1
|
Cheng Y, Zhao A, Li Y, Li C, Miao X, Yang W, Wang Y. Roles of SIRT3 in cardiovascular and neurodegenerative diseases. Ageing Res Rev 2025; 104:102654. [PMID: 39755174 DOI: 10.1016/j.arr.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Sirtuin-3 (SIRT3) in mitochondria has nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase activity. As such, SIRT3 is crucial in cardiovascular and neurodegenerative diseases. Advanced proteomics and transcriptomics studies have revealed that SIRT3 expression becomes altered when the heart or brain is affected by external stimuli or disease, such as diabetic cardiomyopathy, atherosclerosis, myocardial infarction, Alzheimer's disease, Huntington's disease, and Parkinson's disease. More specifically, SIRT3 participates in the development of these disorders through its deacetylase activity and in combination with downstream signaling pathways. The paper reviews SIRT3's expression changes, roles, and mechanisms associated with the development of cardiovascular and neurodegenerative diseases. Additionally, strategies targeting SIRT3 to treat or regulate cardiovascular and neurodegenerative disease development are discussed.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China; Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Anqi Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Ying Li
- Department of Medical Clinic, Jilin Women and Children Health Hospital, Changchun, Jilin, China
| | - Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Miao
- The Second Hosptial of Jilin University, Changchun, Jilin, China.
| | - Wanshan Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Li M, McKeon BA, Gu S, Prasad RR, Zhang H, Kumar S, Riddle S, Irwin DC, Stenmark KR. Honokiol and Nicotinamide Adenine Dinucleotide Improve Exercise Endurance in Pulmonary Hypertensive Rats Through Increasing SIRT3 Function in Skeletal Muscle. Int J Mol Sci 2024; 25:11600. [PMID: 39519152 PMCID: PMC11545838 DOI: 10.3390/ijms252111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary hypertension (PH) significantly impairs exercise capacity and the quality of life in patients, which is influenced by dysfunctions in multiple organ systems, including the right ventricle, lungs, and skeletal muscles. Recent research has identified metabolic reprogramming and mitochondrial dysfunction as contributing factors to reduced exercise tolerance in PH patients. In this study, we investigated the therapeutic potential of enhancing mitochondrial function through the activation of the mitochondrial deacetylase SIRT3, using SIRT3 activator Honokiol combined with the SIRT3 co-factor nicotinamide adenine dinucleotide (NAD), in a Sugen/Hypoxia-induced PH rat model. Our results show that Sugen/Hypoxia-induced PH significantly impairs RV, lung, and skeletal muscle function, leading to reduced exercise capacity. Treatment with Honokiol and NAD notably improved exercise endurance, primarily by restoring SIRT3 levels in skeletal muscles, reducing proteolysis and atrophy in the gastrocnemius, and enhancing mitochondrial complex I levels in the soleus. These effects were independent of changes in cardiopulmonary hemodynamics. We concluded that targeting skeletal muscle dysfunction may be a promising approach to improving exercise capacity and overall quality of life in PH patients.
Collapse
Affiliation(s)
- Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Peng F, Liao M, Jin W, Liu W, Li Z, Fan Z, Zou L, Chen S, Zhu L, Zhao Q, Zhan G, Ouyang L, Peng C, Han B, Zhang J, Fu L. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Signal Transduct Target Ther 2024; 9:133. [PMID: 38744811 PMCID: PMC11094072 DOI: 10.1038/s41392-024-01816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-β (TGF-β)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Liu
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhichao Fan
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Zou
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Ouyang
- West China School of Pharmacy and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
4
|
Zhang Q, Siyuan Z, Xing C, Ruxiu L. SIRT3 regulates mitochondrial function: A promising star target for cardiovascular disease therapy. Biomed Pharmacother 2024; 170:116004. [PMID: 38086147 DOI: 10.1016/j.biopha.2023.116004] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Dysregulation of mitochondrial homeostasis is common to all types of cardiovascular diseases. SIRT3 regulates apoptosis and autophagy, material and energy metabolism, mitochondrial oxidative stress, inflammation, and fibrosis. As an important mediator and node in the network of mechanisms, SIRT3 is essential to many activities. This review explains how SIRT3 regulates mitochondrial homeostasis and the tricarboxylic acid cycle to treat common cardiovascular diseases. A novel description of the impact of lifestyle factors on SIRT3 expression from the angles of nutrition, exercise, and temperature is provided.
Collapse
Affiliation(s)
- Qin Zhang
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Zhou Siyuan
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Chang Xing
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Liu Ruxiu
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China.
| |
Collapse
|
5
|
Li M, Plecitá-Hlavatá L, Dobrinskikh E, McKeon BA, Gandjeva A, Riddle S, Laux A, Prasad RR, Kumar S, Tuder RM, Zhang H, Hu CJ, Stenmark KR. SIRT3 Is a Critical Regulator of Mitochondrial Function of Fibroblasts in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 69:570-583. [PMID: 37343939 PMCID: PMC10633840 DOI: 10.1165/rcmb.2022-0360oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/21/2023] [Indexed: 06/23/2023] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous and life-threatening cardiopulmonary disorder in which mitochondrial dysfunction is believed to drive pathogenesis, although the underlying mechanisms remain unclear. To determine if abnormal SIRT3 (sirtuin 3) activity is related to mitochondrial dysfunction in adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension (IPAH) and hypoxic PH calves (PH-Fibs) and whether SIRT3 could be a potential therapeutic target to improve mitochondrial function, SIRT3 concentrations in control fibroblasts, PH-Fibs, and lung tissues were determined using quantitative real-time PCR and western blot. SIRT3 deacetylase activity in cells and lung tissues was determined using western blot, immunohistochemistry staining, and immunoprecipitation. Glycolysis and mitochondrial function in fibroblasts were measured using respiratory analysis and fluorescence-lifetime imaging microscopy. The effects of restoring SIRT3 activity (by overexpression of SIRT3 with plasmid, activation SIRT3 with honokiol, and supplementation with the SIRT3 cofactor nicotinamide adenine dinucleotide [NAD+]) on mitochondrial protein acetylation, mitochondrial function, cell proliferation, and gene expression in PH-Fibs were also investigated. We found that SIRT3 concentrations were decreased in PH-Fibs and PH lung tissues, and its cofactor, NAD+, was also decreased in PH-Fibs. Increased acetylation in overall mitochondrial proteins and SIRT3-specific targets (MPC1 [mitochondrial pyruvate carrier 1] and MnSOD2 [mitochondrial superoxide dismutase]), as well as decreased MnSOD2 activity, was identified in PH-Fibs and PH lung tissues. Normalization of SIRT3 activity, by increasing its expression with plasmid or with honokiol and supplementation with its cofactor NAD+, reduced mitochondrial protein acetylation, improved mitochondrial function, inhibited proliferation, and induced apoptosis in PH-Fibs. Thus, our study demonstrated that restoration of SIRT3 activity in PH-Fibs can reduce mitochondrial protein acetylation and restore mitochondrial function and PH-Fib phenotype in PH.
Collapse
Affiliation(s)
- Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - B. Alexandre McKeon
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Aneta Gandjeva
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Aya Laux
- Department of Craniofacial Biology, and
| | - Ram Raj Prasad
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Rubin M. Tuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | | | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| |
Collapse
|
6
|
Bozdemir N, Uysal F. Histone acetyltransferases and histone deacetyl transferases play crucial role during oogenesis and early embryo development. Genesis 2023; 61:e23518. [PMID: 37226850 DOI: 10.1002/dvg.23518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Kang H. Regulation of Acetylation States by Nutrients in the Inhibition of Vascular Inflammation and Atherosclerosis. Int J Mol Sci 2023; 24:ijms24119338. [PMID: 37298289 DOI: 10.3390/ijms24119338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Atherosclerosis (AS) is a chronic metabolic disorder and primary cause of cardiovascular diseases, resulting in substantial morbidity and mortality worldwide. Initiated by endothelial cell stimulation, AS is characterized by arterial inflammation, lipid deposition, foam cell formation, and plaque development. Nutrients such as carotenoids, polyphenols, and vitamins can prevent the atherosclerotic process by modulating inflammation and metabolic disorders through the regulation of gene acetylation states mediated with histone deacetylases (HDACs). Nutrients can regulate AS-related epigenetic states via sirtuins (SIRTs) activation, specifically SIRT1 and SIRT3. Nutrient-driven alterations in the redox state and gene modulation in AS progression are linked to their protein deacetylating, anti-inflammatory, and antioxidant properties. Nutrients can also inhibit advanced oxidation protein product formation, reducing arterial intima-media thickness epigenetically. Nonetheless, knowledge gaps remain when it comes to understanding effective AS prevention through epigenetic regulation by nutrients. This work reviews and confirms the underlying mechanisms by which nutrients prevent arterial inflammation and AS, focusing on the epigenetic pathways that modify histones and non-histone proteins by regulating redox and acetylation states through HDACs such as SIRTs. These findings may serve as a foundation for developing potential therapeutic agents to prevent AS and cardiovascular diseases by employing nutrients based on epigenetic regulation.
Collapse
Affiliation(s)
- Hyunju Kang
- Department of Food and Nutrition, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
8
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
9
|
Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci 2022; 23:ijms231911148. [PMID: 36232471 PMCID: PMC9569556 DOI: 10.3390/ijms231911148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular walls related to aging. Thus far, the roles of cellular senescence and bacterial infection in the pathogenesis of atherosclerosis have been speculated to be independent of each other. Some types of macrophages, vascular endothelial cells, and vascular smooth muscle cells are in a senescent state at the sites of atherosclerotic lesions. Likewise, bacterial infections and accumulations of lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria, have also been observed in the atherosclerotic lesions of patients. This review introduces the integration of these two potential pathways in atherosclerosis. Previous studies have suggested that LPS directly induces cellular senescence in cultured monocytes/macrophages and vascular cells. In addition, LPS enhances the inflammatory properties (senescence-associated secretory phenotype [SASP]) of senescent endothelial cells. Thus, LPS derived from Gram-negative bacteria could exaggerate the pathogenesis of atherosclerosis by inducing and enhancing cellular senescence and the SASP-associated inflammatory properties of specific vascular cells in atherosclerotic lesions. This proposed mechanism can provide novel approaches to preventing and treating this common age-related disease.
Collapse
|
10
|
Wang P, Zhang H, Wang Y. Circ_0003423 Alleviates Oxidized Low-Density Lipoprotein-Induced Endothelial Cell Injury by Sponging miR-142-3p and Activating Sirtuin 3/Superoxide Dismutase 2 Pathway. J Surg Res 2022; 277:384-397. [DOI: 10.1016/j.jss.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/24/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022]
|
11
|
Pan X, Pi C, Ruan X, Zheng H, Zhang D, Liu X. Mammalian Sirtuins and Their Relevance in Vascular Calcification. Front Pharmacol 2022; 13:907835. [PMID: 35677446 PMCID: PMC9168231 DOI: 10.3389/fphar.2022.907835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are a group of diseases with high morbidity and mortality that affect millions of people each year. Vascular calcification (VC) is an active process that involves the mineral deposition of calcium-phosphate complexes. VC is closely related to cardiovascular diseases, such as hypertension, heart failure, and calcific aortic stenosis, and is a type of ectopic calcification that occurs in the vessel walls. The sirtuins (silent mating-type information regulation 2; SIRTs), are a family of histone deacetylases whose function relies on nicotinamide adenine dinucleotide (NAD+). They have non-negligible functions in the regulation of energy metabolism, senescence, apoptosis, and other biological processes. Sirtuins have important effects on bone homeostasis and VC processes that share many similarities with bone formation. Sirtuins have been confirmed to deacetylate a variety of target proteins related to the occurrence and development of VC, thereby affecting the process of VC and providing new possibilities for the prevention and treatment of cardiovascular diseases. To facilitate the understanding of vascular calcification and accelerate the development of cardiovascular drugs, we reviewed and summarized recent research progress on the relationship between different types of sirtuins and VC.
Collapse
Affiliation(s)
- Xinyue Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hanhua Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| |
Collapse
|
12
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Hao Y, Yang Z, Li Q, Wang Z, Liu J, Wang J. 5-Heptadecylresorcinol Protects against Atherosclerosis in Apolipoprotein E-Deficient Mice by Modulating SIRT3 Signaling: The Possible Beneficial Effects of Whole Grain Consumption. Mol Nutr Food Res 2022; 66:e2101114. [PMID: 35297565 DOI: 10.1002/mnfr.202101114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Indexed: 12/17/2022]
Abstract
SCOPE Whole grain consumption has been proven to be inversely associated with the risk of cardiovascular diseases. As a biomarker for whole grain dietary intake, 5-heptadecylresorcinol (AR-C17) has attracted increased attention due to its potential health-improving activity. However, the beneficial effect of AR-C17 on atherosclerosis prevention and the underlying mechanism remain unclear. METHODS AND RESULTS High-fat diet fed apolipoprotein E-deficient (ApoE-/- ) mice are administrated with or without AR-C17 (30 and 150 mg kg-1 ) for 16 weeks. Histological staining is performed for plaque analysis. Immunofluorescence, western blot, and seahorse cell analysis are carried out to investigate the action of mechanism of AR-C17. The results indicate that AR-C17 supplementation lowered serum total cholesterol, triglyceride, VLDL-C, and LDL-C levels. Moreover, the atherosclerotic plaques in the aortic root region of mice heart are significantly reduced by AR-C17 intervention compared with ApoE-/- control group. In addition, AR-C17 treatment alleviates endothelial cell damage and apoptosis by improving mitochondrial function via sirtuin3 signaling pathway both in ApoE-/- mice and oxidized-LDL-treated human umbilical vein endothelial cells. CONCLUSION AR-C17 may be applied as a promising grain-based dietary bioactive ingredient for atherosclerosis prevention. Meanwhile, as a mitochondrial protective agent, it can offer support for the suggested health claim of whole grain diet.
Collapse
Affiliation(s)
- Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Qing Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
14
|
The Role of Palmitoleic Acid in Regulating Hepatic Gluconeogenesis through SIRT3 in Obese Mice. Nutrients 2022; 14:nu14071482. [PMID: 35406095 PMCID: PMC9003329 DOI: 10.3390/nu14071482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic gluconeogenesis is a crucial process to maintain glucose level during starvation. However, unabated glucose production in diabetic patients is a major contributor to hyperglycemia. Palmitoleic acid is a monounsaturated fatty acid (16:1n7) that is available from dietary sources. Palmitoleic acid exhibits health beneficial effects on diabetes, insulin resistance, inflammation, and metabolic syndrome. However, the mechanism by which palmitoleate reduces blood glucose is still unclear. SIRT3 is a key metabolism-regulating NAD+-dependent protein deacetylase. It is known that fasting elevates the expression of SIRT3 in the liver and it regulates many aspects of liver’s response to nutrient deprivation, such as fatty acid oxidation and ketone body formation. However, it is unknown whether SIRT3 also regulates gluconeogenesis. Our study revealed that palmitoleic acid reduced hepatic gluconeogenesis and the expression of SIRT3 under high-fat diet conditions. Overexpression of SIRT3 in the liver and hepatocytes enhanced gluconeogenesis. Further study revealed that SIRT3 played a role in enhancing the activities of gluconeogenic enzymes, such as PEPCK, PC, and MDH2. Therefore, our study indicated that under a high-fat diet, palmitoleic acid decreased gluconeogenesis by reducing enzymatic activities of PEPCK, PC, and MDH2 by down-regulating the expression of SIRT3.
Collapse
|
15
|
Abstract
SIRT3 is an NAD+-dependent deacetylase in the mitochondria with an extensive ability to regulate mitochondrial morphology and function. It has been reported that SIRT3 participates in the occurrence and development of many aging-related diseases. Osteoporosis is a common aging-related disease characterized by decreased bone mass and fragility fractures, which has caused a huge burden on society. Current research shows that SIRT3 is involved in the physiological processes of senescence of bone marrow mesenchymal stem cells (BMSCs), differentiation of BMSCs and osteoclasts. However, the specific effects and mechanisms of SIRT3 in osteoporosis are not clear. In the current review, we elaborated on the physiological functions of SIRT3, the cell types involved in bone remodeling, and the role of SIRT3 in osteoporosis. Furthermore, it also provided a theoretical basis for SIRT3 as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopaedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
- *Correspondence: Shuangshuang Wang,
| |
Collapse
|
16
|
Ding Y, Gong W, Zhang S, Shen J, Liu X, Wang Y, Chen Y, Meng G. Protective role of sirtuin3 against oxidative stress and NLRP3 inflammasome in cholesterol accumulation and foam cell formation of macrophages with ox-LDL-stimulation. Biochem Pharmacol 2021; 192:114665. [PMID: 34181898 DOI: 10.1016/j.bcp.2021.114665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
Sirtuin3 (SIRT3) is involved in reactive oxygen species (ROS), cell metabolism, apoptosis and inflammation. However, the exact role of SIRT3 in macrophages during pathophysiological process of atherosclerosis remains unclear. The present study was to investigate the possible effects and mechanisms of SIRT3 on lipid uptake and foam cells transforming in oxidized low-density lipoprotein (ox-LDL)-stimulated macrophages. Compared with wild-type (WT) mice, SIRT3 deficiency further increased foam cell formation and cellular cholesterol accumulation, exacerbated oxidative stress, impaired mitochondrial permeability potential, decreased optic atrophy 1 (OPA1) but enhanced dynamin-related protein 1 (DRP1) expression, and promoted NLR family pyrin domain-containing protein 3 (NLRP3) activation in ox-LDL-stimulated macrophages from SIRT3 knockout (KO) mice. Dihydromyricetin (DMY), a potential compound to enhance SIRT3 expression, significantly inhibited cellular cholesterol accumulation, suppressed foam cell formation, improved mitochondrial function, attenuated oxidative stress, and alleviated NLRP3 activation in ox-LDL-stimulated macrophages. Moreover, above protective effects of DMY was unavailable in macrophages from SIRT3 KO mice. Collectively, the study demonstrated the protective role of SIRT3 against oxidative stress and NLRP3 inflammasome in cholesterol accumulation and foam cell formation of macrophages with ox-LDL-stimulation, which is beneficial to provide novel strategy for atherosclerosis prevention and treatment.
Collapse
Affiliation(s)
- Yue Ding
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Weiwei Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|