and Dox+QE group: (received 2.5 mg/kg of Dox every other day for a total of seven intraperitoneal injections and 80 mg/kg of QE orally daily for 2 weeks). Subsequently, biochemical analyses were carried out along with histopathological (light and electron microscopic) and immunohistochemical examinations of the cerebral cortex and hippocampus. RESULTS The Dox group revealed a decline in the activities of superoxide dismutase, catalase, and glutathione peroxidase, along with an increase in malondialdehyde and an increase in DNA damage. Furthermore, sections of the cerebral cortex and hippocampus revealed neurodegenerative changes, decreased synaptophysin, and increased Interleukin-1 beta expressions. Biochemical and histopathological results were markedly improved by QE administration. CONCLUSIONS It can be concluded that QE induces protective effects against Dox-induced neurotoxicity.
Collapse
Affiliation(s)
- Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Anatomy, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Ibrahim Amin Ibrahim
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Mahde Kamel
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Ola Ali Abdelwahab
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Zhang J, Song J, Li H, Li Z, Chen M, Ma S, Shen R, Lou X. Berberine protects against neomycin-induced ototoxicity by reducing ROS generation and activating the PI3K/AKT pathway. Neurosci Lett 2023; 817:137518. [PMID: 37844727 DOI: 10.1016/j.neulet.2023.137518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
In mammals, aminoglycoside antibiotic-induced injury to hair cells (HCs) and associated spiral ganglion neurons (SGNs) is irreversible and eventually leads to permanent hearing loss. Efforts have been directed towards the advancement of efficacious therapeutic treatments to protect hearing loss, but the ideal substance for treating the damaged cochlear sensory epithelium has yet to be identified. Berberine (BBR), a quaternary ammonium hydroxide extracted from Coptis chinensis, has been found to display potential anti-oxidant and neuroprotective properties. However, its involvement in aminoglycoside antibiotic-induced ototoxicity has yet to be explored or assessed. In the present study, we explored the possible anti-oxidative properties of BBR in mitigating neomycin-triggered ototoxicity. An improved survival of HCs and SGN nerve fibers (NFs) in organ of Corti (OC) explants after neomycin with BBR co-treatment was observed, and BBR treatment attenuated reactive oxygen species (ROS) generation and reduced cleaved caspase-3 signaling by activating six phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling relative subtypes, and the addition of PI3K/AKT suppressor LY294002 resulted in a decrease in the protective effect. The protective effect of BBR against ototoxicity was also evident in a neomycin-injured animal model, as evidenced by the preservation of HC and SGN in mice administered subcutaneous BBR for 7 days. In summary, all results suggest that BBR has potential as a new and effective otoprotective agent, operating via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Junming Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Jianhao Song
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Haobo Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Zhaoxia Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Mengyu Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Shutao Ma
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hosptial of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiangxin Lou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China.
| |
Collapse
|
22
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
23
|
Phogat A, Singh J, Malik V, Kumar V. Neuroprotective potential of berberine against acetamiprid induced toxicity in rats: Implication of oxidative stress, mitochondrial alterations, and structural changes in brain regions. J Biochem Mol Toxicol 2023; 37:e23434. [PMID: 37350525 DOI: 10.1002/jbt.23434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Acetamiprid (ACMP) is an extensively used neonicotinoid pesticide to control sucking and chewing insects and is known to cause nontarget toxicity. The present study aimed to evaluate the ameliorative potential of berberine (BBR)-a polyphenolic alkaloid- on ACMP-induced oxidative stress, mitochondrial dysfunctioning, and structural changes in different rat brain regions. The male Wistar rats were divided into four groups, that is, control, BBR-treated (150 mg/kg b.wt), ACMP-exposed (21.7 mg/kg b.wt) and BBR + ACMP co-treated; and were dosed intragastrically for 21 consecutive days. Results of the biochemical analysis showed that BBR significantly ameliorated ACMP-induced oxidative stress by decreasing lipid peroxidation and protein oxidation along with a marked increase in endogenous antioxidants and lowered AChE activity in rat brain regions. Inside mitochondria, BBR significantly attenuated the toxic effects of ACMP by increasing the activity of mitochondrial complexes. Findings of polymerase chain reaction also demonstrated the modulatory effects of BBR against ACMP-mediated downregulation of ND1, ND2, COX1, and COX4 subunits of mitochondrial complexes. The histopathological and ultrastructural examination also validated the biochemical and transcriptional alterations following toxicity of ACMP exposure and the protective potential of BBR against ACMP-induced neurotoxicity. Thus, the present study indicates the promising ameliorative potential of BBR against ACMP-induced neurotoxicity via its antioxidative and modulatory activities.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
24
|
Peng Y, Sun L, Guo W, Liu Z, Wang T, Zou T, Zhou J, Yang X, Fan X. Berberine protects cyclophosphamide and busulfan-induced premature ovarian insufficiency in mouse model. J Pharmacol Sci 2023; 153:46-54. [PMID: 37524454 DOI: 10.1016/j.jphs.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinical syndrome that declines ovarian function in women. Berberine (BBR) is a compound with anti-inflammatory, antioxidant, and anti-apoptotic activities. However, the role of BBR on POI is still unknown. In this study, we investigated the role of BBR on ovarian function decline by establishing a POI mouse model using cyclophosphamide (CTX) and busulfan (BU). Our results showed that POI was attenuated by BBR, which was evidenced by enhanced body weight and ovarian weight, improved morphology of ovary, increased the number of healthy follicles, decreased the production of atretic follicles and restored serum hormone levels, including estradiol, anti-Müllerian hormone and follicle-stimulating hormone. In addition, we showed that germ cell function markers, mouse vasa homologue (MVH) and octamer-binding transcription factor 4 (OCT4) were enhanced by BBR, at both protein and mRNA levels. Furthermore, our results revealed that BBR inhibited inflammation and oxidative stress by reducing nuclear factor kappa B (NF-κB) and enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Taken together, we demonstrate that BBR can effectively improve ovarian function in POI mice, which is mainly mediated by reducing oxidative stress and inflammatory response. Our study also provides new strategy for POI treatment.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lu Sun
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Wentong Guo
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhigang Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingfeng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jie Zhou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaodong Fan
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.
| |
Collapse
|
25
|
Yao Z, Dong H, Zhu J, Du L, Luo Y, Liu Q, Liu S, Lin Y, Wang L, Wang S, Wei W, Zhang K, Huang Q, Yu X, Zhao W, Xu H, Qiu X, Pan Y, Huang X, Jim Yeung SC, Zhang D, Zhang H. Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment. JCI Insight 2023; 8:e166306. [PMID: 37485875 PMCID: PMC10443805 DOI: 10.1172/jci.insight.166306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Chemotherapy-related cognitive impairment (CRCI) or "chemo brain" is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro-/- female mice with doxorubicin (DOX) because Ptpro-/- female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro-/- female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro-/- female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI.
Collapse
Affiliation(s)
- Zhimeng Yao
- Department of Urology Surgery, and
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jianlin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Liang Du
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yichen Luo
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Qing Liu
- Department of Pathology, The First People‘s Hospital of Foshan, Foshan, Guangdong, China
| | - Shixin Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Graduate School, Shantou University Medical College, Shantou, Guangdong, China
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Shuhong Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei Wei
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Keke Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | - Xiaojun Yu
- National Key Disciplines, Department of Forensic and Pathology, and
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Haiyun Xu
- Shantou University Mental Health Center
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofu Qiu
- Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine and Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, and Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Mani V, Alshammeri BS. Quetiapine Moderates Doxorubicin-Induced Cognitive Deficits: Influence of Oxidative Stress, Neuroinflammation, and Cellular Apoptosis. Int J Mol Sci 2023; 24:11525. [PMID: 37511284 PMCID: PMC10380642 DOI: 10.3390/ijms241411525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Chemotherapy is considered a major choice in cancer treatment. Unfortunately, several cognitive deficiencies and psychiatric complications have been reported in patients with cancer during treatment and for the rest of their lives. Doxorubicin (DOX) plays an important role in chemotherapy regimens but affects both the central and peripheral nervous systems. Antipsychotic drugs alleviate the behavioral symptoms of aging-related dementia, and the atypical class, quetiapine (QUET), has been shown to have beneficial effects on various cognitive impairments. The present investigation aimed to determine the possible mechanism underlying the effect of thirty-day administrations of QUET (10 or 20 mg/kg, p.o.) on DOX-induced cognitive deficits (DICDs). DICDs were achieved through four doses of DOX (2 mg/kg, i.p.) at an interval of seven days during drug treatment. Elevated plus maze (EPM), novel object recognition (NOR), and Y-maze tasks were performed to confirm the DICDs and find the impact of QUET on them. The ELISA tests were executed with oxidative [malondialdehyde (MDA), catalase, and reduced glutathione (GSH)], inflammatory [cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), and tumor necrosis factor-alpha (TNF-α)], and apoptosis [B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein (Bax), and Caspase-3] markers were assessed in the brain homogenate to explore the related mechanisms. DICD lengthened the transfer latency time in EPM, shortened the exploration time of the novel object, reduced the discrimination ability of the objects in NOR, and lowered the number of arm entries and time spent in the novel arm. QUET alleviated DICD-related symptoms. In addition, QUET reduced neuronal oxidative stress by reducing MDA and elevating GSH levels in the rat brain. Moreover, it reduced neuronal inflammation by controlling the levels of COX-2, NF-κB, and TNF-α. By improving the Bcl-2 level and reducing both Bax and Caspase-3 levels, it protected against neuronal apoptosis. Collectively, our results supported that QUET may protect against DICD, which could be explained by the inhibition of neuronal inflammation and the attenuation of cellular apoptosis protecting against oxidative stress.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Bander Shehail Alshammeri
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
27
|
Murillo LC, Sutachan JJ, Albarracín SL. An update on neurobiological mechanisms involved in the development of chemotherapy-induced cognitive impairment (CICI). Toxicol Rep 2023; 10:544-553. [PMID: 37396847 PMCID: PMC10313882 DOI: 10.1016/j.toxrep.2023.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 07/04/2023] Open
Abstract
Cancer is the second leading cause of death worldwide despite efforts in early diagnosis of the disease and advances in treatment. The use of drugs that exert toxic effects on tumor cells or chemotherapy is one of the most widely used treatments against cancer. However, its low toxic selectivity affects both healthy cells and cancer cells. It has been reported that chemotherapeutic drugs may generate neurotoxicity that induces deleterious effects of chemotherapy in the central nervous system. In this sense, patients report decreased cognitive abilities, such as memory, learning, and some executive functions after chemotherapy. This chemotherapy-induced cognitive impairment (CICI) develops during treatment and persists even after chemotherapy. Here we present a review of the literature on the main neurobiological mechanisms involved in CICI using a Boolean formula following the steps of the PRISMA guidelines that were used to perform statements searches in various databases. The main mechanisms described in the literature to explain CRCI include direct and indirect mechanisms that induce neurotoxicity by chemotherapeutic agents. Therefore, this review provides a general understanding of the neurobiological mechanisms of CICI and the possible therapeutic targets to prevent it..
Collapse
Affiliation(s)
| | | | - Sonia Luz Albarracín
- Correspondence to: Carrera 7 No. 43–82, Edificio Jesús Emilio Ramírez, Lab 304A, Bogotá C.P.110211, Colombia.
| |
Collapse
|
28
|
Gut microbiota-SCFAs-brain axis associated with the antidepressant activity of berberine in CUMS rats. J Affect Disord 2023; 325:141-150. [PMID: 36610597 DOI: 10.1016/j.jad.2022.12.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The anti-depressant effect of berberine (BBR) has been widely reported. However, the underlying mechanism remains unclear. The microbiota-gut-brain (MGB) axis plays a key role in the pathogenesis of depression. Therefore, we aimed to explore the anti-depressant mechanisms of BBR involving the association of the gut microbiota, neurotransmitters, BDNF, and SCFAs in chronic unpredictable mild stress (CUMS)-induced depressive rats. METHODS The antidepressant effects of BBR were detected by open-field test, 1 % sucrose preference test and body weight test in CUMS-induced depressive rats. 16S rDNA sequencing was performed to identify the change of gut microbiota. The concentrations of fecal SCFAs were analyzed by GC-MS targeted metabolomics. At the same time, neurotransmitters and BDNF expression were measured by enzyme linked immunosorbent assay (ELISA). RESULTS BBR improved depression-like behaviors in CUMS rats by increasing the expression of serotonin (5-HT), norepinephrine (NE), dopamine (DA), and BDNF in the hippocampus. BBR regulates Firmicutes, Bacteroidetes, and Lachnospiraceae in depressive rats, resulting in the alteration of the synthesis and metabolism of SCFAs, including acetic, propanoic, and isovaleric acids. LIMITATIONS Direct evidence that BBR improves depressive behaviors via gut microbiota-SCFAs-brain axis is lacking, and only male rats were investigated in the present study. CONCLUSION The anti-depressant mechanism of BBR is related to the regulation of the MGB axis via modulating the gut microbiota-SCFAs-monoamine neurotransmitters/BDNF.
Collapse
|
29
|
Gendy AM, Soubh A, Elnagar MR, Hamza E, Ahmed KA, Aglan A, El-Haddad AE, Farag MA, El-Sadek HM. New insights into the role of berberine against 3-nitropropionic acid-induced striatal neurotoxicity: Possible role of BDNF-TrkB-PI3K/Akt and NF-κB signaling. Food Chem Toxicol 2023; 175:113721. [PMID: 36907500 DOI: 10.1016/j.fct.2023.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Berberine (Berb) is a major alkaloid with potential protective effects against multiple neurological disorders. Nevertheless, its positive effect against 3-nitropropionic acid (3NP) induced Huntington's disease (HD) modulation has not been fully elucidated. Accordingly, this study aimed to assess the possible action mechanisms of Berb against such neurotoxicity using an in vivo rats model pretreated with Berb (100 mg/kg, p.o.) alongisde 3NP (10 mg/kg, i.p.) at the latter 2 weeks to induce HD symptoms. Berb revealed its capacity to partially protect the striatum as mediated via the activation of BDNF-TrkB-PI3K/Akt signaling and amelioration of neuroinflammation status by blocking NF-κB p65 with a concomitant reduction in its downstream cytokines TNF-α and IL-1β. Moreover, its antioxidant potential was evidenced from induction of Nrf2 and GSH levels concurrent with a reduction in MDA level. Furthermore, Berb anti-apoptotic effect was manifested through the induction of pro-survival protein (Bcl-2) and down-regulation of the apoptosis biomarker (caspase-3). Finally, Berb intake ascertained its striatum protective action by improving the motor and histopathological abnormalities with concomitant dopamine restoration. In conclusion, Berb appears to modulate 3NP-induced neurotoxicity by moderating BDNF-TrkB-PI3K/Akt signaling besides its anti-inflammatory, antioxidant, as well as anti-apoptotic effect.
Collapse
Affiliation(s)
- Abdallah M Gendy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt.
| | - Ayman Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12566, Egypt
| | - Mohamed R Elnagar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11823, Egypt; Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq
| | - Eman Hamza
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Medical Biochemistry and Molecular Biology Department, Horus University, Damietta, 11765, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Aglan
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11823, Egypt
| | - Alaadin E El-Haddad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Hagar M El-Sadek
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| |
Collapse
|
30
|
Haller OJ, Semendric I, George RP, Collins-Praino LE, Whittaker AL. The effectiveness of anti-inflammatory agents in reducing chemotherapy-induced cognitive impairment in preclinical models - A systematic review. Neurosci Biobehav Rev 2023; 148:105120. [PMID: 36906244 DOI: 10.1016/j.neubiorev.2023.105120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a debilitating condition resulting from chemotherapy administration for cancer treatment. CICI is characterised by various cognitive impairments, including issues with learning, memory, and concentration, impacting quality of life. Several neural mechanisms are proposed to drive CICI, including inflammation, therefore, anti-inflammatory agents could ameliorate such impairments. Research is still in the preclinical stage; however, the efficacy of anti-inflammatories to reduce CICI in animal models is unknown. Therefore, a systematic review was conducted, with searches performed in PubMed, Scopus, Embase, PsycInfo and Cochrane Library. A total of 64 studies were included, and of the 50 agents identified, 41 (82%) reduced CICI. Interestingly, while non-traditional anti-inflammatory agents and natural compounds reduced impairment, the traditional agents were unsuccessful. Such results must be taken with caution due to the heterogeneity observed in terms of methods employed. Nevertheless, preliminary evidence suggests anti-inflammatory agents could be beneficial for treating CICI, although it may be critical to think beyond the use of traditional anti-inflammatories when considering which specific compounds to prioritise in development.
Collapse
Affiliation(s)
- Olivia J Haller
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Ines Semendric
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rebecca P George
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia
| | | | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia.
| |
Collapse
|
31
|
Vrabec R, Blunden G, Cahlíková L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054399. [PMID: 36901826 PMCID: PMC10003045 DOI: 10.3390/ijms24054399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people; currently, there is no efficient treatment. Considering the increase in life expectancy worldwide AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. A great amount of experimental and clinical evidence indicated that AD is a complex disorder characterized by widespread neurodegeneration of the CNS, with major involvement of the cholinergic system, causing progressive cognitive decline and dementia. The current treatment, based on the cholinergic hypothesis, is only symptomatic and mainly involves the restoration of acetylcholine (ACh) levels through the inhibition of acetylcholinesterase (AChE). Since the introduction of the Amaryllidaceae alkaloid galanthamine as an antidementia drug in 2001, alkaloids have been one of the most attractive groups for searching for new AD drugs. The present review aims to comprehensively summarize alkaloids of various origins as multi-target compounds for AD. From this point of view, the most promising compounds seem to be the β-carboline alkaloid harmine and several isoquinoline alkaloids since they can simultaneously inhibit several key enzymes of AD's pathophysiology. However, this topic remains open for further research on detailed mechanisms of action and the synthesis of potentially better semi-synthetic analogues.
Collapse
Affiliation(s)
- Rudolf Vrabec
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Lucie Cahlíková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
- Correspondence:
| |
Collapse
|
32
|
Elfadadny A, Ragab RF, Hamada R, Al Jaouni SK, Fu J, Mousa SA, El-Far AH. Natural bioactive compounds-doxorubicin combinations targeting topoisomerase II-alpha: Anticancer efficacy and safety. Toxicol Appl Pharmacol 2023; 461:116405. [PMID: 36716865 DOI: 10.1016/j.taap.2023.116405] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide, so pursuing effective and safe therapeutics for cancer is a key research objective nowadays. Doxorubicin (DOX) is one of the commonly prescribed chemotherapeutic agents that has been used to treat cancer with its antimitotic properties via inhibition of topoisomerase II (TOP2) activity. However, many problems hinder the broad use of DOX in clinical practice, including cardiotoxicity and drug resistance. Research in drug discovery has confirmed that natural bioactive compounds (NBACs) display a wide range of biological activities correlating to anticancer outcomes. The combination of NBACs has been seen to be an ideal candidate that might increase the effectiveness of DOX therapy and decreases its unfavorable adverse consequences. The current review discusses the chemo-modulatory mechanism and the protective effects of combined DOX with NBACs with a binding affinity (pKi) toward TOP2A more than pKi of DOX. This review will also discuss and emphasize the molecular mechanisms to provide a pathway for further studies to reveal other signaling pathways. Taken together, understanding the fundamental mechanisms and implications of combined therapy may provide a practical approach to battling cancer diseases.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Rokaia F Ragab
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Rania Hamada
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
33
|
Yao J, Wei W, Wen J, Cao Y, Li H. The efficacy and mechanism of berberine in improving aging-related cognitive dysfunction: A study based on network pharmacology. Front Neurosci 2023; 17:1093180. [PMID: 36743801 PMCID: PMC9895386 DOI: 10.3389/fnins.2023.1093180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Objective To analyze the effects and mechanisms of berberine in the treatment of aging-related cognitive dysfunction based on network pharmacology methods, molecular docking techniques, and animal experiments. Methods A mouse model of cognitive dysfunction was constructed by subcutaneous injection of D-galactose (D-gal) for 10 weeks, and the neuroprotective effects of berberine on aging-related cognitive dysfunction mice were evaluated by the Morris water maze (MWM) and immunofluorescence staining. The targets of berberine were obtained by SwissTargetPrediction, GeneCards, and PharmMapper. Putative targets of cognitive dysfunction were obtained by GeneCards, TTD, and DrugBank database. The STRING database and Cytoscape software were applied for protein-protein interaction (PPI) analysis and further screening of core targets. The DAVID database was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis to clarify the biological processes and pathways involved in the intersection targets, and AutoDockTools was adopted for molecular docking verification of core targets. Finally, the core genes were validated using real-time quantitative PCR. Results The MWM results showed that treatment with berberine significantly improved spatial learning and memory in mice with cognitive decline induced by D-gal. Immunofluorescence staining indicated that berberine modified the levels of aging-related markers in the brain. A total of 386 berberine putative targets associated with cognitive dysfunction were identified based on the public database. The core targets of berberine for improving cognitive function, include Mapk1, Src, Ctnnb1, Akt1, Pik3ca, Tp53, Jun, and Hsp90aa1. GO enrichment and KEGG pathway enrichment analyses indicated that the mechanism of berberine in the treatment of aging-related cognitive dysfunction is attributed to pathways such as PI3K-AKT and MAPK pathways. In vivo experiments further confirmed that Akt1, Ctnnb1, Tp53, and Jun were involved in the neuroprotective actions of berberine. Conclusion This study reveals the multi-target and multi-pathway effects of berberine on regulating aging-related cognitive dysfunction, which provides preclinical evidence and may promote new drug development in mitigating cognitive dysfunction.
Collapse
Affiliation(s)
- Jiuxiu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wen
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Yu Cao,
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Hao Li,
| |
Collapse
|
34
|
Demos-Davies K, Lawrence J, Rogich A, Lind E, Seelig D. Cancer treatment induces neuroinflammation and behavioral deficits in mice. Front Behav Neurosci 2023; 16:1067298. [PMID: 36699654 PMCID: PMC9868853 DOI: 10.3389/fnbeh.2022.1067298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Cancer survivors are increasingly diagnosed with a syndrome of neurocognitive dysfunction termed cancer-related cognitive impairment (CRCI). Chemotherapy and radiation therapy have been implicated in CRCI; however, its underlying pathogenesis remains unclear, hindering effective prevention or treatment. Methods: We used the hairless strain SKH1 (11-12-week-old) and treated the mice with radiation to the right hindlimb, doxorubicin (a chemotherapy agent), concurrent radiation, and doxorubicin, or no treatment (control). Neurocognition was evaluated via standardized behavioral testing following treatment. Mice were subsequently humanely euthanized, and plasma and brains were collected to identify inflammatory changes. Results: Mice treated with radiation, doxorubicin, or both radiation and doxorubicin demonstrated equivalent hippocampal dependent memory deficits and significant increases in activated microglia and astrocytes compared to control mice. Doxorubicin-treated mice had significantly increased plasma IL-6 and failed to gain weight compared to control mice over the study period. Discussion: This study demonstrates that non-brain directed radiation induces both gliosis and neurocognitive deficits. Moreover, this work presents the first characterization of SKH1 mice as a relevant and facile animal model of CRCI. This study provides a platform from which to build further studies to identify potential key targets that contribute to CRCI such that strategies can be developed to mitigate unintended neuropathologic consequences associated with anticancer treatment.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Allison Rogich
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
| | - Erin Lind
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
35
|
Mani V, Rabbani SI, Shariq A, Amirthalingam P, Arfeen M. Piracetam as a Therapeutic Agent for Doxorubicin-Induced Cognitive Deficits by Enhancing Cholinergic Functions and Reducing Neuronal Inflammation, Apoptosis, and Oxidative Stress in Rats. Pharmaceuticals (Basel) 2022; 15:ph15121563. [PMID: 36559014 PMCID: PMC9781976 DOI: 10.3390/ph15121563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer chemotherapy is known to cause cognitive defects in patients. Our study investigated the effect of piracetam (PIRA; 200 or 400 mg/kg) against doxorubicin (DOX)-induced cognitive deficits in a rat model. The cognitive parameters were analyzed using elevated plus-maze, novel object recognition, and Y-maze tests. Acetylcholinesterase (AChE), neuroinflammatory mediators (cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), tumor necrosis factor-alpha (TNF-α)), apoptotic proteins (B-cell lymphoma-2 (Bcl-2), Bcl2 associated X protein (Bax), cysteine aspartate specific protease-3 (caspase-3)), oxidative parameters (malondialdehyde (MDA), catalase (CAT), and glutathione (GSH)) were also determined in the brain. PIRA administration offered significant protection against DOX-induced cognitive deficits in all maze tests and restored cholinergic functions via a significant reduction in AChE levels. Additionally, PIRA suppressed DOX-induced neuroinflammatory mediators (COX-2, PGE2, NF-κB, and TNF-α), pro-apoptotic proteins (Bax and caspase-3), and oxidative stress (MDA). Besides, it facilitated antioxidant (CAT and GSH) levels. Hence, our study highlighted that the neuroprotective activity of PIRA against DOX-induced cognitive deficits can be linked to reductions of AChE levels, neuro-inflammatory mediators, pro-apoptotic proteins, and oxidative stress.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (V.M.); (M.A.); Tel.: +966-508695644 (V.M.)
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Shariq
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Palanisamy Amirthalingam
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (V.M.); (M.A.); Tel.: +966-508695644 (V.M.)
| |
Collapse
|
36
|
Levetiracetam Ameliorates Doxorubicin-Induced Chemobrain by Enhancing Cholinergic Transmission and Reducing Neuroinflammation Using an Experimental Rat Model and Molecular Docking Study. Molecules 2022; 27:molecules27217364. [PMID: 36364190 PMCID: PMC9653834 DOI: 10.3390/molecules27217364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer chemotherapy-induced cognitive impairment (chemobrain) is a major complication that affects the prognosis of therapy. Our study evaluates the nootropic-like activity of levetiracetam (LEVE) against doxorubicin (DOX)-induced memory defects using in vivo and molecular modelling. Rats were treated with LEVE (100 and 200 mg/kg, 30 days) and chemobrain was induced by four doses of DOX (2 mg/kg, i.p.). Spatial memory parameters were evaluated using an elevated plus maze (EPM) and Y-maze. Additionally, acetylcholinesterase (AChE) and the neuroinflammatory biomarkers cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), and tumor necrosis factor-alpha (TNF-α) were analyzed using brain homogenate. PharmMapper was used for inverse docking and AutoDock Vina was used for molecular docking. LEVE treatment significantly diminished the DOX-induced memory impairment parameters in both the EPM and Y-maze. In addition, the drug treatment significantly reduced AChE, COX-2, PGE2, NF-κB, and TNF-α levels compared to DOX-treated animals. The inverse docking procedures resulted in the identification of AChE as the potential target. Further molecular modelling studies displayed interactions with residues Gly118, Gly119, and Ser200, critical for the hydrolysis of ACh. Analysis of the results suggested that administration of LEVE improved memory-related parameters in DOX-induced animals. The ‘nootropic-like’ activity could be related to diminished AChE and neuroinflammatory mediator levels.
Collapse
|
37
|
Seth E, Chopra M. Neuroprotective efficacy of berberine following developmental exposure to chlorpyrifos in F1 generation of Wistar rats: Apoptosis-autophagy interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155292. [PMID: 35439518 DOI: 10.1016/j.scitotenv.2022.155292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Chlorpyrifos (CPF), an organophosphate insecticide commonly used in agriculture and household applications, is considered a developmental neurotoxicant. This study aimed to explain the neuroprotective role of Berberine (BBR) against CPF-induced autophagy dysfunction and apoptotic neurodegeneration in the developing hippocampus. F1 generation of Wistar rats was exposed to CPF (3 mg/kg b.wt.) and co-treated with BBR (10 mg/kg b.wt) in two different exposure regimens, gestational (GD9-12 and GD17-21) and lactational (PND1-20). Our results demonstrated that CPF intoxication instigated cognitive and neurobehavioral impairment, oxidant-antioxidant imbalance, and histomorphological alterations in CA1, CA3, and DG regions of the offsprings. Furthermore, mRNA expression of pro-apoptotic genes (caspase3 and Bax) was upregulated, and that of anti-apoptotic BCl2 was downregulated. In addition, exposure to CPF also activated the autophagy inhibitor (mTOR) transcription and subsequently downregulated the expression of autophagy markers beclin1 and LC3-II. In contrast, gestational and lactational co-treatment of BBR significantly upregulated the enzymatic anti-oxidant bar of the hippocampus and attenuated histological alterations. Moreover, BBR co-treatments reduced apoptotic neurodegeneration in the hippocampal region by regulating the expression of apoptotic genes and upregulated the levels of autophagy, confirmed by ultrastructural studies, decreased gene expression and immunostaining of mTOR and increased, and increased expression gene expression and immunostaining of LC3-II positive cells. Our results confirm that treatment with BBR induces autophagy, which plays a neuroprotective role in CPF-induced developmental neuronal apoptosis in the F1 generation of Wistar rats by regulating the balance between autophagy and apoptosis.
Collapse
Affiliation(s)
- Era Seth
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Mani Chopra
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
38
|
Abd El-Aal SA, AbdElrahman M, Reda AM, Afify H, Ragab GM, El-Gazar AA, Ibrahim SSA. Galangin Mitigates DOX-induced Cognitive Impairment in Rats: Implication of NOX-1/Nrf-2/HMGB1/TLR4 and TNF-α/MAPKs/RIPK/MLKL/BDNF. Neurotoxicology 2022; 92:77-90. [PMID: 35843304 DOI: 10.1016/j.neuro.2022.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
The cognitive and behavioral decline observed in cancer survivors who underwent doxorubicin (DOX)-based treatment raises the need for therapeutic interventions to counteract these complications. Galangin (GAL) is a flavonoid-based phytochemical with pronounced protective effects in various neurological disorders. However, its impact on DOX-provoked neurotoxicity has not been clarified. Hence, the current investigation aimed to explore the ability of GAL to ameliorate DOX-provoked chemo-brain in rats. DOX (2mg/kg, once/week, i.p.) and GAL (50mg/kg, 5 times/week., via gavage) were administered for four successive weeks. The MWM and EPM tests were used to evaluate memory disruption and anxiety-like behavior, respectively. Meanwhile, targeted biochemical markers and molecular signals were examined by the aid of ELISA, Western blotting, and immune-histochemistry. In contrast to DOX-impaired rats, GAL effectively preserved hippocampal neurons, improved cognitive/behavioral functions, and enhanced the expression of the cell repair/growth index and BDNF. The antioxidant feature of GAL was confirmed by the amelioration of MDA, NO and NOX-1, along with restoring the Nrf-2/HO-1/GSH cue. In addition, GAL displayed marked anti-inflammatory properties as verified by the suppression of the HMGB1/TLR4 nexus and p-NF-κB p65 to inhibit TNF-α, IL-6, IL-1β, and iNOS. This inhibitory impact extended to entail astrocyte activation, as evidenced by the diminution of GFAP. These beneficial effects were associated with a notable reduction in p-p38MAPK, p-JNK1/2, and p-ERK1/2, as well as the necroptosis cascade p-RIPK1/p-RIPK3/p-MLKL. Together, these pleiotropic protective impacts advocate the concurrent use of GAL as an adjuvant agent for managing DOX-driven neurodegeneration and cognitive/behavioral deficits. DATA AVAILABILITY: The authors confirm that all relevant data are included in the supplementary materials.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Mohamed AbdElrahman
- Department of Pharmacy, Al-Mustaqbal University College, Babylon 51001, Iraq; Department of Clinical Pharmacy, Badr University Hospital, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Ahmed M Reda
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | |
Collapse
|
39
|
Cheng Z, Kang C, Che S, Su J, Sun Q, Ge T, Guo Y, Lv J, Sun Z, Yang W, Li B, Li X, Cui R. Berberine: A Promising Treatment for Neurodegenerative Diseases. Front Pharmacol 2022; 13:845591. [PMID: 35668943 PMCID: PMC9164284 DOI: 10.3389/fphar.2022.845591] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Berberine, as a natural alkaloid compound, is characterized by a diversity of pharmacological effects. In recent years, many researches focused on the role of berberine in central nervous system diseases. Among them, the effect of berberine on neurodegenerative diseases has received widespread attention, for example Alzheimer's disease, Parkinson's disease, Huntington's disease, and so on. Recent evidence suggests that berberine inhibits the production of neuroinflammation, oxidative, and endoplasmic reticulum stress. These effects can further reduce neuron damage and apoptosis. Although the current research has made some progress, its specific mechanism still needs to be further explored. This review provides an overview of berberine in neurodegenerative diseases and its related mechanisms, and also provides new ideas for future research on berberine.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Chenglan Kang
- Department of Cardiology, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Songtian Che
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
41
|
Wei T, Wang L, Tang J, Ashaolu TJ, Olatunji OJ. Protective effect of Juglanin against doxorubicin-induced cognitive impairment in rats: Effect on oxidative, inflammatory and apoptotic machineries. Metab Brain Dis 2022; 37:1185-1195. [PMID: 35138546 DOI: 10.1007/s11011-022-00923-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer drug, however, side effects such as cognitive impairment and cardiotoxicity have limited its clinical use. Juglanin (JUG) is a flavonoid with excellent antioxidant, anti-inflammatory, neuroprotective and anticancer properties. This study investigated the protective effects of JUG against DOX-induced cognitive decline, oxidative stress and inflammatory response in rats. The rats were orally administrated with JUG or JUG in combination with DOX. After treatment, the animals were subjected to series of behavioral test including Morris water maze, Y-maze and forced swimming tests. After the study, the rats were sacrificed and the level of acetylcholinesterase (AchE), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), malondialdehyde (MDA), interleukin 6 (IL-6), interleukin 1β (IL-1β), tumor necrosis factor alpha (TNF-α), caspase 3 and Nuclear factor kappa B (NF-кB) were assayed in the brain. Histopathological analysis was also performed on the brain of the rats. JUG significantly protected against DOX-induced cognitive impairment and depressive behaviors. In addition, JUG attenuated altered brain histopathological architecture, reduced oxido-inflammatory responses, acetylcholinesterase and caspase 3 activity in the brain of the treated rats. Collectively, the results suggested that JUG offered neuroprotection against DOX induced Chemobrain via ameliorating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Tao Wei
- Department of Neurology, Wuhu Second Peoples Hospital, Wuhu, Anhui, 241001, China
| | - Lei Wang
- Department of Neurology, Wuhu Second Peoples Hospital, Wuhu, Anhui, 241001, China
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, 236800, Bozhou, China
| | | | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, 90110, Hat Yai, Thailand.
| |
Collapse
|
42
|
Shou JW, Shaw PC. Therapeutic Efficacies of Berberine against Neurological Disorders: An Update of Pharmacological Effects and Mechanisms. Cells 2022; 11:cells11050796. [PMID: 35269418 PMCID: PMC8909195 DOI: 10.3390/cells11050796] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Neurological disorders are ranked as the leading cause of disability and the second leading cause of death worldwide, underscoring an urgent necessity to develop novel pharmacotherapies. Berberine (BBR) is a well-known phytochemical isolated from a number of medicinal herbs. BBR has attracted much interest for its broad range of pharmacological actions in treating and/or managing neurological disorders. The discoveries in basic and clinical studies of the effects of BBR on neurological disorders in the last decade have provided novel evidence to support the potential therapeutical efficacies of BBR in treating neurological diseases. In this review, we summarized the pharmacological properties and therapeutic applications of BBR against neurological disorders in the last decade. We also emphasized the major pathways modulated by BBR, which provides firm evidence for BBR as a promising drug candidate for neurological disorders.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 852852, China;
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 852852, China
- Correspondence:
| |
Collapse
|
43
|
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): first review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12:11132-11153. [PMID: 34704580 DOI: 10.1039/d1fo02391h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemobrain or chemofog is one of the important but less investigated side effects, where the cancer survivors treated with chemotherapy develop long-term cognitive impairments, affecting their quality of life. The biological mechanisms triggering the development of chemobrain are largely unknown. However, a literature study suggests the generation of free radicals, oxidative stress, inflammatory cytokines, epigenetic chromatin remodeling, decreased neurogenesis, secretion of brain-derived neurotropic factor (BDNF), dendritic branching, and neurotransmitter release to be the cumulative contributions to the ailment. Unfortunately, there is no means to prevent/mitigate the development and intensity of chemobrain. Given the lack of effective prevention strategies or treatments, preclinical studies have been underway to ascertain the usefulness of natural products in mitigating chemobrain in the recent past. Natural products used in diets have been shown to provide beneficial effects by inhibition of free radicals, oxidative stress, inflammatory processes, and/or concomitant upregulation of various cell survival proteins. For the first time, this review focuses on the published effects of astaxanthin, omega-3 fatty acids, ginsenoside, cotinine, resveratrol, polydatin, catechin, rutin, naringin, curcumin, dehydrozingerone, berberine, C-phycocyanin, the higher fungi Cordyceps militaris, thyme (Thymus vulgaris) and polyherbal formulation Mulmina™ in mitigating cognitive impairments in preclinical models of study, and also addresses their potential neuro-therapeutic mechanisms and applications in preventing/ameliorating chemobrain.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | |
Collapse
|
44
|
Seth E, Ahsan AU, Kaushal S, Mehra S, Chopra M. Berberine affords protection against oxidative stress and apoptotic damage in F1 generation of wistar rats following lactational exposure to chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104977. [PMID: 34802527 DOI: 10.1016/j.pestbp.2021.104977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl)-phosphorothioate; (CPF)) is a widely used lipophilic organophosphorus insecticide that primarily manifests into central and peripheral nervous system toxicity. However, it is poorly investigated as a developmental neurotoxicant and thus remains less explored for pharmacological interventions as well. Berberine (BBR) is a benzylisoquinoline alkaloid, primarily found in the plants of Berberidaceae family, and is used for the synthesis of several bioactive derivatives. The goal of this study was to evaluate the CPF-induced neuronal damage through lactational route and analyze the neuroprotective efficacy of berberine (BBR), a potent antioxidant compound in the F1 generation. The environmentally relevant dose of CPF (3 mg/kg b.wt.) was administered via gavage to pregnant dams from postnatal day 1 to day 20 (PND 1-20). BBR (10 mg/kg b.wt.) was administered concurrently with CPF for the same duration as a co-treatment. Levels of reactive oxygen species, lipid peroxidation, membrane bound ATPases (Na+K+ATPase, Ca2+ATPase, and Mg2+ATPase), DNA damage, histomorphological alterations, cellular apoptosis were increased, and activities of glutathione reductase, endogenous antioxidant enzymes (SOD, CAT, GST, and GR) were decreased in cerebellum and cerebrum regions of CPF exposed pups. CPF triggered neuronal apoptosis by upregulating Bax and caspase-3 and downregulating Bcl-2. Co-treatment of BBR significantly attenuated these effects of CPF signifying oxidative stress mediated chlorpyrifos induced neuronal apoptosis. Berberine treatment ameliorated the CPF-induced downregulation of Bcl-2, Bax translocation, and up-regulation of caspase-3 in F1 pups. Therefore, BBR owing to its multiple pharmacological properties can be further explored for its therapeutic potential as an alternative neuroprotective agent against lactational exposure of chlorpyrifos-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Era Seth
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Aitizaz Ul Ahsan
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Surbhi Kaushal
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sweety Mehra
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Mani Chopra
- Cytogenetics Laboratory, Centre of Advanced Studies, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
45
|
Berberine-loaded nanostructured lipid carriers mitigate warm hepatic ischemia/reperfusion-induced lesion through modulation of HMGB1/TLR4/NF-κB signaling and autophagy. Biomed Pharmacother 2021; 145:112122. [PMID: 34489150 DOI: 10.1016/j.biopha.2021.112122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Berberine (BBR) is a known alkaloid that has verified its protective effects against ischemia/reperfusion (I/RN) lesion in multiple organs but its poor oral bioavailability limited its use. Despite the previous works, its possible impact on the warm hepatic I/RN-induced lesion is not clear. Accordingly, a nanostructured lipid carrier of BBR (NLC BBR) was developed for enhancing its efficiency and to inspect its protective mechanistic against warm hepatic I/RN. METHODS NLC BBR formula was evaluated pharmaceutically. Wistar rats were orally pre-treated with either BBR or NLC BBR (100 mg/kg) for 2 weeks followed by hepatic I/RN (30 min/24 h). Biochemical, ELISA, qPCR, western blot, histopathological, and immunohistochemical studies were performed. KEY FINDINGS Optimized NLC BBR was prepared with a particle size of 130 ± 8.3 nm. NLC BBR divulged its aptitude to safeguard the hepatic tissues partly due to anti-inflammatory capacity through downsizing the HMGB1/TLR4/NF-κB trajectory with concomitant rebating of TNF-α, iNOS, COX-2, and MPO content. Furthermore, NLC BBR antiapoptotic trait was confirmed by boosting the prosurvival protein (Bcl-2) and cutting down the pro-apoptotic marker (Bax). Moreover, its antioxidant nature was confirmed by TAC uplifting besides MDA subsiding. On the other hand, NLC BBR action embroiled autophagy flux spiking merit exemplified in Beclin-1 and LC3-II enhancement. Finally, NLC BBR administration ascertained its hepatocyte guarding action by recovering the histopathological ailment and diminishing serum transaminases. CONCLUSION NLC BBR purveyed reasonable shielding mechanisms and subsided incidents contemporaneous to warm hepatic I/RN lesion in part, by moderating HMGB1/TLR4/NF-κB inflammatory signaling, autophagy, and apoptosis.
Collapse
|
46
|
Ibrahim Fouad G, Ahmed KA. Neuroprotective Potential of Berberine Against Doxorubicin-Induced Toxicity in Rat's Brain. Neurochem Res 2021; 46:3247-3263. [PMID: 34403065 DOI: 10.1007/s11064-021-03428-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/13/2023]
Abstract
Chemotherapy-associated neurotoxicity is one of the principal side-effects for doxorubicin (DOX)-treated cancer patients. Despite its poor-penetration across the blood-brain barrier (BBB), DOX is linked to the induction of oxidative stress and neuroinflammation. Berberine (BEB) is a natural polyphenolic alkaloid, which exhibits unique antioxidant activity and anti-inflammatory potential. The present study was performed to investigate the neuroprotective potential of BEB in a rodent model of DOX-induced neurotoxicity. Neurotoxicity was induced in rats via a single acute dose of DOX (20 mg/kg/week, i.p.). BEB was administered at 50 mg/kg/day orally for 10 days before and 4 days after DOX administration. Brain acetylcholinesterase (AChE) activities were evaluated. Oxidative stress was investigated via the colorimetric determination of lipid peroxides, glutathione reduced (GSH) contents and catalase (CAT) activities in the brain tissue. In addition, DOX-induced genotoxicity was evaluated using comet assay. DOX produced a significant elevation in AChE activities. Additionally, DOX provoked oxidative stress as evidenced from the significant elevation in lipid peroxidation along with depletion in GSH contents and CAT activities. Moreover, DOX resulted in neuroinflammation as indicated by the elevation of pro-inflammatory mediator glial fibrillary acid protein (GFAP), as well as, the pro-apoptotic nuclear factor kappa B (NF-κB) and caspase-3 in brain tissue. Co-treatment with BEB significantly counteracted DOX-induced oxidative stress, neuroinflammation and genotoxicity. Histopathological and immunohistochemical examination supported the biochemical results. BEB demonstrated neuroprotective potential through exerting cholinergic, anti-oxidative, genoprotective, anti-inflammatory, and anti-apoptotic activities. Our findings present BEB as a promising "pre-clinical" neuroprotective agent against DOX-induced neurotoxicity during anti-neoplastic therapy.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
47
|
El-Derany MO, Noureldein MH. Bone marrow mesenchymal stem cells and their derived exosomes resolve doxorubicin-induced chemobrain: critical role of their miRNA cargo. Stem Cell Res Ther 2021; 12:322. [PMID: 34090498 PMCID: PMC8180158 DOI: 10.1186/s13287-021-02384-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX), a widely used chemotherapeutic agent, can cause neurodegeneration in the brain, which leads to a condition known as chemobrain. In fact, chemobrain is a deteriorating condition which adversely affects the lives of cancer survivors. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) and their derived exosomes (BMSCs-Exo) in DOX-induced chemobrain in rat models. Methods Chemobrain was induced by exposing rats to DOX (2 mg/kg, i.p) once weekly for 4 consecutive weeks. After 48 h of the last DOX dose, a subset of rats was supplied with either an intravenous injection of BMSCs (1 × 106) or a single dose of 150 μg of BMSCs-Exo. Behavioral tests were conducted 7 days post injection. Rats were sacrificed after 14 days from BMSCs or BMSCs-Exo injection. Results BMSCs and BMSCs-Exo successfully restored DOX-induced cognitive and behavioral distortion. These actions were mediated via decreasing hippocampal neurodegeneration and neural demyelination through upregulating neural myelination factors (myelin%, Olig2, Opalin expression), neurotropic growth factors (BDNF, FGF-2), synaptic factors (synaptophysin), and fractalkine receptor expression (Cx3cr1). Halting neurodegeneration in DOX-induced chemobrain was achieved through epigenetic induction of key factors in Wnt/β-catenin and hedgehog signaling pathways mediated primarily by the most abundant secreted exosomal miRNAs (miR-21-5p, miR-125b-5p, miR-199a-3p, miR-24-3p, let-7a-5p). Moreover, BMSCs and BMSCs-Exo significantly abrogate the inflammatory state (IL-6, TNF-α), apoptotic state (BAX/Bcl2), astrocyte, and microglia activation (GFAP, IBA-1) in DOX-induced chemobrain with a significant increase in the antioxidant mediators (GSH, GPx, SOD activity). Conclusions BMSCs and their derived exosomes offer neuroprotection against DOX-induced chemobrain via genetic and epigenetic abrogation of hippocampal neurodegeneration through modulating Wnt/β-catenin and hedgehog signaling pathways and through reducing inflammatory, apoptotic, and oxidative stress state. Graphical abstract Proposed mechanisms of the protective effects of bone marrow stem cells (BMSCs) and their exosomes (BMSCs-Exo) in doxorubicin (DOX)-induced chemobrain. Blue arrows: induce. Red arrows: inhibit.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02384-9.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Mohamed H Noureldein
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes Program, Beirut, Lebanon
| |
Collapse
|